Model experiment description paper
30 Jul 2021
Model experiment description paper
| 30 Jul 2021
The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1
Klaus Wyser et al.
Related authors
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, https://doi.org/10.5194/gmd-13-3507-2020, 2020
Short summary
Short summary
HighResMIP is an international coordinated CMIP6 effort to investigate the improvement in climate modeling caused by an increase in horizontal resolution. This paper describes EC-Earth3P-(HR), which has been developed for HighResMIP. First analyses reveal that increasing resolution does improve certain aspects of the simulated climate but that many other biases still continue, possibly related to phenomena that are still not yet resolved and need to be parameterized.
Klaus Wyser, Twan van Noije, Shuting Yang, Jost von Hardenberg, Declan O'Donnell, and Ralf Döscher
Geosci. Model Dev., 13, 3465–3474, https://doi.org/10.5194/gmd-13-3465-2020, https://doi.org/10.5194/gmd-13-3465-2020, 2020
Short summary
Short summary
The EC-Earth model used for CMIP6 is found to have a higher equilibrium climate sensitivity (ECS) than its predecessor used for CMIP5. In a series of sensitivity experiments, we investigate which model updates since CMIP5 have contributed to the increase in ECS. The main reason for the higher sensitivity in the EC-Earth model is the improved representation of the aerosol–radiation and aerosol–cloud interactions.
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019, https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
Short summary
Snow cover significantly influences the surface albedo and radiation budget. Therefore, a realistic representation of snowfall in climate models is important. Here, using decade-long estimates of snowfall derived from the satellite sensor, four climate models are evaluated to assess how well they simulate snowfall in the Arctic. It is found that light and median snowfall is overestimated by the models in comparison to the satellite observations, and extreme snowfall is underestimated.
Manu Anna Thomas, Abhay Devasthale, Torben Koenigk, Klaus Wyser, Malcolm Roberts, Christopher Roberts, and Katja Lohmann
Geosci. Model Dev., 12, 1679–1702, https://doi.org/10.5194/gmd-12-1679-2019, https://doi.org/10.5194/gmd-12-1679-2019, 2019
Short summary
Short summary
Cloud processes occur at scales ranging from few micrometres to hundreds of kilometres. Their representation in global climate models and their fidelity are thus sensitive to the choice of spatial resolution. Here, cloud radiative effects simulated by models are evaluated using a satellite dataset, with a focus on investigating the sensitivity to spatial resolution. The evaluations are carried out using two approaches: the traditional statistical comparisons and the process-oriented evaluation.
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka
Atmos. Chem. Phys., 13, 12043–12058, https://doi.org/10.5194/acp-13-12043-2013, https://doi.org/10.5194/acp-13-12043-2013, 2013
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Dmitry Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
EGUsphere, https://doi.org/10.5194/egusphere-2022-32, https://doi.org/10.5194/egusphere-2022-32, 2022
Short summary
Short summary
We developed a new Atmosphere-Ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than it's predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run provides similar quality results when modelling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has be invested in higher model resolution.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-241, https://doi.org/10.5194/acp-2021-241, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry climate model dataset, we investigate the solar surface signal in the North Atlantic and European region, and find that changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Qiong Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Qiang Li, Qiang Zhang, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 1147–1169, https://doi.org/10.5194/gmd-14-1147-2021, https://doi.org/10.5194/gmd-14-1147-2021, 2021
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test bed of the climate models that are used for the projection of future climate changes. Here, we document the model experimental setups for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features. The simulations demonstrate good performance of the model in capturing the climate response under different climate forcings.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, https://doi.org/10.5194/gmd-13-3507-2020, 2020
Short summary
Short summary
HighResMIP is an international coordinated CMIP6 effort to investigate the improvement in climate modeling caused by an increase in horizontal resolution. This paper describes EC-Earth3P-(HR), which has been developed for HighResMIP. First analyses reveal that increasing resolution does improve certain aspects of the simulated climate but that many other biases still continue, possibly related to phenomena that are still not yet resolved and need to be parameterized.
Klaus Wyser, Twan van Noije, Shuting Yang, Jost von Hardenberg, Declan O'Donnell, and Ralf Döscher
Geosci. Model Dev., 13, 3465–3474, https://doi.org/10.5194/gmd-13-3465-2020, https://doi.org/10.5194/gmd-13-3465-2020, 2020
Short summary
Short summary
The EC-Earth model used for CMIP6 is found to have a higher equilibrium climate sensitivity (ECS) than its predecessor used for CMIP5. In a series of sensitivity experiments, we investigate which model updates since CMIP5 have contributed to the increase in ECS. The main reason for the higher sensitivity in the EC-Earth model is the improved representation of the aerosol–radiation and aerosol–cloud interactions.
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020, https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Torben Koenigk, Ramon Fuentes-Franco, Virna Meccia, Oliver Gutjahr, Laura C. Jackson, Adrian L. New, Pablo Ortega, Christopher Roberts, Malcolm Roberts, Thomas Arsouze, Doroteaciro Iovino, Marie-Pierre Moine, and Dmitry V. Sein
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-41, https://doi.org/10.5194/os-2020-41, 2020
Revised manuscript not accepted
Short summary
Short summary
The mixing of water masses into the deep ocean in the North Atlantic is important for the entire global ocean circulation. We use seven global climate models to investigate the effect of increasing the model resolution on this deep ocean mixing. The main result is that increased model resolution leads to a deeper mixing of water masses in the Labrador Sea but has less effect in the Greenland Sea. However, most of the models overestimate the deep ocean mixing compared to observations.
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019, https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
Short summary
Snow cover significantly influences the surface albedo and radiation budget. Therefore, a realistic representation of snowfall in climate models is important. Here, using decade-long estimates of snowfall derived from the satellite sensor, four climate models are evaluated to assess how well they simulate snowfall in the Arctic. It is found that light and median snowfall is overestimated by the models in comparison to the satellite observations, and extreme snowfall is underestimated.
Manu Anna Thomas, Abhay Devasthale, Torben Koenigk, Klaus Wyser, Malcolm Roberts, Christopher Roberts, and Katja Lohmann
Geosci. Model Dev., 12, 1679–1702, https://doi.org/10.5194/gmd-12-1679-2019, https://doi.org/10.5194/gmd-12-1679-2019, 2019
Short summary
Short summary
Cloud processes occur at scales ranging from few micrometres to hundreds of kilometres. Their representation in global climate models and their fidelity are thus sensitive to the choice of spatial resolution. Here, cloud radiative effects simulated by models are evaluated using a satellite dataset, with a focus on investigating the sensitivity to spatial resolution. The evaluations are carried out using two approaches: the traditional statistical comparisons and the process-oriented evaluation.
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Tobias Pardowitz, Robert Osinski, Tim Kruschke, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 16, 2391–2402, https://doi.org/10.5194/nhess-16-2391-2016, https://doi.org/10.5194/nhess-16-2391-2016, 2016
Short summary
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
T. Koenigk, A. Devasthale, and K.-G. Karlsson
Atmos. Chem. Phys., 14, 1987–1998, https://doi.org/10.5194/acp-14-1987-2014, https://doi.org/10.5194/acp-14-1987-2014, 2014
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka
Atmos. Chem. Phys., 13, 12043–12058, https://doi.org/10.5194/acp-13-12043-2013, https://doi.org/10.5194/acp-13-12043-2013, 2013
A. Devasthale, J. Sedlar, T. Koenigk, and E. J. Fetzer
Atmos. Chem. Phys., 13, 7441–7450, https://doi.org/10.5194/acp-13-7441-2013, https://doi.org/10.5194/acp-13-7441-2013, 2013
I. Nikolova, Q. Yin, A. Berger, U. K. Singh, and M. P. Karami
Clim. Past, 9, 1789–1806, https://doi.org/10.5194/cp-9-1789-2013, https://doi.org/10.5194/cp-9-1789-2013, 2013
P. Berg, R. Döscher, and T. Koenigk
Geosci. Model Dev., 6, 849–859, https://doi.org/10.5194/gmd-6-849-2013, https://doi.org/10.5194/gmd-6-849-2013, 2013
Related subject area
Climate and Earth system modeling
A derivative-free optimisation method for global ocean biogeochemical models
Empirical values and assumptions in the convection schemes of numerical models
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
On the impact of dropsondes on the ECMWF Integrated Forecasting System model (CY47R1) analysis of convection during the OTREC (Organization of Tropical East Pacific Convection) field campaign
Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration
CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)
An evaluation of the E3SMv1 Arctic ocean and sea-ice regionally refined model
Surface Urban Energy and Water Balance Scheme (v2020a) in vegetated areas: parameter derivation and performance evaluation using FLUXNET2015 dataset
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
Evaluation of a quasi-steady-state approximation of the cloud droplet growth equation (QDGE) scheme for aerosol activation in global models using multiple aircraft data over both continental and marine environments
Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1
Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 1: Precipitation
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 2: Max and min temperature
Constraining a land cover map with satellite-based aboveground biomass estimates over Africa
Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)
Impacts of a revised surface roughness parameterization in the Community Land Model 5.1
Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia
The effects of ocean surface waves on global intraseasonal prediction: case studies with a coupled CFSv2.0–WW3 system
Earth system model parameter adjustment using a Green's functions approach
Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment
From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.3)
Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa∕230Th ratios with the ocean general circulation model COCO ver4.0
The linear feedback precipitation model (LFPM 1.0) – a simple and efficient model for orographic precipitation in the context of landform evolution modeling
Building a machine learning surrogate model for wildfire activities within a global Earth system model
Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM)
Extreme events representation in CMCC-CM2 standard and high-resolution general circulation models
TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1
CARDAMOM-FluxVal version 1.0: a FLUXNET-based validation system for CARDAMOM carbon and water flux estimates
Supporting hierarchical soil biogeochemical modeling: version 2 of the Biogeochemical Transport and Reaction model (BeTR-v2)
Using neural network ensembles to separate ocean biogeochemical and physical drivers of phytoplankton biogeography in Earth system models
GAN–argcPredNet v1.0: a generative adversarial model for radar echo extrapolation based on convolutional recurrent units
A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes
An automatic lake-model application using near-real-time data forcing: development of an operational forecast workflow (COASTLINES) for Lake Erie
ShellChron 0.4.0: a new tool for constructing chronologies in accretionary carbonate archives from stable oxygen isotope profiles
Comparison of ocean heat content estimated using two eddy-resolving hindcast simulations based on OFES1 and OFES2
Enhancing the accessibility of unified modeling systems: GFDL System for High-resolution prediction on Earth-to-Local Domains (SHiELD) v2021b in a container
Minimal CMIP Emulator (MCE v1.2): a new simplified method for probabilistic climate projections
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
C-LLAMA 1.0: a traceable model for food, agriculture, and land use
The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models
MPR 1.0: a stand-alone multiscale parameter regionalization tool for improved parameter estimation of land surface models
Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2
PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5
Modeling land use and land cover change: using a hindcast to estimate economic parameters in gcamland v2.0
Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix
Evaluation and optimisation of the I/O scalability for the next generation of Earth system models: IFS CY43R3 and XIOS 2.0 integration as a case study
Coupling the Community Land Model version 5.0 to the parallel data assimilation framework PDAF: description and applications
Convolutional conditional neural processes for local climate downscaling
Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022, https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Short summary
Global ocean biogeochemical models are used within Earth system models which are used to predict future climate change. However, these are very computationally expensive to run and therefore are rarely routinely improved or calibrated to real oceanic observations. Here we apply a new, fast optimisation algorithm to one such model and show that it can calibrate the model much faster than previously managed, therefore encouraging further ocean biogeochemical model improvements.
Anahí Villalba-Pradas and Francisco J. Tapiador
Geosci. Model Dev., 15, 3447–3518, https://doi.org/10.5194/gmd-15-3447-2022, https://doi.org/10.5194/gmd-15-3447-2022, 2022
Short summary
Short summary
The paper provides a comprehensive review of the empirical values and assumptions used in the convection schemes of numerical models. The focus is on the values and assumptions used in the activation of convection (trigger), the transport and microphysics (commonly referred to as the cloud model), and the intensity of convection (closure). Such information can assist satellite missions focused on elucidating convective processes and the evaluation of model output uncertainties.
Maria Chara Karypidou, Eleni Katragkou, and Stefan Pieter Sobolowski
Geosci. Model Dev., 15, 3387–3404, https://doi.org/10.5194/gmd-15-3387-2022, https://doi.org/10.5194/gmd-15-3387-2022, 2022
Short summary
Short summary
The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Reliable climatic information is therefore necessary for the optimal adaptation of local communities. In this work we show that regional climate models are reliable tools for the simulation of precipitation over southern Africa. However, there is still a great need for the expansion and maintenance of observational data.
Stipo Sentić, Peter Bechtold, Željka Fuchs-Stone, Mark Rodwell, and David J. Raymond
Geosci. Model Dev., 15, 3371–3385, https://doi.org/10.5194/gmd-15-3371-2022, https://doi.org/10.5194/gmd-15-3371-2022, 2022
Short summary
Short summary
The Organization of Tropical East Pacific Convection (OTREC) field campaign focuses on studying convection in the eastern Pacific and Caribbean. Observations obtained from dropsondes have been assimilated into the ECMWF model and compared to a model run in which sondes have not been assimilated. The model performs well in both simulations, but the assimilation of sondes helps to reduce the departure for pre-tropical-storm conditions. Variables important to studying convection are also studied.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, and Ross Dixon
Geosci. Model Dev., 15, 3205–3231, https://doi.org/10.5194/gmd-15-3205-2022, https://doi.org/10.5194/gmd-15-3205-2022, 2022
Short summary
Short summary
This paper describes a tool embedded in a global climate model for sampling atmospheric conditions and monitoring physical processes as a numerical simulation is being carried out. The tool facilitates process-level model evaluation by allowing the users to select a wide range of quantities and processes to monitor at run time without having to do tedious ad hoc coding.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Hengqi Wang, Yiran Peng, Knut von Salzen, Yan Yang, Wei Zhou, and Delong Zhao
Geosci. Model Dev., 15, 2949–2971, https://doi.org/10.5194/gmd-15-2949-2022, https://doi.org/10.5194/gmd-15-2949-2022, 2022
Short summary
Short summary
The aerosol activation scheme is an important part of the general circulation model, but evaluations using observed data are mostly regional. This research introduced a numerically efficient aerosol activation scheme and evaluated it by using stratus and stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The decent performance indicates that the scheme is suitable for simulations of cloud droplet number concentrations over wide conditions.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Jewgenij Torizin, Nick Schüßler, and Michael Fuchs
Geosci. Model Dev., 15, 2791–2812, https://doi.org/10.5194/gmd-15-2791-2022, https://doi.org/10.5194/gmd-15-2791-2022, 2022
Short summary
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2653–2671, https://doi.org/10.5194/gmd-15-2653-2022, https://doi.org/10.5194/gmd-15-2653-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with an observational gridded dataset as a reference covering the Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional models encouraged this study. For the max and min temperature, although most models reveal added value, some display losses. At more local scales, coastal sites display important gains, contrasting with the interior.
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Ruizi Shi, Fanghua Xu, Li Liu, Zheng Fan, Hao Yu, Hong Li, Xiang Li, and Yunfei Zhang
Geosci. Model Dev., 15, 2345–2363, https://doi.org/10.5194/gmd-15-2345-2022, https://doi.org/10.5194/gmd-15-2345-2022, 2022
Short summary
Short summary
To better understand the effects of surface waves on global intraseasonal prediction, we incorporated the WW3 model into CFSv2.0. Processes of Langmuir mixing, Stokes–Coriolis force with entrainment, air–sea fluxes modified by Stokes drift, and momentum roughness length were considered. Results from two groups of 56 d experiments show that overestimated sea surface temperature, 2 m air temperature, 10 m wind, wave height, and underestimated mixed layer from the original CFSv2.0 are improved.
Ehud Strobach, Andrea Molod, Donifan Barahona, Atanas Trayanov, Dimitris Menemenlis, and Gael Forget
Geosci. Model Dev., 15, 2309–2324, https://doi.org/10.5194/gmd-15-2309-2022, https://doi.org/10.5194/gmd-15-2309-2022, 2022
Short summary
Short summary
The Green's functions methodology offers a systematic, easy-to-implement, computationally cheap, scalable, and extendable method to tune uncertain parameters in models accounting for the dependent response of the model to a change in various parameters. Herein, we successfully show for the first time that long-term errors in earth system models can be considerably reduced using Green's functions methodology. The method can be easily applied to any model containing uncertain parameters.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Yusuke Sasaki, Hidetaka Kobayashi, and Akira Oka
Geosci. Model Dev., 15, 2013–2033, https://doi.org/10.5194/gmd-15-2013-2022, https://doi.org/10.5194/gmd-15-2013-2022, 2022
Short summary
Short summary
For realistically simulating the recently observed distributions of dissolved 230Th and 231Pa in the ocean, we highlight the importance of the removal process of 231Pa and 230Th at the seafloor (bottom scavenging) and the dependence of scavenging efficiency on particle concentration. We show that consideration of these two processes can well reproduce not only the oceanic distribution of 231Pa and 230Th but also the sedimentary 231Pa/230Th ratios.
Stefan Hergarten and Jörg Robl
Geosci. Model Dev., 15, 2063–2084, https://doi.org/10.5194/gmd-15-2063-2022, https://doi.org/10.5194/gmd-15-2063-2022, 2022
Short summary
Short summary
The influence of climate on landform evolution has attracted great interest over the past decades. This paper presents a simple model for simulating the influence of topography on precipitation and the decrease in precipitation over large continental areas. The approach can be included in numerical models of large-scale landform evolution and causes only a moderate increase in the numerical complexity. It opens a door to investigating feedbacks between climate and landform evolution.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Justus Contzen, Thorsten Dickhaus, and Gerrit Lohmann
Geosci. Model Dev., 15, 1803–1820, https://doi.org/10.5194/gmd-15-1803-2022, https://doi.org/10.5194/gmd-15-1803-2022, 2022
Short summary
Short summary
Climate models are of paramount importance to predict future climate changes. Since many severe consequences of climate change are due to extreme events, the accurate behaviour of models in terms of extremes needs to be validated thoroughly. We present a method for model validation in terms of climate extremes and an algorithm to detect regions in which extremes tend to occur at the same time. These methods are applied to data from different climate models and to observational data.
Enrico Scoccimarro, Daniele Peano, Silvio Gualdi, Alessio Bellucci, Tomas Lovato, Pier Giuseppe Fogli, and Antonio Navarra
Geosci. Model Dev., 15, 1841–1854, https://doi.org/10.5194/gmd-15-1841-2022, https://doi.org/10.5194/gmd-15-1841-2022, 2022
Short summary
Short summary
This study evaluated the ability of the CMCC-CM2 climate model participating to the last CMIP6 effort, in representing extreme events of precipitation and temperature at the daily and 6-hourly frequencies. The 1/4° resolution version of the atmospheric model provides better results than the version at 1° resolution for temperature extremes, at both time frequencies. For precipitation extremes, especially at the daily time frequency, the higher resolution does not improve model results.
Joel Fiddes, Kristoffer Aalstad, and Michael Lehning
Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, https://doi.org/10.5194/gmd-15-1753-2022, 2022
Short summary
Short summary
This study describes and evaluates a new downscaling scheme that addresses the need for hillslope-scale atmospheric forcing time series for modelling the local impact of regional climate change on the land surface in mountain areas. The method has a global scope and is able to generate all model forcing variables required for hydrological and land surface modelling. This is important, as impact models require high-resolution forcings such as those generated here to produce meaningful results.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Christopher Holder, Anand Gnanadesikan, and Marie Aude-Pradal
Geosci. Model Dev., 15, 1595–1617, https://doi.org/10.5194/gmd-15-1595-2022, https://doi.org/10.5194/gmd-15-1595-2022, 2022
Short summary
Short summary
It can be challenging to understand why Earth system models (ESMs) produce specific results because one can arrive at the same result simply by changing the values of the parameters. In our paper, we demonstrate that it is possible to use machine learning to figure out how and why particular components of an ESM (such as biology or ocean circulations) affect the output. This work could be applied to observations to improve the accuracy of the formulations used in ESMs.
Kun Zheng, Yan Liu, Jinbiao Zhang, Cong Luo, Siyu Tang, Huihua Ruan, Qiya Tan, Yunlei Yi, and Xiutao Ran
Geosci. Model Dev., 15, 1467–1475, https://doi.org/10.5194/gmd-15-1467-2022, https://doi.org/10.5194/gmd-15-1467-2022, 2022
Short summary
Short summary
In extrapolation methods, there is a phenomenon that causes the extrapolated image to be blurred and unrealistic. The paper proposes the GAN–argcPredNet v1.0 network model, which aims to solve this problem through GAN's ability to strengthen the characteristics of multi-modal data modeling. GAN–argcPredNet v1.0 has achieved excellent results. Our model can reduce the prediction loss in a small-scale space so that the prediction results have more detailed features.
Swen Brands
Geosci. Model Dev., 15, 1375–1411, https://doi.org/10.5194/gmd-15-1375-2022, https://doi.org/10.5194/gmd-15-1375-2022, 2022
Short summary
Short summary
The present study evaluates the last two global climate model generations in terms of their capability to reproduce recurrent regional atmospheric circulation patterns in the Northern Hemisphere mid-to-high latitudes under present climate conditions. These patterns are linked with many environmental variables on the local scale and thus provide an overarching concept for model verification. The results are expected to be of interest for model developers and regional climate scientists.
Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan
Geosci. Model Dev., 15, 1331–1353, https://doi.org/10.5194/gmd-15-1331-2022, https://doi.org/10.5194/gmd-15-1331-2022, 2022
Short summary
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Niels J. de Winter
Geosci. Model Dev., 15, 1247–1267, https://doi.org/10.5194/gmd-15-1247-2022, https://doi.org/10.5194/gmd-15-1247-2022, 2022
Short summary
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
Fanglou Liao, Xiao Hua Wang, and Zhiqiang Liu
Geosci. Model Dev., 15, 1129–1153, https://doi.org/10.5194/gmd-15-1129-2022, https://doi.org/10.5194/gmd-15-1129-2022, 2022
Short summary
Short summary
The ocean heat content (OHC) estimated using two eddying hindcast simulations, OFES1 and OFES2, was compared from 1960 to 2016, with observation-based results as a reference. Marked differences were found, especially in the Atlantic Ocean. These were related to the differences in the net surface heating, heat advection, and vertical heat diffusion. These documented differences may help the community better understand and use these quasi-global high-resolution datasets for their own purposes.
Kai-Yuan Cheng, Lucas M. Harris, and Yong Qiang Sun
Geosci. Model Dev., 15, 1097–1105, https://doi.org/10.5194/gmd-15-1097-2022, https://doi.org/10.5194/gmd-15-1097-2022, 2022
Short summary
Short summary
This paper presents the implementation of container technology for the System for High‐resolution prediction on Earth‐to‐Local Domains (SHiELD), a unified atmospheric model that can be used as a global, a global–nest, and a regional model for weather-to-seasonal prediction. Container technology makes SHiELD cross-platform and easy to use, which opens opportunities for collaborative research and development. The performance and scalability of the containerized SHiELD are evaluated and discussed.
Junichi Tsutsui
Geosci. Model Dev., 15, 951–970, https://doi.org/10.5194/gmd-15-951-2022, https://doi.org/10.5194/gmd-15-951-2022, 2022
Short summary
Short summary
A new simple climate model, MCE, was developed. It can emulate the basic behavior of comprehensive climate models in a minimal way with sufficient accuracy, providing a reasonable way to assess climate change mitigation scenarios in terms of consistency with long-term temperature goals. The model's simple structure is suitable for building probability distributions of key model parameters such that they reflect uncertainty ranges of multiple climate projections and observed warming trends.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022, https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Short summary
The Vegetation Optimality Model (VOM) is a coupled water–vegetation model that predicts vegetation properties rather than determines them based on observations. A range of updates to previous applications of the VOM has been made for increased generality and improved comparability with conventional models. This showed that there is a large effect on the simulated water and carbon fluxes caused by the assumption of deep groundwater tables and updated soil profiles in the model.
Thomas S. Ball, Naomi E. Vaughan, Thomas W. Powell, Andrew Lovett, and Timothy M. Lenton
Geosci. Model Dev., 15, 929–949, https://doi.org/10.5194/gmd-15-929-2022, https://doi.org/10.5194/gmd-15-929-2022, 2022
Short summary
Short summary
C-LLAMA is a simple model of the global food system operating at a country level from 2013 to 2050. The model begins with projections of diet composition and populations for each country, producing a demand for each food commodity and finally an agricultural land use in each country. The model can be used to explore the sensitivity of agricultural land use to various drivers within the food system at country, regional, and continental spatial aggregations.
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022, https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
Short summary
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or space-borne) lidar and radar simulator and subcolumn generator designed for large-scale models, in particular climate models, applicable also for high-resolution models. EMC2 emulates measurements while remaining faithful to large-scale models' physical assumptions implemented in their cloud or radiation schemes. We demonstrate the use of EMC2 to compare AWARE measurements with the NASA GISS ModelE3 and LES.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Tommi Bergman, Risto Makkonen, Roland Schrödner, Erik Swietlicki, Vaughan T. J. Phillips, Philippe Le Sager, and Twan van Noije
Geosci. Model Dev., 15, 683–713, https://doi.org/10.5194/gmd-15-683-2022, https://doi.org/10.5194/gmd-15-683-2022, 2022
Short summary
Short summary
We describe in this paper the implementation of a process-based secondary organic aerosol and new particle formation scheme within the chemistry transport model TM5-MP version 1.2. The performance of the model simulations for the year 2010 is evaluated against in situ observations, ground-based remote sensing and satellite retrievals. Overall, the simulated aerosol fields are improved, although in some areas the model shows a decline in performance.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022, https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
Short summary
Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. We identify parameter combinations that best replicate historical land use in the United States.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Xavier Yepes-Arbós, Gijs van den Oord, Mario C. Acosta, and Glenn D. Carver
Geosci. Model Dev., 15, 379–394, https://doi.org/10.5194/gmd-15-379-2022, https://doi.org/10.5194/gmd-15-379-2022, 2022
Short summary
Short summary
Climate prediction models produce a large volume of simulated data that sometimes might not be efficiently managed. In this paper we present an approach to address this issue by reducing the computing time and storage space. As a case study, we analyse the output writing process of the ECMWF atmospheric model called IFS, and we integrate into it a data writing tool called XIOS. The results suggest that the integration between the two components achieves an adequate computational performance.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Anna Vaughan, Will Tebbutt, J. Scott Hosking, and Richard E. Turner
Geosci. Model Dev., 15, 251–268, https://doi.org/10.5194/gmd-15-251-2022, https://doi.org/10.5194/gmd-15-251-2022, 2022
Short summary
Short summary
We develop a new method for climate downscaling, i.e. transforming low-resolution climate model output to high-resolution projections, using a deep-learning model known as a convolutional conditional neural process. This model is shown to outperform an ensemble of baseline methods for downscaling daily maximum temperature and precipitation and provides a powerful new downscaling framework for climate impact studies.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Cited articles
Bayr, T., Dommenget, D., Martin, T., and Power, S. B.: The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability, Clim. Dynam., 43, 2747–2763, 2014.
Bengtsson, L. and Hodges, K. I.: Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability?, Clim. Dynam., 52, 3553–3573, https://doi.org/10.1007/s00382-018-4343-8, 2019.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., Fairhead, F., Falletti, L., Flavoni, S., Foujols, M.-A,, Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, L. E.,, Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR Climate Mode, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Brodeau, L. and Koenigk, T.: Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries, Clim. Dynam., 46, 2863–2882, https://doi.org/10.1007/s00382-015-2736-5, 2016.
Böhnisch, A., Ludwig, R., and Leduc, M.: Using a nested single-model large ensemble to assess the internal variability of the North Atlantic Oscillation and its climatic implications for central Europe, Earth Syst. Dynam., 11, 617–640, https://doi.org/10.5194/esd-11-617-2020, 2020.
Dai, A. and Bloecker, C. E.: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models, Clim. Dynam. 52, 289–306, https://doi.org/10.1007/s00382-018-4132-4, 2019.
Delworth, T. L., Cooke, W. F., Adcroft, A., Bushuk, M., Chen, J. H., Dunne, K. A., Ginoux, P., Gudgel, R., Hallberg, L. H., Harris, L., Harrison, M. J., Johnson, N., Kapnick, S. B., Lin, S.-J., Lu, F., Malyshev, S., Milly, P. C., Murakami, H., Naik, V., Pascale, S., Paynter, D., Anthony Rosati, A., Schwarzkopf, M. D., Elena Shevliakova, E., Seth Underwood, S., Wittenberg, A. T., Xiang, B., Yang, X., Zeng, F., Zhang, H., Zhang, L., and Zhao, M.: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection, J. Adv. Model. Earth Sy., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895, 2020.
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dynam., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012.
Deser, C., Philipps, A. S., Alexander, M. A., and Smoliak, B. V.: Projecting North American Climate over the Next 50 Years: Uncertainty due to Internal Variability, J. Climate, 27, 2271–2296, https://doi.org/10.1175/JCLI-D-13-00451.1, 2014.
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from Earth system model initial-condition large ensembles and future prospects, Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2, 2020.
Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., and Ludwig, F.: Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level, Climatic Change, 143, 13–26, 2017.
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-446, in review, 2021.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fischer, E. M., Sedlacek, J., Hawkins, E. and Knutti, R.: Models Agree on Forced Response Pattern of Precipitation and Temperature Extremes, Geophys. Res. Lett., 41, 8554–8562, 2014.
Guo, C., Bentsen, M., Bethke, I., Ilicak, M., Tjiputra, J., Toniazzo, T., Schwinger, J., and Otterå, O. H.: Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, 2019.
Haugen, M. A., Stein, M. L., Moyer, E. J., and Sriver, R. L.: Estimating Changes in Temperature Distributions in a Large Ensemble of Climate Simulations Using Quantile Regression, J. Climate, 31, 8573–8588, https://doi.org/10.1175/JCLI-D-17-0782.1, 2018.
Hawkins, E.: Our evolving climate: communicating the effects of climate variability. Weather, 66, 175–179, https://doi.org/10.1002/wea.761, 2011.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainties in regional climate predictions, B. Am. Meteorol. Soc., 1095–1107, https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hawkins, E. and Sutton, R: Time of emergence of climate signals, Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087, 2012.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation patterns to extreme temperature trends, Nature 522, 465–469, https://doi.org/10.1038/nature14550, 2015.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C., Moeseneder, C., Wong, K., and Syktus, J.: Australia's CMIP5 submission using the CSIRO-Mk3.6 model, Aust. Meteorol. Ocean., 63, 1–13, https://doi.org/10.22499/2.6301.001, 2013.
Jiang, D., Sui, Y., and Lang, X.: Timing and associated climate change of a 2 ∘C global warming, Int. J. Climatol., 36, 4512–4522, https://doi.org/10.1002/joc.4647, 2016.
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A., Leboissetier, A., LeGrande, A. N., Lo, K. L., Marshall, J., Matthews, E. E., McDermid, S., Mezuman. K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.-S.: GISS‐E2. 1: Configurations and climatology. J. Adv. Model. Earth Sy., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025, 2020.
Kirchmeier-Young, M. C., Zwiers, F. W., and Gillett, N. P.: Attribution of Extreme Events in Arctic Sea Ice Extent, J. Climate, 30, 553–571, https://doi.org/10.1175/JCLI-D-16-0412.1, 2017.
Koenigk, T., Bärring, L., Matei, D., Nikulin, G., Strandberg, G., Tyrlis, E., Wang, S., and Wilcke, R.: On the contribution of internal climate variability to European future climate trends, Tellus A, 72, 1–17, https://doi.org/10.1080/16000870.2020.1788901, 2020.
Koenigk, T., Fuentes-Franco, R., Meccia, V., Gutjahr, O., Jackson, L. C., New, A. L., Ortega, P., Roberts, C., Roberts, M., Arsouze, T., Iovino, D., Moine, M.-P., and Sein, D. V.: Deep mixed ocean volume in the Labrador Sea in HighResMIP models, Clim. Dynam., https://doi.org/10.1007/s00382-021-05785-x, online first, 2021.
Kohyama, T., Hartmann, D. L., and Battisti, D. S.: La Niña-like mean-state response to global warming and potential oceanic roles, J. Climate, 30, 4207–4225, 2017.
Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Wyser, K., and Betts, R. A.: Freshwater vulnerability under high end climate change. A pan-European assessment, Sci. Total Environ., 613, 271–286, 2018.
Knutti, R. and Sedlacek, J.: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change Lett., 3, 369–373, https://doi.org/10.1038/NCLIMATE1716, 2012.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Leduc, M., Mailhot, A., Frigon, A., Martel, J. L., Ludwig, R., Brietzke, G. B., Giguère, M., Brissette, F., Turcotte, R., Braun, M., and Scinocca, J.: The ClimEx project: a 50-member ensemble of climate change projections at 12 km resolution over Europe and northeastern North America with the Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol. Clim., 58, 663–693, 2019.
Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., and Hawkins, E.: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6, Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, 2020.
Maher, N, Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability, J. Adv. Model. Earth Sy., 11, 1–21, https://doi.org/10.1029/2019MS001639, 2019.
Maher, N., Lehner, F., and Marotzke, J.: Quantifying the role of internal variability in the temperature we expect to observe in the coming decades, Environ. Res. Lett., 15, 054014, https://doi.org/10.1088/1748-9326/ab7d02, 2020.
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021.
Mankin, J. S., Lehner, F., Coats, S., and McKinnon, K. A.: The value of initial condition large ensembles to robust adaptation decision-making, Earths Future, 8, e2012EF001610, 2020.
Marotzke, J.: Quantifying the irreducible uncertainty in near-term climate projections, WIREs Clim. Change, 10, e563, https://doi.org/10.1002/wcc.563, 2019.
Moberg, A. and Bergström, H.: Homogenization of Swedish temperature data. Part III: The long temperature records from Uppsala and Stockholm, Int. J. Climatol., 17, 667–699, 1997.
Moberg, A., Jones, P. D., Barriendos, M., Bergström, H., Camuffo, D., Cocheo, C., Davies, T. D., Demarée, G., Martin-Vide, J., Maugeri, M., Rodriguez, R., and Verhoeve, T.: Day-to-day temperature variability trends in 160- to 275 year-long European instrumental records, J. Geophys. Res.-Atmos., 105, 22849–22868, https://doi.org/10.1029/2000JD900300, 2000.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Parsons, L. A., Brennan, M. K., Wills, R. C., and Proistosescu, C.: Magnitudes and spatial patterns of interdecadal temperature variability in CMIP6, Geophys. Res. Lett., 47, e2019GL086588, https://doi.org/10.1029/2019GL086588, 2020.
Polvani, L. and Vertenstein, M.: The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Rondeau-Genesse, G. and Braun, M.: Impact of internal variability on climate change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE large ensembles, Clim. Change, 156, 299–314, https://doi.org/10.1007/s10584-019-02550-2, 2019.
Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., Pendergrass, A. G., Lehner, F., Strand, W. G., Lin, L., Knutti, R., and Lamarque, J. F.: Community climate simulations to assess avoided impacts in 1.5 and 2∘C futures, Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, 2017.
Sanderson, B. M., Oleson, K. W., Strand, W. G., Lehner, F., and O'Neill, B. C.: A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario, Clim. Change, 146, 303–318, 2018.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6, Geosci. Model Dev., 10, 433–452, https://doi.org/10.5194/gmd-10-433-2017, 2017.
Suárez-Gutiérrez, L., Chao, L., Müller, W. A., and Marotzke, J.: Internal variability in European summer temperatures at 1.5 ∘C and 2 ∘C of global warming, Environ. Res. Lett., 13, 064026, https://doi.org/10.1088/1748-9326/aaba58, 2018.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019.
Teichmann, C., Bülow, K., Otto, J., Pfeifer, S., Rechid, D., Sieck, K., and Jacob, D.: Avoiding Extremes: Benefits of Staying below +1.5 ∘C Compared to +2.0 ∘C and +3.0 ∘C Global Warming, Atmosphere, 9, 115, https://doi.org/10.3390/atmos9040115, 2018.
Vecchi, G. A. and Soden, B. J.: Global warming and the weakening of the tropical circulation, J. Climate, 20, 4316–4340, 2007.
Vecchi, G. A., Soden, B. J., Wittenberg, A. T., Held, I. M., Leetmaa, A., and Harrison, M. J.: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing, Nature, 441, 73–76, 2006.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., and Chevallier, M.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J. Adv. Model. Earth Sy., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019.
von Trentini, F., Leduc, M., and Ludwig, R.: Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble, Clim. Dynam., 53, 1963–1979, https://doi.org/10.1007/s00382-019-04755-8, 2019.
von Trentini, F., Aalbers, E. E., Fischer, E. M., and Ludwig, R.: Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe, Earth Syst. Dynam., 11, 1013–1031, https://doi.org/10.5194/esd-11-1013-2020, 2020.
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The...