Articles | Volume 14, issue 9
Geosci. Model Dev., 14, 5583–5605, 2021
Geosci. Model Dev., 14, 5583–5605, 2021
Development and technical paper
10 Sep 2021
Development and technical paper | 10 Sep 2021

Efficient ensemble generation for uncertain correlated parameters in atmospheric chemical models: a case study for biogenic emissions from EURAD-IM version 5

Annika Vogel and Hendrik Elbern

Related authors

Identifying forecast uncertainties for biogenic gases in the Po Valley related to model configuration in EURAD-IM during PEGASOS 2012
Annika Vogel and Hendrik Elbern
Atmos. Chem. Phys., 21, 4039–4057,,, 2021
Short summary
Analyzing trace gas filaments in the Ex-UTLS by 4D-variational assimilation of airborne tomographic retrievals
Annika Vogel, Jörn Ungermann, and Hendrik Elbern
Atmos. Chem. Phys. Discuss.,,, 2017
Revised manuscript has not been submitted
Short summary

Related subject area

Atmospheric sciences
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694,,, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358,,, 2022
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284,,, 2022
Short summary
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219,,, 2022
Short summary
OpenIFS/AC: atmospheric chemistry and aerosol in OpenIFS 43r3
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241,,, 2022
Short summary

Cited articles

Auger, L. and Tangborn, A.: A wavelet-based reduced rank Kalman filter for assimilation of stratospheric chemical tracer observations, Mon. Weather Rev., 132, 1220–1237,<1220:AWRRKF>2.0.CO;2, 2004. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55,, 2015. a
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358,, 2015. a
Boynard, A., Beekmann, M., Foret, G., Ung, A., Szopa, S., Schmechtig, C., and Coman, A.: An ensemble assessment of regional ozone model uncertainty with an explicit error representation, Atmos. Environ., 45, 784–793,, 2011. a
Buizza, R.: Introduction to the special issue on “25 years of ensemble forecasting”, Q. J. Roy. Meteor. Soc., 145, 1–11,, 2019. a
Short summary
While atmospheric chemical forecasts rely on uncertain model parameters, their huge dimensions hamper an efficient uncertainty estimation. This study presents a novel approach to efficiently sample these uncertainties by extracting dominant dependencies and correlations. Applying the algorithm to biogenic emissions, their uncertainties can be estimated from a low number of dominant components. This states the capability of an efficient treatment of parameter uncertainties in atmospheric models.