Articles | Volume 14, issue 9
https://doi.org/10.5194/gmd-14-5583-2021
https://doi.org/10.5194/gmd-14-5583-2021
Development and technical paper
 | 
10 Sep 2021
Development and technical paper |  | 10 Sep 2021

Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5

Annika Vogel and Hendrik Elbern

Related authors

How far can the statistical error estimation problem be closed by collocated data?
Annika Vogel and Richard Ménard
Nonlin. Processes Geophys., 30, 375–398, https://doi.org/10.5194/npg-30-375-2023,https://doi.org/10.5194/npg-30-375-2023, 2023
Short summary
Identifying forecast uncertainties for biogenic gases in the Po Valley related to model configuration in EURAD-IM during PEGASOS 2012
Annika Vogel and Hendrik Elbern
Atmos. Chem. Phys., 21, 4039–4057, https://doi.org/10.5194/acp-21-4039-2021,https://doi.org/10.5194/acp-21-4039-2021, 2021
Short summary
Analyzing trace gas filaments in the Ex-UTLS by 4D-variational assimilation of airborne tomographic retrievals
Annika Vogel, Jörn Ungermann, and Hendrik Elbern
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-308,https://doi.org/10.5194/acp-2017-308, 2017
Revised manuscript has not been submitted
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Auger, L. and Tangborn, A.: A wavelet-based reduced rank Kalman filter for assimilation of stratospheric chemical tracer observations, Mon. Weather Rev., 132, 1220–1237, https://doi.org/10.1175/1520-0493(2004)132<1220:AWRRKF>2.0.CO;2, 2004. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. a
Boynard, A., Beekmann, M., Foret, G., Ung, A., Szopa, S., Schmechtig, C., and Coman, A.: An ensemble assessment of regional ozone model uncertainty with an explicit error representation, Atmos. Environ., 45, 784–793, https://doi.org/10.1016/j.atmosenv.2010.08.006, 2011. a
Buizza, R.: Introduction to the special issue on “25 years of ensemble forecasting”, Q. J. Roy. Meteor. Soc., 145, 1–11, https://doi.org/10.1002/qj.3370, 2019. a
Download
Short summary
While atmospheric chemical forecasts rely on uncertain model parameters, their huge dimensions hamper an efficient uncertainty estimation. This study presents a novel approach to efficiently sample these uncertainties by extracting dominant dependencies and correlations. Applying the algorithm to biogenic emissions, their uncertainties can be estimated from a low number of dominant components. This states the capability of an efficient treatment of parameter uncertainties in atmospheric models.