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Abstract. Atmospheric chemical forecasts heavily rely on
various model parameters, which are often insufficiently
known, such as emission rates and deposition velocities.
However, a reliable estimation of resulting uncertainties with
an ensemble of forecasts is impaired by the high dimension-
ality of the system. This study presents a novel approach,
which substitutes the problem into a low-dimensional sub-
space spanned by the leading uncertainties. It is based on the
idea that the forecast model acts as a dynamical system in-
ducing multivariate correlations of model uncertainties. This
enables an efficient perturbation of high-dimensional model
parameters according to their leading coupled uncertainties.
The specific algorithm presented in this study is designed
for parameters that depend on local environmental condi-
tions and consists of three major steps: (1) an efficient as-
sessment of various sources of model uncertainties spanned
by independent sensitivities, (2) an efficient extraction of
leading coupled uncertainties using eigenmode decomposi-
tion, and (3) an efficient generation of perturbations for high-
dimensional parameter fields by the Karhunen–Loéve expan-
sion.

Due to their perceived simulation challenge, the method
has been applied to biogenic emissions of five trace gases,
considering state-dependent sensitivities to local atmo-
spheric and terrestrial conditions. Rapidly decreasing eigen-
values state that highly correlated uncertainties of regional
biogenic emissions can be represented by a low number
of dominant components. Depending on the required level
of detail, leading parameter uncertainties with dimensions
of O(106) can be represented by a low number of about

10 ensemble members. This demonstrates the suitability of
the algorithm for efficient ensemble generation for high-
dimensional atmospheric chemical parameters.

1 Introduction

Due to highly nonlinear properties of the atmosphere, includ-
ing its chemistry, forecast uncertainties vary significantly in
space and time and among variables. During the last few
decades, increasing effort has been put into estimating fore-
cast uncertainties induced by different error sources. In this
context, the method for generating an ensemble of forecasts
is crucial as it determines the forecast probability distribu-
tion. While the represented details of the probability distri-
bution increase with the number of realizations, the ensemble
size of high-dimensional atmospheric systems is limited by
computational resources (Leutbecher, 2019). Thus, the ma-
jor challenge is the generation of ensembles that sufficiently
sample the forecast uncertainty within manageable compu-
tational efforts. This renders ensemble forecasting one of
the most challenging research areas in atmospheric model-
ing (e.g., Bauer et al., 2015; Buizza, 2019).

In numerical weather prediction (NWP), different ensem-
ble methods have been developed in order to account for un-
certainties of initial conditions and the forecast model for-
mulation. First, studies were motivated by the fact that ini-
tial conditions induce dominant uncertainties to NWP sys-
tems. Bred vectors (BV, Toth and Kalnay, 1993) or singular
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vectors (SV, Buizza et al., 1993) are used to efficiently gen-
erate initial perturbations along the directions of the fastest
growing errors in a linearized or nonlinear forecast model,
respectively. Another approach estimates uncertainties of ini-
tial conditions by applying random perturbations to observa-
tions (PO, Houtekamer et al., 1996), which are assimilated
into the modeling system.

As errors in initial conditions cannot entirely explain fore-
cast errors, two methods related to uncertainties within the
NWP model have been developed. Firstly, the stochastic
kinetic energy backscatter scheme (SKEBS, Shutts, 2005)
accounts for uncertainties in the amount of energy that is
backscattered from subgrid to resolved scales. The second
group of methods focuses on uncertainties in model parame-
terizations, which rely on simplified assumptions about non-
resolved processes. In the stochastic parameter perturbation
scheme (SPP, Houtekamer et al., 1996), selected parameters
within individual parameterizations are multiplied with ran-
dom numbers. In contrast, the stochastically perturbed pa-
rameterization tendencies scheme (SPPT, Buizza et al., 1999)
considers uncertainties in the formulation of the parameter-
ization schemes itself. Instead of perturbing individual pa-
rameters, total tendencies of state variables from all param-
eterizations are multiplied with appropriately scaled random
numbers. Although perturbations are generated in a spatially
and temporally correlated way, both correlation scales and
standard deviations of the random numbers are predefined as
fixed values (e.g., Leutbecher et al., 2017; Lock et al., 2019).

While different methods for ensemble generation are suc-
cessfully applied to NWP, fewer approaches are available for
chemistry transport modeling. As chemistry transport mod-
els (CTMs) include a large number of trace gases and aerosol
compounds, the dimension of the system is even higher
than in NWP (Zhang et al., 2012a). Among other implica-
tions, this high dimensionality amplifies the amount of uncer-
tainties that differ significantly between individual chemical
compounds (Emili et al., 2016). In the context of atmospheric
data assimilation, reduced rank square-root Kalman filter ap-
proaches (Cohn and Todling, 1996; Verlaan and Heemink,
1996) have been successfully applied to reduce the high-
dimensional covariance matrix to a small number of leading
eigenmodes (e.g., Auger and Tangborn, 2004; Hanea et al.,
2004; Hanea and Velders, 2007). Additionally, the tempo-
ral evolution of atmospheric chemical forecast errors differs
from typical error growth characteristics in NWP. This in-
hibits a straightforward application of existing ensemble gen-
eration approaches from NWP to CTMs.

Besides using multi-model ensembles for estimation of
forecast uncertainties (e.g., McKeen et al., 2007; Xian et al.,
2019), there are only few attempts for ensemble generation
within a single CTM. As CTMs are driven by meteorological
forecasts, uncertainties in NWP are transferred to the chem-
ical simulations. A comparably simple approach, which was
used by Vautard et al. (2001) for the first time, employs an
existing meteorological ensemble to drive the atmospheric

chemical forecasts. However, estimations of chemical uncer-
tainties solely driven by NWP ensembles do not necessarily
represent related uncertainties in CTMs. For example, Vo-
gel and Elbern (2021a) note that a global meteorological en-
semble was not able to induce significant ensemble spread in
near-surface forecasts of biogenic trace gases.

Multiple studies indicate that uncertainties of CTMs are
mainly induced by uncertain model parameters – control-
ling emissions, chemical transformation, and deposition pro-
cesses – rather than initial conditions or meteorological fore-
casts (e.g., Elbern et al., 2007; Bocquet et al., 2015). Con-
sequently, former attempts aim to account for uncertainties
in model parameters or other chemical input fields (for an
overview, see Zhang et al., 2012b, and references therein).
However, perturbing parameter fields appears to suffer from
the high dimensionality of the system, as independent per-
turbations of model parameters at each location and time re-
main impractical. Early studies like the one performed by
Hanna et al. (1998) assume predefined uncertainties where
perturbations are applied uniformly in space and time, ignor-
ing any cross-correlations between parameters. This uniform
perturbation of model parameters with a fixed standard devi-
ation is still applied to emissions in the context of ensemble
data assimilation (e.g., Schutgens et al., 2010; Candiani et al.,
2013).

However, constant perturbation of the whole parameter
field does not allow for any spatial variation within the do-
main. More recently, limited spatial correlations are con-
sidered in uncertainty estimation by uniform perturbations
within arbitrary sub-regions (Boynard et al., 2011; Emili
et al., 2016) or isotropic decrease with fixed correlation
length scales (Gaubert et al., 2014). Although recent ap-
proaches allow a local treatment of correlations, they are
not able to represent the spatiotemporal properties of the dy-
namical system. Hanna et al. (1998) have already proposed
that introducing state-dependent uncertainties and cross-
correlations between parameters would provide a more re-
alistic representation.

The Karhunen–Loéve (KL) expansion provides an oppor-
tunity to account for such complex correlated uncertainties
based on eigenmode decomposition. While this approach is
well established in engineering, it has rarely been applied in
geophysical sciences. Siripatana et al. (2018) used the KL
expansion for dimension reduction in an idealized oceano-
graphic ensemble data assimilation setup. The eigenmode
analysis required for the KL expansion is equivalent to a
principal component analysis (PCA) by singular vector de-
composition (SVD). The discrete PCA has been used as di-
agnosis tool in atmospheric sciences and is most established
in climatology (e.g., Hannachi et al., 2007; Galin, 2007; Liu
et al., 2014; Guilloteau et al., 2021). Goris and Elbern (2015)
performed singular vector decomposition to determine opti-
mal placement of trace gas observation sites. To the knowl-
edge of the authors, the KL expansion has not been used for
ensemble generation in atmospheric chemical models.
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In order to address this issue, this study introduces a novel
approach for optimized state-dependent parameter perturba-
tion in atmospheric chemical models. The approach is based
on the idea that the dynamical system induces multivariate
correlations of model states and uncertainties. In particular,
the algorithm aims to provide (1) an efficient assessment of
various sources of uncertainties, (2) an efficient extraction
of leading coupled uncertainties, and (3) an efficient gener-
ation of perturbations for high-dimensional parameter fields.
Section 2 provides the concept of sensitivity estimation on
which the ensemble generation approach is based. The spe-
cific algorithm presented in Sect. 3 is designed for model
parameters that depend on model arguments like model in-
puts and configurations. Representative performance results
are presented in Sect. 4 for biogenic emissions representing a
highly uncertain (yet correlated) set of parameters. A discus-
sion of the benefits and limitations of the presented approach
is given in Sect. 5. Finally, Sect. 6 provides a summary and
conclusions of this study.

2 Concept of sensitivity estimation

This section introduces the conceptual basis for the descrip-
tion of the ensemble generation algorithm in Sect. 3. The al-
gorithm relies on several definitions, which are introduced in
Sect. 2.1. Given these definitions, the concept of sensitivities
consists of two parts: the general formulation of sensitivities
in Sect. 2.2 and the special formulation of independent sen-
sitivities in Sect. 2.3. Each of these parts provides the basis
for combined or independent covariance construction in the
ensemble generation algorithm, respectively.

2.1 Definitions

The concept of sensitivity estimation requires the definition
of several terms. This section introduces these terms on a
general level and provides examples for the application to
CTMs. All important terms used in the concept of sensitiv-
ity estimation and the algorithm are summarized in Table 1,
including specific examples for the application to biogenic
emissions.

Generally, the term “model parameter” refers to any pa-
rameter in the prognostic equations of the model that may
affect the model forecast. A prominent example of a highly
uncertain model parameter in CTMs is trace gas emissions.
Considering multiple model parameters, like the emission
rates of different trace gases, the dimension N of the prob-
lem is the total number of all considered parameters at all
grid boxes. The total set of all parameter values at all grid
boxes at time t is denoted by vector Q(t) ∈RN . In the case
of trace gas emissions, Q(t) includes the simulated emission
rates of all considered gases at all grid boxes. Thus, the nth
entry Qsn(t) of the parameter vector is the simulated value
of model parameter pn at grid box (xn,yn,zn). The index

sn = (pn,xn,yn,zn) specifies the model parameter and grid
box and is therefore denoted as “position”. Hence, the posi-
tions of all parameters at all grid boxes is given by the index
set S := {s1, s2, . . ., sN }.

The concept of sensitivities uses a set of J parameter
vectors Qj (t) from differently configured model simula-
tions j ∈ [1,J ]. In this approach, different model simula-
tions are achieved by using different implementations ri of
a set of model arguments i ∈ [1,I ]. The term “model argu-
ment” comprises a heterogeneous set of available arguments
for the specific configuration of the model. In this regard,
model arguments in CTMs may be as diverse as initial and
boundary conditions, any external input fields, and the for-
mulation of parameterizations in the model. The specific im-
plementation ri of a model argument i is realized by select-
ing one available option of the argument in the model. For
example, input fields of land surface properties may be one
model argument with two implementations: land surface in-
formation from source A and from source B. In the concept
of sensitivity estimation, each model argument i ∈ [1,I ] is
interpreted as an arbitrary parameter with Ri different imple-
mentations ri ∈ [1,Ri]. Thus, each “setup index” j ∈ [1,J ]
represents a complete “model setup” {r1, r2, . . ., rI } as a spe-
cific combination of implementations ri of each model argu-
ment i ∈ [1,I ]. Thus, Qs

j (t) is the parameter value of posi-
tion s ∈ S simulated with model setup j ∈ [1,J ] at discrete
time t ∈ [t1, tT ]. Note that the complete set of

{
Qs
j (t)

}
j∈[1,J ]

considers all possible combinations of implementations of all
model arguments.

2.2 Formulation of sensitivities

The formulation of state-dependent sensitivities is based on
Elbern et al. (2007), who demonstrated the suitability of
amplification factors in the context of 4D variational opti-
mization of emissions. Let j∗ be a “reference model setup”
(j∗ := 1) representing the selected “reference implementa-
tion” ri∗ = 1 of each model argument i ∈ [1,I ]. Following
this, the model parameter Qs

j (t) of model setup j at time t
and position s is divided by its corresponding value from the
reference configurationQs

j∗
(t). The “sensitivity factor” F s

j is
defined as temporal average of those over the time interval
[t1, tT ]:

F s
j :=

1
T

tT∑
t=t1

Qs
j (t)

Qs
j∗
(t)
∀ j ∈ [1,J ], s ∈ S . (1)

Depending on the type of model parameter, the sensitivity
factors may not be Gaussian distributed. This is especially
true for parameters that are positive by definition, like emis-
sions of trace gases. Analogous to emission factors in Elbern
et al. (2007), sensitivity factors of emissions are assumed to
be lognormally distributed. In this case, the sensitivity fac-
tors are substituted to normally distributed “sensitivities” Xs

j
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Table 1. Notations used in the concept of sensitivity estimation and the formulation of the algorithm (including examples).

Term Expression Description Examples of the application to biogenic emis-
sions

(Model)
Parameter

Qs
j
(t) Parameter value from model setup j at time

t and position s.
Biogenic emission rate from model setup j at
time t and position s

qs
i
(ri , t) Parameter value from setup where only the ith argument differs from reference setup ri 6= ri∗.{

qs
i
(ri , t)

}
⊂

{
Qs
j
(t)
}

Dimension N Dimension of the problem (total number of
elements in the set of considered model pa-
rameters).

5 parameters at 6.572 land surface grid boxes
⇒N = 32.860

Index set S =

{s1, s2, . . ., sN }
Set of indices representing the positions of
all perturbed model parameters p at all grid
boxes (x,y,z).

S = {(p1,x1,y1,z1), (p2,x1,y1,z1) ,
(p3,x1,y1,z1), . . .}

– Position sn ∈ S nth element in the index set representing
the position of parameter pn at grid box
(xn,yn,zn).

e.g., s1 = (p1,x1,y1,z1)/s2 =
(p2,x1,y1,z1)/s3 = (p3,x1,y1,z1)/. . .

(Model)
Argument

i ∈ [1,I ] Arguments in the model configuration, in-
cluding the specification of initial condi-
tions, input fields, and model parameteriza-
tions.

I = 6: land use information, global meteorol-
ogy, land surface model, boundary layer, micro-
physics, radiation parameterization

Implementation ri ∈ [1,Ri ] Available options of each model argument
i.

Ri = 2∀i: e.g., r1 = 1→ USGS land use, r1 =
2→MODIS land use; r2 = 1→ ECMWF
global meteo, r2 = 2→ GFS global meteo..

– Reference
implementation

ri∗ Selected reference implementation of each
model argument.

ri∗ = 1 ∀i (USGS land use, ECMWF global
meteo.).

(Model)
Setup

{r1, r2, . . ., rI } Specific set of implementations ri of all
model arguments i.

– e.g., {1,1,1,1,1,1}/{1,1,1,1,1,2}/
{1,1,1,1,2,1}/. . ./{2,2,2,2,2,2}

– Setup index j ∈ [1,J ] Index indicating one specific model setup. – e.g., j = 1→ {1,1,1,1,1,1}/j = 2→
{1,1,1,1,1,2}/. . ./j = J → {2,2,2,2,2,2}

– Reference
setup

j∗→

{r1∗, r2∗, . . ., rI ∗}
Index of reference setup representing the
set of reference implementations ri∗ of all
model arguments i.

j∗ = 1→ {1,1,1,1,1,1}

Sensitivity
factor

F s
j

Temporally averaged amplification factor of model setup j at position s w.r.t. the reference
setup j∗ (see Eq. 1).

– Independent
factor

f s
i
(ri) Sensitivity factor w.r.t. single model argument i with implementation ri 6= ri∗ differing from

the reference (assumed to be independent of other arguments).

Sensitivity Xs
j

Sensitivity to model setup j at position s (see Eq. 2).
– Independent
sensitivity

xs
i
(ri) Sensitivity w.r.t. single model argument i with ri 6= ri∗ (assumed to be independent of other

arguments).

Perturbation Y s
ωp

Perturbation as pth random realization of the KL expansion at position s (see Eq. 15).

Perturbation
factor

F s
ωp

Perturbation factor to be applied to the
model parameter at position s of the pth
member in the ensemble forecast.

Emission factor of the pth member multiplied
to biogenic emissions at position s.
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Figure 1. Number of required sensitivities as function of the num-
ber of arguments I . Shown are the required numbers of com-
bined (Jcombi, Eq. 3, green) and independent (Jindep, Eq. 8, or-
ange) sensitivities for different numbers of implementations Ri =
2,3,4,5 ∀i ∈ [1,I ].

in order to simplify their further treatment:

Xs
j := ln

(
F s
j

)
∀ j ∈ [1,J ], s ∈ S. (2)

Since the definition of sensitivities refers to all possible
combinations of implementations of all model arguments,
the set of

{
Xs
j

}
j∈[1,J ]

is also denoted as a set of “combined

sensitivities”. Given Ri implementations ri ∈ [1,Ri] of each
model argument i ∈ [1,I ], the total number of combined sen-
sitivities Xs

j with j ∈ [1,J ] is

Jcombi := J =

I∏
i=1
Ri . (3)

For atmospheric model parameters, each sensitivity Xs
j re-

quires its own forecast simulation. Thus, the calculation of all
combined sensitivities becomes computationally demanding
even for a low number of implementations of a few model
arguments. Figure 1 shows the exponential increase of the
number of combined sensitivities as function of the number
of implementations and arguments from Eq. (3). For exam-
ple, considering six model arguments (I = 6) with two im-
plementations each (Ri = 2,∀ i = [1,I ]), requires Jcombi =

J = 26
= 64 model executions prior to the ensemble genera-

tion.

2.3 Formulation of independent sensitivities

As this study aims for a computationally efficient algorithm
focusing on leading uncertainties, the computational efforts
required for the estimation of sensitivities are critical. Thus, a
new method for efficient sensitivity estimation is introduced,
which reduces the number of required model executions prior
to ensemble generation significantly. Instead of using all pos-
sible combinations of model arguments, the method uses
only sensitivities with respect to single model arguments. By
assuming tangent linearity of sensitivities in the limits of im-
posed perturbations, these sensitivities are extrapolated to ap-
proximate the full set of combined sensitivities.

The assumption of tangent linearity equals mutual inde-
pendence of the model arguments, and thus every combined
sensitivity factor F s

j with arguments {r1, r2, . . ., rI } can be de-
composed into a set of “independent sensitivity factors” f s

i

for each single argument ri with i ∈ [1,I ]

F s
j = F

s
{r1,r2,...,rI }

=

I∏
i=1
f s
i (ri) ∀ j ∈ [1,J ], s ∈ S. (4)

Here, the independent sensitivity factors f s
i are defined anal-

ogously to Eq. (1) using the model forecast
qs
i (ri, t) :=Q

s
{r1∗,r2∗,...,ri−1∗,ri ,ri+1∗,...,rI ∗}

(t), where only one
argument ri differs from the reference setup

f s
i (ri) :=

1
T

tT∑
t=t1

qs
i (ri, t)

Qs
j∗
(t)
∀ i ∈ [1,I ], s ∈ S. (5)

Further, with Eq. (2), every combined sensitivity Xs
j of im-

plementation j at position s is given by

Xs
j =X

s
{r1,r2,...,rI }

= ln
(
F s
{r1,r2,...,rI }

)
(4)
=

I∑
i=1

ln
(
f s
i (ri)

)
=

I∑
i=1

xs
i (ri), (6)

where xs
i (ri) := ln

(
f s
i (ri)

)
is the independent sensitivity, re-

ferring to a single modified model argument i ∈ [1,I ] with
implementation ri . Note that the independent sensitivity fac-
tors f s

i (ri) equal 1 when the implementation ri of model ar-
gument i equals the reference implementation ri∗ (analogous
to Eq. 1). Consequently, the independent sensitivities xs

i (ri)

vanish in Eq. (6) for all i with ri = ri∗, and each combined
sensitivity is given by the sum of independent sensitivities to
those arguments, which differ from the reference setup

Xs
j =X

s
{r1,r2,...,rI }

=

I∑
i=1
∣∣ri 6=ri∗ x

s
i (ri) ∀ j ∈ [1,J ], s ∈ S.

(7)

In other words, the assumption of independence implies
that the set of all combined sensitivities

{
Xs
j

}
j∈[1,J ]

lies

within a subspace that is spanned by the set of independent
sensitivities

{
xs
i (ri)

}
ri∈[1,Ri ]
i∈[1,I ]

. Following this, the full set of

combined sensitivities can be approximated by the subset of
independent sensitivities following Eq. (7). This reduces the
number of required forecasts from Jcombi =

∏I
i=1Ri to

Jindep = 1+
I∑
i=1

(Ri − 1) , (8)

with Jindep� Jcombi = J , as shown in Fig. 1. Thus, the in-
dependent method requires a significantly reduced number
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of simulations, one for the reference setup (ri∗ = 1 ∀i) and
one for each other implementation ri ∈ [2,Ri] of each argu-
ment i ∈ [1,I ]. For example, considering I = 3 model argu-
ments withRi = 5 implementations each, the total number of
Jcombi = 53

= 125 combined sensitivities reduces to Jindep =

1+3 ·4= 13 independent sensitivities. For I = 10 model ar-
guments with Ri = 2 implementations each, the number of
required sensitivities can even be reduced by 2 orders of mag-
nitude (Jindep = 11, Jcombi = 1024).

While the number of required simulations is considerably
reduced, the underlying assumption of independent sensi-
tivities disregards nonlinear interactions between different
model arguments. A discussion of this assumption for the ap-
plication to atmospheric model parameters is given in Sect. 5.

3 Algorithm

This section provides the description of the ensemble gen-
eration algorithm with respect to correlated model parame-
ters. Here, a model parameter may be any parameter in the
prognostic equations of the model state variables (compare
Sect. 2.1). Making use of the Karhunen–Loéve (KL) expan-
sion, the approach is hereafter denoted as the “KL ensemble
generation approach”. It is based on the fact that the fore-
cast model acts as a dynamical system, forcing spatial and
multivariate couplings of the atmospheric state. Thus, infor-
mation on the size and coupling of forecast uncertainties can
be extracted from differently configured model simulations.
The configurations of the model simulations is selected by
the user according to sources of uncertainties of the selected
model parameters. For recurring applications of the ensem-
ble generation algorithm, the selection may also be guided
by results of previous applications of the algorithm.

The explicit algorithm presented here focuses on state-
dependent model parameters that depend on the specific
model setup. Generally, atmospheric models are sensitive
to their specific simulation setup, including a large variety
of model inputs and configurations like initial and bound-
ary conditions, external input data, and the selection of pa-
rameterization schemes in the model. Although comprising a
highly heterogeneous set, all model inputs and configurations
determining the specific simulation setup are henceforth de-
noted as model arguments. For state-dependent parameters
considered here, their sensitivities to the model setup are as-
sumed to induce dominant uncertainties. Thus, the problem
of estimating multivariate uncertainties is transferred to sen-
sitivities to the model setup.

The algorithm consists of three major steps, which are
described in the following: the construction of parame-
ter covariances from combined or independent sensitivi-
ties (Sect. 3.1), the extraction of leading uncertainties us-
ing highly parallelized eigenmode decomposition software
(Sect. 3.2), and the ensemble generation by sampling pertur-
bations from leading eigenmodes with the Karhunen–Loéve

expansion (Sect. 3.3). A graphical overview of the major
steps composing the algorithm is given in Fig. 2. The formu-
lation of the algorithm is based on the concept of sensitivity
estimation introduced in Sect. 2; an overview over the terms
used in this section is given in Table 1.

3.1 Covariance construction

As a first step, essential uncertainties of the model parameters
are formulated as multivariate covariance matrix C ∈RN×N ,
where N is the dimension of the problem, i.e., the total di-
mension of the set of considered model parameters. Gen-
erally, the covariances may be determined from any kind
of uncertainty, such as statistical model errors derived from
operational forecasts. Because this study focuses on state-
dependent parameters, essential uncertainties are estimated
from sensitivities of those parameters to different model ar-
guments. These state-dependent sensitivities are realized as
temporally averaged sensitivity factors with respect to a se-
lected reference as described in Sect. 2. The temporal aver-
aging makes the sensitivities representative for a sufficient
time interval for ensemble simulation. Generally, the covari-
ance matrix should represent the complete set of essential
uncertainties of the model parameters. Focusing on uncer-
tainties induced by sensitivities to various model arguments
i ∈ [1,I ], essential uncertainties can be estimated from dif-
ferent implementations ri of each model argument i. Ide-
ally, the covariance matrix is calculated from the sensitivi-
ties

{
Xs
j

}
j∈[1,J ]

to all possible combinations of various im-

plementations of each argument (compare Sect. 2.2). In this
case, the “combined covariance” between sensitivities at po-
sitions s,s′ ∈ S is given by

Ccombi(s,s
′) :=

1
J − 1

J∑
j=1

((
Xs
j −µcombi(s)

)
·

(
Xs
′

j −µcombi(s
′)
))
, (9a)

where µcombi(s̃) :=
1
J

J∑
j=1

Xs̃j

∣∣∣ s̃ = s,s′, (9b)

give the mean value of combined sensitivities at position s
and s′, respectively.

If the assumption of independent sensitivities is applied,
covariances are calculated from the set of independent sen-
sitivities

{
xs
i (ri)

}
ri∈[1,Ri ]
i∈[1,I ]

(compare Sect. 2.3). Rather than

approximating all combined sensitivities from independent
sensitivities explicitly, the effects on mean sensitivities and
covariances are derived in their general from in Appendix A.

In the KL ensemble generation algorithm, the mean values
µindep(s) and covariances Cindep(s,s

′) of the sensitivities are
directly calculated from the set of independent sensitivities
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Figure 2. Simplified schematic overview of the KL ensemble generation algorithm. Equation numbers refer to the equations in Sects. 2 and 3.
Colored arrows indicate input and output of the algorithm and the transfer of selected fields between the single steps.

by

µindep(s)
(A3)
=

I∑
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1
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·

Ri∑
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xs
i (ri)

)
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=
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 1
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·
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i (ri)

 , (10a)

Cindep(s,s
′)
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[(
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−

1

(Ri)
2

)
·
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(
xs
i (ri) · x

s′

i (ri)
)]

(7)
=

J

J − 1

I∑
i=1

( 1
Ri
−

1
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2
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·
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∣∣ri 6=ri∗
(
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i (ri)
) .

(10b)

Note that the assumption of independence does not imply
orthogonality between the input sensitivities. While the equa-
tions are exact under the given assumption of tangent linear-
ity, this assumption might be a strong limitation for many
atmospheric processes.

The method of independent sensitivities allows the in-
clusion of additional uncertainties in a straightforward way.
These additional uncertainties may originate from any other
error source not represented as model arguments. For exam-
ple, this could be a known uncertainty in the formulation of
the model itself. If such an “additional uncertainty” is given
(e.g., from statistical evaluation), it can be included as ad-
ditional sensitivity xs

add with Radd = 2. Based on Eqs. (10a)
and (10b), the independent mean and covariance including
additional uncertainties are

µadd
indep(s)=

I∑
i=1

 1
Ri
·

Ri∑
ri=1

∣∣ri 6=ri∗ x
s
i (ri)

+ 1
Radd
·xs

add, (11a)

Cadd
indep(s,s

′)=
J

J − 1

(
I∑
i=1

[(
1
Ri
−

1

(Ri)
2

)

·

Ri∑
ri=1

∣∣ri 6=ri∗
(
xs
i (ri) · x

s′

i (ri)
)

+
1

(Radd)
2 ·
(
xs

add · x
s′

add

))
. (11b)

If the direction of the additional uncertainty is unknown
(“unsigned additional uncertainty”), the original definition
of the mean values for independent sensitivities as given in
Eq. (10a) is used instead of Eq. (11a). This ensures no im-
pact from the additional uncertainty on the mean values of
the parameters.

3.2 Eigenmode decomposition

Once the multivariate covariances are formulated, dominat-
ing directions of uncertainties are extracted as a second step.
This extraction is realized by an eigenmode decomposition
of the covariance matrix

sN∑
s′=s1

C(s,s′) ϕd(s
′)= λd ϕd(s), (12)

with λd the dth eigenvalue and ϕd(s̃) the s̃th element of the
corresponding eigenvector ϕd ∈RN for all d ∈ [1,N ] with
s̃ = s,s′ ∈ S. As the presented approach focuses on dominant
uncertainties, the D largest eigenvalues and corresponding
eigenvectors are required λ1 ≥ λ2 ≥ . . .≥ λD with D <N .
Here, the first eigenvalues represent the size of the most dom-
inant uncertainties, and the corresponding eigenvectors rep-
resent their directions. Due to the high dimensionality of at-
mospheric models, the covariance matrix may easily be of
the order of 1010 elements. This inhibits explicit storage of
the matrix and makes the computation of the eigenproblem
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Eq. (12) very costly even for a low number of required eigen-
modes (D�N ). Therefore, highly efficient software is re-
quired that is suitable for high-dimensional systems.

The ARPACK (ARnoldi PACKage, Lehoucq et al., 1997)
package is a flexible tool for numerical eigenvalue and singu-
lar value decomposition. It is explicitly developed for large-
scale problems and includes a set of specific algorithms for
different types of matrices. The ARPACK software uses a
reverse communication interface where the matrix needs to
be given as operator acting on a given vector. ARPACK
makes use of the implicitly restarted Arnoldi method (IRAM,
Sorensen, 1997) which is based on the implicitly shifted QR
algorithm. As a covariance matrix is quadratic, symmetric,
and positive definite by construction, the IRAM method re-
duces to the implicitly restarted Lanczos method (IRLM). In
this study, the parallel version P-ARPACK is used for the
eigenmode decomposition, which balances the workload of
processors and reduces the computation time. For a detailed
description of the ARPACK software package, see Lehoucq
et al. (1997).

3.3 Ensemble generation

The final step is the generation of an ensemble of pertur-
bations based on the leading eigenmodes of parameter un-
certainties. This step makes use of the Karhunen–Loéve ex-
pansion – denoted as “KL expansion” hereafter – named af-
ter Karhunen (1947) and Loéve (1948). The KL expansion
provides a mathematically optimal combination of the domi-
nant directions of parameter uncertainties given by the lead-
ing eigenmodes. The following description is adopted from
the notations of Schwab and Todor (2006) and Xiu (2010),
to which the reader is referred for more details. In its dis-
crete form, the KL expansion describes the sth element of a
stochastic process Y s

ωp
of dimension N as a linear combina-

tion of orthogonal components

Y s
ωp
= µ(s)+

N∑
d=1

ψd(s) yd(ωp), (13)

with µ(s) denoting the mean value of the stochastic process
and ωp its pth random realization. Here, the deterministic
fieldsψd(s) are given by the eigenvalues λd and eigenvectors
ϕd of the covariances of the stochastic process

ψd(s) :=
√
λd ϕd(s). (14)

In this notation, the stochastic coefficients yd(ωp) are inde-
pendent random numbers with zero mean and unit standard
deviation.

In the context of ensemble generation, the stochastic pro-
cess is a set of perturbations

{
Y s
ωp

}
s ∈ S

whose essential un-
certainties are formulated as covariance matrix of the sensi-
tivities as defined in Sect. 3.1. Thus, the eigenvalues λd and
corresponding normalized eigenvectors ϕd(s) are provided

by the eigenmode decomposition in Sect. 3.2. Normally dis-
tributed sensitivities Xs

j can be realized by centered and nor-
mally distributed stochastic coefficients yd(ωp).

Using the KL expansion for ensemble generation, multi-
variate covariances induce coupled perturbations of the set
of considered parameters. The higher the correlations of the
sensitivities, the faster the decrease of the eigenmodes and
the more the perturbations are determined by a few lead-
ing orthogonal components. Truncating Eq. (13) at D <N ,
the resulting KL approximation provides an optimal approx-
imation of the stochastic process in the least-squares sense
(Schwab and Todor, 2006). For ensemble generation, a set of
D stochastic coefficients

{
yd(ωp)

}
d ∈ [1,D] is randomly sam-

pled for each ensemble member p from a normal distribution
with zero mean and unit standard deviation. Given the set of
leading eigenvalues {λd}d ∈ [1,D] and corresponding normal-
ized eigenvectors {ϕd(s)} s ∈ S

d ∈ [1,D]
, the perturbation of ensem-

ble member p ∈ [1,P ] at position s ∈ S is sampled from

Y s
ωp
= µY (s)+

D∑
d=1

√
λd ϕd(s) yd(ωp)

∀ ωp ∈ [ω1,ωP ], s ∈ S . (15)

Finally, the ensemble of perturbations is transferred back to
a set of perturbation factors

{
F s
ωp

}
s ∈ S

. If the model pa-
rameters are assumed to be lognormally distributed, a re-
substitution as counterpart to the logarithmic substitution in
Eq. (2) is performed

F s
ωp
= exp

(
Y s
ωp

)
∀ ωp ∈ [ω1,ωP ], s ∈ S. (16)

These perturbation factors will then be applied to the model
parameters in the ensemble forecast.

Using the KL expansion for ensemble generation instead
of singular vectors has one important advantage. In SV-based
ensemble generation approaches, each perturbation is gener-
ated by one singular vector scaled by its singular value. Using
the KL expansion, each perturbation is sampled from the se-
ries of eigenmodes using different random numbers for each
perturbations. This allows for a flexible selection of the num-
ber of perturbations depending on the desired level of detail.
Independent of the number of perturbations, the KL expan-
sion ensures an optimal estimation of the largest uncertainties
by the calculated perturbations.

4 Application to biogenic emissions

This section provides results of the KL ensemble generation
algorithm for an application to biogenic emissions in a re-
gional CTM system. The modeling system used for the cal-
culation of sensitivities and the specific setup of the algo-
rithm are described in Sect. 4.1 and 4.2, respectively. Based
on these, the results are presented with respect to two main
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objectives. Firstly, the behavior of the algorithm is illustrated
for two different setups using combined and independent
sensitivities, respectively. Sect. 4.3–4.5 present the results for
each of the three major steps of the algorithm as described in
Sect. 3. The description focuses on similarities between the
two methods rather than on the detailed description of spe-
cific patterns. For the setup of independent sensitivities, ad-
ditional uncertainties are included as described in Sect. 4.2
to demonstrate the inclusion of those. Secondly, the perfor-
mance of the algorithm is evaluated for the two different se-
tups. A comprehensive a posteriori evaluation would ideally
be based on a representative amount of data covering multi-
ple conditions. However, observations of biogenic gases are
rare and only provide information on local concentrations
and not on their emissions themselves. As concentrations are
affected by other uncertain processes, an ensemble of emis-
sions or emission factors produced by the algorithm cannot
be evaluated by observations alone. Therefore, Sect. 4.6 eval-
uates the performance of the algorithm in terms of ensemble
statistics.

4.1 Modeling system

The KL ensemble generation algorithm was implemented in
a way that it uses precalculated output from the EURAD-
IM (EURopean Air pollution Dispersion – Inverse Model)
chemical data assimilation system. Note that the algorithm is
independent of the forecast model, which can be replaced by
any other CTM.

EURAD-IM combines a state-of-the-art chemistry trans-
port model (CTM) with four-dimensional variational data
assimilation (Elbern et al., 2007). Based on meteorological
fields precalculated by WRF-ARW (Weather Research and
Forecasting – Advanced Research WRF, Skamarock et al.,
2008), the Eulerian CTM performs forecasts of about 100
gas-phase and aerosol compounds up to lower stratospheric
levels. In addition to advection and diffusion processes, mod-
ifications due to chemical conversions are considered by the
RACM-MIM chemical mechanism (Regional Atmospheric
Chemistry Mechanism – Mainz Isoprene Mechanism, Pöschl
et al., 2000; Geiger et al., 2003). Emissions from anthro-
pogenic and biogenic sources, as well as dry and wet depo-
sition, act as chemical sources and sinks, respectively. In this
study, the EURAD-IM system provides forecasts of sensitiv-
ities to various model arguments, which are used for covari-
ance construction in the KL algorithm. The concept of emis-
sion factors used for emission rate optimization in EURAD-
IM was adapted in the KL ensemble generation approach as
described below.

The KL ensemble generation algorithm is tested for bio-
genic emissions, which are known to be subject to large
uncertainties. The MEGAN 2.1 model developed by Guen-
ther et al. (2012) calculates biogenic emissions of various
compounds in EURAD-IM as a function of atmospheric
and terrestrial conditions including radiation, air tempera-

ture, leaf area index, and soil moisture. In this study, bio-
genic emissions of five dominant volatile organic compounds
(VOCs) are perturbed: isoprene, limonene, alpha-pinene,
ethene, and aldehydes. Note that biogenic aldehyde emis-
sions from MEGAN 2.1 represent the total emission from ac-
etaldehyde and a set of higher aldehydes that are not treated
individually (see Guenther et al., 2012, for further details).
Due to a collective approach in MEGAN 2.1, the biogenic
emissions of different compounds are assumed to be highly
correlated. Thus, the set of five biogenic emission fields is se-
lected in order to investigate the joint perturbation of highly
uncertain (yet correlated) parameters. In the KL algorithm,
sensitivities from the five emission fields induce multivariate
covariances in the covariance matrix C that allow for joint
perturbation. The following description of the results focuses
on emissions of isoprene, which is the most abundantly emit-
ted biogenic trace gas.

4.2 Setup

In the KL algorithm, sensitivities used for covariance con-
struction are taken from a case study covering the Po val-
ley in northern Italy on 12 July 2012. A preceding study
by Vogel and Elbern (2021a) demonstrated that local emis-
sions of biogenic volatile organic compounds (BVOCs) are
highly sensitive to various model arguments during this case
study. At the same time, these sensitivities are found to be al-
most species invariant and show little variation on an hourly
timescale, which allows for a generalized formulation of per-
turbations. Providing an appropriate test case, the sensitivi-
ties used in this study are based on the results of Vogel and
Elbern (2021a), which have been simulated by EURAD-IM.

Specifically, emission sensitivity factors F s
j are calculated

from hourly biogenic emissions divided by the correspond-
ing reference emissions and averaged over the period from
00:00 until 10:00 UTC on 12 July 2012 according to Eq. (1).
Here, minimum emissions of 1.0×10−3 kg (km2 h)−1 are de-
fined and sensitivity factors are limited by 0.1 and 10.0 in or-
der to avoid unrealistic perturbations in regions of low emis-
sions. As biogenic emissions are restricted to terrestrial veg-
etation, only land surface grid boxes are used, which reduces
the total dimension of the problem by about 27 % compared
to all surface grid boxes.

Two different implementations are selected for each argu-
ment (Ri = 2,∀ i ∈ [1,6]), where the reference ri∗ = 1, ∀ i
is the default configuration of EURAD-IM and ri = 2 are
the alternative implementations of each argument i. Figure 3
shows 32 combined sensitivity factors of biogenic emis-
sions calculated from EURAD-IM using Eq. (1) with dif-
ferent combinations of model configurations as listed in Ta-
ble B1. For computational reasons, the subset of Jcombi = 32
combined sensitivities is sampled from a total number of
J = 26

= 64 possible combinations. A detailed discussion of
the origin of sensitivity factors used in this study is given
in Vogel and Elbern (2021a). The selection of 32 combined
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configurations is based on the importance of the source of
uncertainties reported there.

In contrast to the large amount of calculations required for
combined sensitivities, the method of independent sensitiv-
ities is additionally investigated. As described in Sect. 2.3,
only sensitivities resulting from the change of a single model
argument are required for this method. This allows for an
additional consideration of two uncertainties related to the
emission model. These uncertainties are selected to demon-
strate the inclusion of additional uncertainties in order to
provide a most realistic setup of the ensemble for biogenic
emissions. Firstly, the highly variable response of biogenic
emissions to soil dryness is added to the set of indepen-
dent sensitivities. This sensitivity is defined as the change
of emissions when the drought response used in MEGAN2.1
is excluded (compare Vogel and Elbern, 2021a). Secondly,
Guenther et al. (2012) indicate an uncertainty of the emis-
sions model itself of 200 %, which is included as unsigned
additional uncertainty (denoted as a priori uncertainty) with a
constant factor of two for all locations and trace gases. Note
that an unsigned additional uncertainty does only apply to
the covariances given by Eq. (11b) and does not affect the
calculation of the independent mean given by Eq. (10a). The
formulation of a constant factor induces a simple assump-
tion representing perfectly correlated errors in this case, but
it is assumed to be sufficient to show the effect of including
unsigned additional uncertainties in the algorithm.

4.3 Sensitivity estimation

According to the definition in Eq. (1), sensitivity factors of
the reference run (subplot 1 of Fig. 3a) are equal to 1 by defi-
nition. The set combined sensitivities is dominated by effects
of land use information shown in Fig. 3b, inducing reduced
or increased emissions in the mountains and the Po valley, re-
spectively. As discussed in Vogel and Elbern (2021a), these
large sensitivities in biogenic emissions are caused by differ-
ent fractions of broadleaf trees in USGS land use information
and MODIS data. Significant effects are also found with re-
spect to global meteorology, land surface model (LSM), and
boundary layer schemes. Here, weak nonlinear effects ap-
pear when RUC LSM is combined with the ACM2 boundary
layer scheme or GFS global meteorology (subplot 6 and 10
of Fig. 3a).

Figure 4 shows the independent mean factors and sensi-
tivities for isoprene emissions. Note that independent sen-
sitivities are formulated relative to the independent mean,
which are both limited by 0.2 and 5 to be consistent with
the configuration for combined sensitivities. Similar to the
results of combined sensitivities, MODIS land use informa-
tion and the RUC land surface model produce significantly
reduced isoprene emissions within the northern Po valley.
The added sensitivity to drought response points towards in-
creased emissions in the southern part of the domain. Con-
sequently, the independent mean is dominated by reduced

emissions in the northern part and increased values in the
southern part. The a priori uncertainty of the emission model
is represented by a constant factor of 2 and does not affect
the independent mean by definition. The remaining indepen-
dent sensitivities produce only minor deviations in biogenic
emissions of all trace gases including isoprene.

4.4 Eigenmode decomposition

Based on the respective formulation of combined or indepen-
dent sensitivities, the leading eigenvalues and their associ-
ated eigenvectors of the covariance matrices are calculated as
described in Sect. 3.2. For combined sensitivities, the eigen-
values given in Fig. 5 show a logarithmic decrease of about 1
order of magnitude within the first five modes. This indicates
that the major uncertainties of the emissions factors are de-
termined by a few leading directions. In other words, the fast
decrease of leading eigenvalues confirms a high correlation
of biogenic emissions through the domain and between dif-
ferent gases. The contribution of these leading eigenmodes
to local emission factors for each trace gas is given by the
corresponding eigenvectors shown in Fig. 6. According to
shape and size of the first eigenmode, it is almost exclusively
induced by the sensitivity to land use information that is in-
variant to the other sensitivities. The subsequent eigenmodes
represent common patterns of the remaining sensitivities that
are therefore treated together.

As for combined sensitivities, the eigenmode decomposi-
tion extracts perpendicular components from the set of inde-
pendent sensitivities. The eigenvalues shown in Fig. 7 state a
similar decrease of eigenvalues for independent sensitivities
compared to the combined method. Highly similar sizes and
decrease rates of the leading eigenvalues indicate a reason-
able representation of the leading uncertainties by the inde-
pendent method. However, nonlinearities arising from com-
bined changes in the land surface model with global mete-
orology or boundary layer schemes are not captured by the
linear assumption of independent sensitivities.

According to the corresponding eigenvectors in Fig. 8, the
first eigenmode represents common features of the a priori
uncertainty and the other independent sensitivities. While the
second eigenmode is closely related to the effects of drought
response and the land surface model, the sensitivity to land
use dominates the third eigenmode. Aside from this, highly
similar signals in eigenvectors for different biogenic gases
state a considerably large correlation between them. Never-
theless, individual patterns of each biogenic gas are also rep-
resented by the leading eigenmodes for independent sensi-
tivities. These patterns are also found for the eigenvectors of
combined sensitivities (compare Fig. 6), which confirms the
suitability of the independent method with respect to multi-
ple parameters. Note that the consideration of additional un-
certainties in the independent method does not allow for a
direct comparison of individual eigenmodes.
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Figure 3. Set of combined sensitivities of isoprene emissions. Shown are isoprene emission factors for different combinations of model
arguments as simulated by EURAD-IM. Emission factors are temporally averaged ratios of emissions divided by the reference emissions.
The specific setup used for each of the 32 sensitivities is given in Table B1. The sensitivities are divided into those using USGS (a) and
MODIS (b) land use information; numbers attached to the individual subplots refer to the numbers in Table B1. In addition, a short abbrevi-
ation of the setup is given above each subplot. See also Vogel and Elbern (2021a) for a detailed description of the abbreviations and model
implementations. Some major cities (Verona, Bologna, Modena) are indicated by their initial letters.
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Figure 4. Set of independent sensitivities of isoprene emissions simulated by EURAD-IM. Shown are isoprene emission factors of simula-
tions where only one model argument differs from the reference setup. Plotting conventions including abbreviations as in Fig. 3. Additional
uncertainties refer to the drought response (no SMOIS) and the emission model (a priori) of biogenic emissions. The lower-right subplot
shows the independent mean from these sensitivities using Eq. (10a). A detailed description of the abbreviations and model implementations
is provided by Vogel and Elbern (2021a).

Figure 5. Leading eigenvalues of biogenic emissions for combined
sensitivities (blue dots). Eigenvalues are plotted on a logarithmic
scale.

4.5 Ensemble generation

The different setups of the covariances from combined and
independent sensitivities prohibit a direct comparison of
their perturbations. As the ensemble generation from leading
eigenmodes does not differ between these two setups (com-
pare Sect. 3.3), resulting perturbations are only shown for
independent sensitivities.

Figure 9 displays eight realizations of perturbations in
terms of emission factors for isoprene for independent sensi-
tivities. The perturbation factors of all biogenic emissions are
calculated by multiplying the independent mean factors of
the sensitivities with different realizations of the KL expan-

sion. As the KL expansion does not affect the mean values,
ensemble mean emission factors remain similar to the one
of the sensitivities (compare Fig. 4). Although differences
in perturbation factors are large, this suggests a reasonable
sampling of the eight realizations. Concerning the individual
members, the high number of significant uncertainties results
in emission factors ranging up to more than 1 order of magni-
tude. Each realization is influenced by different combinations
of the leading eigenmodes resulting in different perturbation
patterns. While realization 001, 006, and 007 are dominated
by a positive contribution of the first eigenmode, the effect
of the second mode is clearly visible when comparing real-
ization 001 and 006. Comparing realization 004 and 008, the
most significant differences are induced by the third eigen-
mode. Due to the fast decrease of eigenmodes, comparably
small contributions of the remaining modes remain invisible
in the perturbation factors. Thus, the comprised KL ensemble
is restricted to dominant uncertainties indicated by the lead-
ing eigenmodes. In this case, these uncertainties are mainly
induced by sensitivities to various surface conditions, which
is in accordance with Vogel and Elbern (2021a).

4.6 Ensemble evaluation

The performance of the KL ensemble perturbations is eval-
uated by ensemble statistics. Note that this evaluation only
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Figure 6. Leading eigenvectors for combined sensitivities. The normalized eigenvectors are visualized as column of fields of different
biogenic gases. Numbers above each column show the eigenvalues of the corresponding eigenvector.

Figure 7. Leading eigenvalues of biogenic emissions for indepen-
dent sensitivities including additional uncertainties. Plotting con-
ventions are the same as in Fig. 5.

relates to the algorithm itself, i.e., how well the algorithm is
able to capture the uncertainties indicated by the sensitivities.
The question of how well the sensitivities represent the true
parameter uncertainties is not part of the evaluation and be-
yond the scope of this study. In order to be able to compare
the statistics of the KL ensembles using combined and inde-
pendent sensitivities, I = 6 model arguments are considered
for both setups. While the setup of 32 combined sensitivities
is the same as in the previous sections (Jcombi = 32), no ad-
ditional uncertainties were included in the independent setup
(Jindep = 7). Despite this, the setup remains as described in
Sect. 4.2.

In Fig. 10, statistics of the ensemble perturbation factors
from the KL algorithm with combined sensitivities are com-
pared to statistics of the sensitivity factors from 32 combined

sensitivities. Because these 32 combined sensitivities serve
as input for the algorithm in the combined method, the en-
semble statistics at all locations should ideally coincide with
the identity line. Thus, deviations from the identity line give
an indication of the sampling error induced by the limited
number of used eigenmodes and the low number of eight re-
alizations compared to the dimension of the problem. Mean
isoprene emission factors for the combined method are well
represented by the KL algorithm: deviations remain below
20 % for almost all locations (Fig. 10a).

Ensemble standard deviations show more significant de-
viations (Fig. 10b). For low and medium values, standard
deviations of the KL ensemble with combined sensitivities
range from 75 % until 130 % of the respective input values.
This almost homogeneous scatter around the input values is
likely induced by minor uncertainties that are not captured by
the leading eigenmodes. At some locations, the KL ensemble
produces a set of high standard deviations between 5.0 and
8.0 that are not found in the sensitivities. While the standard
deviation is overestimated at these locations, the ensemble
mean at these locations is slightly underestimated (sensitiv-
ities approx. 3.0, combined ensemble perturbations approx.
2.0; see Fig. 10a).

These deviations can be related to the low ensemble size
and are expected to reduce for larger ensemble sizes. Ad-
ditionally, limiting sensitivity factors in the KL algorithm
may also affect sensitivity statistics in this case (compare
Sect. 4.2).
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Figure 8. Leading eigenvectors for independent sensitivities including additional uncertainties. Plotting conventions are the same as in as in
Fig. 6.

Figure 9. Perturbations of isoprene emissions for independent sensitivities, including additional uncertainties given as factors w.r.t reference
emissions. Random realizations of stochastic coefficients for the leading eigenmodes of each member are indicated left of each subplot: +
+, large positive value (> 1.);+, small positive value (0.1< ∗< 1.); O, very small absolute value (−0.1< ∗< 0.1);−, small negative value
(−1. < ∗<−0.1);−−: large negative value (<−1.)). The lower-right subplot gives the ensemble mean factors. Some major cities (Verona,
Bologna, Modena) are indicated by their initial letters.
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Figure 10. Scatterplot of ensemble statistics for isoprene emis-
sion perturbations. Shown are logarithmic ensemble mean (a) and
standard deviations (b) of the KL ensemble perturbations at each
grid box as function of combined sensitivities. Ensemble statis-
tics are shown for 32 combined (green) and 7 independent (or-
ange) sensitivities, which both refer to the same set of I = 6 con-
sidered arguments. The solid gray line indicates the identity line
(e.g., µKL = 1. ·µsens for the ensemble mean) to the set of 32 com-
bined sensitivities; the dashed gray lines represent an overestima-
tion or underestimation by a factor of 1.5 (e.g., µKL = 1.5 ·µsens
and µKL = (1.5)−1

·µsens).

The independent method induces larger deviations of
mean isoprene emission factors from the mean combined
sensitivities. The increase in deviations mainly represent the
additional inaccuracy due to the assumption of independent
sensitivities. Note that the 32 combined sensitivities used
in the evaluation are a subset of 64 possible combinations
(compare Sect. 4.2). Because the independent method ap-
proximates all combinations of sensitivities, some deviations
might also relate to the selection of the 32 combined sensi-
tivities. Ensemble mean factors correlate well with the com-
bined sensitivities and deviations remain between−25 % and
+50 % for most locations (Fig. 10a). While only 7 instead of
32 – or ideally 64 – sensitivities are required for this setup,
the spread of mean factors is about twice the spread for the
combined ensemble setup. Deviations of ensemble standard
deviations are also slightly increased for the independent
method (Fig. 10b). The overestimation of high standard devi-
ations produced by the combined method is reduced in the in-
dependent method. At some locations, standard deviations of
about 2.0 in the combined sensitivities are underestimated by
the KL ensemble with independent sensitives (standard devi-
ations approx. 1.5). These differences are likely due to non-
linear effects from combining sensitivities that are neglected
in this setup. Nevertheless, the ensemble standard deviations
at most locations are well represented by the KL ensemble
with independent sensitivities.

5 Discussion

This section provides a discussion of different aspects regard-
ing the potential and limitations of the KL ensemble genera-
tion approach. Concerning the formulation of the algorithm,
ensemble perturbations are created from covariances of the
stochastic process. The use of the KL expansion ensures that
for large ensemble sizes the statistics of the perturbations
converge towards their input values determined by the co-
variances. Consequently, the accuracy of the KL ensemble in
representing the true uncertainties crucially relies on the for-
mulation of the covariances. Uncertainties not considered in
the formulation of the covariances cannot be captured by the
KL ensemble. The major benefit of the approach lies in the
optimal properties of the perturbations focusing on leading
uncertainties, providing an optimal coverage of uncertainties
even for low ensemble sizes. Although the greatest benefit
is achieved for highly correlated parameters, the algorithm is
assumed to efficiently combine the major uncertainties even
for uncorrelated parameters. In case of missing correlations
and therefore a lack of ensemble reduction potential, the KL
approach retains more leading eigenmodes and does not sup-
press required degrees of freedom.

By extracting leading eigenmodes from parameter covari-
ances, the problem is transferred to a low-dimensional sub-
space spanned by the set of leading eigenmodes. This makes
the approach highly efficient in covering dominant uncer-
tainties compared to random perturbations at each location.
For this uncondensed random approach, perturbations would
be sampled from the complete N -dimensional space given
by all considered model parameters at all grid boxes. Com-
pared to the uncondensed approach, the sampling space from
which the KL perturbations are sampled is reduced to a
D-dimensional eigenmode subspace. The higher the param-
eter correlations, the less eigenmodes need to be consid-
ered in order to obtain sufficient sampling of uncertainties.
Most atmospheric chemical parameters have high spatial and
cross-parameter correlations, which enable D�N and thus
significant reduction of the sampling space. In the results
presented in this study, this has been demonstrated for a
set of biogenic emissions with dimension 2× 106. In this
case, sampling about 10 ensemble members from the leading
eigenmodes is sufficient to cover the leading uncertainties of
the high-dimensional parameters. The required numbers of
eigenmodes and ensemble perturbations depend on the de-
sired level of detail of the ensemble. Independent of the level
of detail, the KL expansions ensure an optimal estimation of
covariances by the calculated perturbations.

Once the sensitivities are calculated, the computational ef-
fort required for the generation of Karhunen–Loéve (KL)
perturbations is mainly consumed by the numerical solu-
tion of the eigenproblem. The highly efficient parallelization
of the solution of the eigenproblem by P-ARPACK renders
the algorithm suitable for high-dimensional systems. Table 2
summarizes the computation time and relevant properties for
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Table 2. Computation time for the solution of the eigenproblem
in the KL ensemble generation algorithm for representative setups.
The dimension of the system was reduced as described in Sect. 4.
The relative computing time is given w.r.t. 8 eigenmodes from 32
combined sensitivities of 5 parameters (∗). The last two lines show
the setups of independent (indep) and combined (combi) sensitivi-
ties presented in this study, respectively.

No. of No. of Relative
parameters Sensitivities eigenmodes Time time

5 32 (combi) 8 660 s ∗

1 32 (combi) 8 22 s 0.03
5 8 (combi) 8 122 s 0.18
5 8 (indep) 8 148 s 0.22
5 32 (combi) 16 1108 s 1.68

No. of parameters is the number of different model parameters considered,
sensitivities is number and type of sensitivities used for covariance construction, no.
of eigenmodes is the number of eigenvalues and vectors calculated, time is the
physical time required for computation of perturbations, and relative time is the
computation time divided by reference computation time.

selected setups. By definition, the computing time is propor-
tional to the size of the covariance matrix, which increases
quadratically with the dimension of the considered model pa-
rameters. Note that the computing time is given as wall clock
time for calculating the perturbations. Due to the paralleliza-
tion of the computation, the total CPU time scales linearly
with the number of cores used. Independent of the number
of cores, the computational effort for calculating perturba-
tions is low compared to running a model simulation. Despite
small variations, the computing time increases linearly with
the number of eigenmodes calculated. The required computa-
tional effort appears to increase approximately linearly with
the number of sensitivities for covariance construction and
the number of calculated eigenmodes. In this case, doubling
the number of considered sensitivities increases the comput-
ing time by about a factor of 2.3. Applying the assumption
of independent sensitivities reduces the number of used sen-
sitivities in this study from 32 combined to 8 independent
sensitivities including additional uncertainties. In addition to
the strong reduction of computation time for simulating the
sensitivities, the time for solving the eigenproblem reduces
by about a factor of 4.5.

The results presented in this study demonstrate a consider-
able reduction of required computational resources under the
assumption of independent sensitivities. As this method as-
sumes linearity of parameter sensitivities, it may not be a suf-
ficient approximation for all atmospheric parameters. How-
ever, the linear assumption relates to sensitivities of the per-
turbed parameters to model configurations. In other words,
nonlinear effects resulting from the combination of different
model arguments are disregarded. Note that this does not af-
fect the impact of the parameters on prognostic fields like
trace gas distributions and their propagation in time, which
is beyond the ensemble generation and may still be highly
nonlinear. Thus, the presented approach may also be suitable

to be applied to parameters in NWP with highly nonlinear
model dynamics. The sufficiency of this approximation for
a model parameter in relation to the reduction of computa-
tional efforts needs to be evaluated for each specific applica-
tion setup.

The developed KL approach may extended to inverse opti-
mization of model parameters. The generated parameter en-
semble can be used to estimate state-dependent model co-
variances in an ensemble data assimilation system. If re-
quested by the type of data assimilation algorithm, inverse
square roots of covariance matrices are readily available for
preconditioned minimization. Furthermore, the KL expan-
sion of the parameter fields enables an advanced optimiza-
tion approach. Instead of optimizing the parameter fields in
its full N -dimensional space, the optimization can be per-
formed in the reduced subspace spanned by the D leading
eigenmodes. As the leading eigenmodes represent the domi-
nant uncertainties of the parameters, the optimization would
be restricted to those. In this case, the set of stochastic co-
efficients {yd}d ∈ [1,D] would be replaced by the optimization
variable (compare Eq. 15), which is fully determined by as
low as D observations. Thus, this approach may be able to
provide a rough, yet efficient optimization of model param-
eter fields with a low number of observations. For both op-
timization approaches, spurious correlations resulting from
the restriction to leading uncertainties must be addressed by
location measures.

6 Conclusions

This study introduces an optimized ensemble generation ap-
proach in which model parameters are efficiently perturbed
according to their correlations. The approach is based on
the fact that the forecast model acts as a dynamical system
with its specific spatial and multivariate couplings of the at-
mospheric state. It applies the Karhunen–Loéve expansion,
which approximates covariances of the model parameters by
a limited set of leading eigenmodes. These modes represent
the coupled leading uncertainties from which perturbations
can be sampled efficiently. Based on this, stochastic sampling
for ensemble generation is performed in an uncorrelated sub-
space spanned by the eigenmodes. Generally, the presented
algorithm is applicable to any set of model parameters in
high-dimensional atmospheric systems, as long as their joint
uncertainties remain in the linear regime. Through the re-
duction of the sampling space, it is shown that the stochas-
tic dimension of the problem can be reduced significantly.
This makes the algorithm suitable for efficient ensemble gen-
eration of high-dimensional atmospheric models, where the
computational costs are a critical and limiting quantity.

Focusing on model parameters that depend on local en-
vironmental conditions, state-dependent covariances are ap-
proximated from various related sensitivities. Generally, the
covariances required for this approach can be defined in any
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way which is suitable to reflect the uncertainty of our knowl-
edge. Covariance construction based on parameter sensitivi-
ties as presented in this study is just one among many. Poten-
tial deficiencies in the construction could be identified from a
posteriori evaluation of the full ensemble. This would allow
for an ongoing adjustment of the algorithm depending on the
specific application.

As simulations of all possible combinations of sensitivities
are computationally demanding, independent sensitivities are
introduced in this study. Assuming tangent linearity, multiple
combined sensitivities can be represented by a low number
of independent sensitivities. Representative results indicate
that the major properties of leading sensitivities are captured
by independent sensitivities. Considering 2 realizations of 6
model arguments, only 7 independent sensitivities out of a
total number of 64 combined sensitivities are required. Thus,
the method of independent sensitivities reduces the compu-
tational effort of model simulations prior to ensemble gener-
ation tremendously. Besides the reduction of computational
resources, this method allows for the integration of different
kinds of uncertainties in a convenient way. However, in many
cases the assumption of independent sensitivities may not be
a good approximation. The user has to decide if the compu-
tational benefit justifies the neglection of nonlinear effects.

The potential of the KL ensemble generation approach is
investigated for regional forecasts of a set of biogenic emis-
sions. During the selected case study in the Po valley in
July 2012, biogenic emissions were exceptionally sensitive
to several land surface properties. In this case, the eigenmode
decomposition indicates high correlations of uncertainties in
the regional domain as well as between different biogenic
gases. Rapidly decreasing eigenvalues state the dominant
contributions of only a few orthogonal components from a
global point of view. Resulting perturbation factors for iso-
prene emissions created by the KL ensemble generation al-
gorithm range between less than 0.1 up to 10. Although some
realizations show common perturbation patterns, significant
contributions from the subsequent eigenmodes can clearly be
identified from the eight realizations. This indicates that the
KL ensemble generation approach is able to sufficiently sam-
ple the subspace of leading uncertainties using as few as 10
members in this case. Moreover, as each eigenmode repre-
sents common patterns of different sensitivities, the realiza-
tions are affected by the whole set of underlying sensitivities.

A comprehensive evaluation of KL ensemble perturba-
tions would be based on a representative amount of observa-
tional data. Comparing to observed trace gas concentrations
requires the consideration of uncertainties related to differ-
ent processes affecting those concentrations, which is out of
the scope of this study. Instead, the performance of the KL
algorithm itself was evaluated using ensemble statistics. The
statistical comparison of the KL perturbations with the sen-
sitivities used as input states sufficient representation of the
main aspects. Both combined and independent methods were
able to capture the main uncertainties, while smaller contri-

butions were neglected according to the objective of the al-
gorithm.

The presented application of the KL ensemble generation
approach demonstrates its potential for an efficient estima-
tion of forecast uncertainties induced by model parameters in
high-dimensional atmospheric models. Specifically, the pre-
sented algorithm allows for (1) an efficient estimation of vari-
ous sensitivities based on the assumption of independent sen-
sitivities, (2) an efficient extraction of leading coupled un-
certainties using highly parallelized eigenmode decomposi-
tion, and (3) an efficient generation of perturbations of high-
dimensional parameter fields by the Karhunen–Loéve ex-
pansion. This motivates its promising application to various
state-dependent parameters in chemistry transport modeling
and potentially also in other atmospheric models. A follow-
up study will investigate and validate probabilistic forecasts
of biogenic gases with respect to different state-dependent
model parameters during the PEGASOS campaign in the Po
valley in 2012. Furthermore, the approach may also be ap-
plied to other kinds of model parameters, where sufficient
covariances need to be estimated accordingly. In this context,
the reduction to leading coupled uncertainties offers the abil-
ity to account for dominant uncertainties across all parame-
ters influencing atmospheric chemical forecasts. This would
provide a significant step in the transition from deterministic
to probabilistic chemistry transport modeling.
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Appendix A: Derivation of independent mean and
covariance

Given a set of independent sensitivities
{
xs
i (ri)

}
ri∈[1,Ri ]
i∈[1,I ]

with

implementation ri ∈ [1,Ri] of each model argument i ∈
[1,I ] at position s ∈ S. Assuming independence of sensi-
tivities, each combined sensitivity Xs

j is given by

Xs
j :=X

s
{r1,r2,...,rI }

=

I∑
i=1

xs
i (ri) ∀ j ∈ [1,J ] , s ∈ S , (A1)

where the total number of combined sensitivities is

J :=

I∏
i=1
Ri . (A2)

The mean value µ(s) of all combined sensitivities{
Xs
j

}
j∈[1,J ]

at position s ∈ S can be calculated from the set

of independent sensitivities
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as follows.
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The covariance C(s,s′) of all combined sensitivities{
Xs̃j

}
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Appendix B: Setup of combined sensitivities

Table B1. Overview of model setups used as combined sensitivities. A detailed description of the abbreviations and model implementations
has been provided by Vogel and Elbern (2021a). The reference setup is denoted as ∗, and deviations from this reference are written in bold
letters (PX is the Pleim–Xiu surface layer parameterization; Du is the Dudhia shortwave radiation parameterization).

Land use Number Global Land surface Boundary layer Microphysics Radiation

USGS 1∗ ECMWF Pleim-Xiu MYJ+Eta WSM6 RRTMG
USGS 2 ECMWF RUC MYJ+Eta WSM6 RRTMG
USGS 3 ECMWF Pleim-Xiu ACM2+PX WSM6 RRTMG
USGS 4 ECMWF Pleim-Xiu MYJ+Eta TGS RRTMG
USGS 5 ECMWF Pleim-Xiu MYJ+Eta WSM6 Du+RRTM
USGS 6 ECMWF RUC ACM2+PX WSM6 RRTMG
USGS 7 ECMWF Pleim-Xiu MYJ+Eta TGS Du+RRTM
USGS 8 ECMWF RUC ACM2+PX TGS Du+RRTM

USGS 9 GFS Pleim-Xiu MYJ+Eta WSM6 RRTMG
USGS 10 GFS RUC MYJ+Eta WSM6 RRTMG
USGS 11 GFS Pleim-Xiu ACM2+PX WSM6 RRTMG
USGS 12 GFS Pleim-Xiu MYJ+Eta TGS RRTMG
USGS 13 GFS Pleim-Xiu MYJ+Eta WSM6 Du+RRTM
USGS 14 GFS RUC ACM2+PX WSM6 RRTMG
USGS 15 GFS Pleim-Xiu MYJ+Eta TGS Du+RRTM
USGS 16 GFS RUC ACM2+PX TGS Du+RRTM

MODIS 1 ECMWF Pleim-Xiu MYJ+Eta WSM6 RRTMG
MODIS 2 ECMWF RUC MYJ+Eta WSM6 RRTMG
MODIS 3 ECMWF Pleim-Xiu ACM2+PX WSM6 RRTMG
MODIS 4 ECMWF Pleim-Xiu MYJ+Eta TGS RRTMG
MODIS 5 ECMWF Pleim-Xiu MYJ+Eta WSM6 Du+RRTM
MODIS 6 ECMWF RUC ACM2+PX WSM6 RRTMG
MODIS 7 ECMWF Pleim-Xiu MYJ+Eta TGS Du+RRTM
MODIS 8 ECMWF RUC ACM2+PX TGS Du+RRTM

MODIS 9 GFS Pleim-Xiu MYJ+Eta WSM6 RRTMG
MODIS 10 GFS RUC MYJ+Eta WSM6 RRTMG
MODIS 11 GFS Pleim-Xiu ACM2+PX WSM6 RRTMG
MODIS 12 GFS Pleim-Xiu MYJ+Eta TGS RRTMG
MODIS 13 GFS Pleim-Xiu MYJ+Eta WSM6 Du+RRTM
MODIS 14 GFS RUC ACM2+PX WSM6 RRTMG
MODIS 15 GFS Pleim-Xiu MYJ+Eta TGS Du+RRTM
MODIS 16 GFS RUC ACM2+PX TGS Du+RRTM
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