the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A permafrost implementation in the simple carbon–climate model Hector v.2.3pf
Alexey N. Shiklomanov
Ben Kravitz
Corinne Hartin
Ben Bond-Lamberty
Related authors
No articles found.
geoengineeringwould also impact other variables like precipitation and sea ice. In this study, we model various climate impacts of geoengineering on a 3-D graph to show how trying to meet one climate goal will affect other variables. We also present two computer simulations which validate our model and show that geoengineering could regulate precipitation as well as temperature.
soil respiration) is a key ecosystem function, especially in systems with permafrost. We find that soil respiration shows a non-linear threshold at permafrost depths > 140 cm and that the number of large trees governs soil respiration. This suggests that remote sensing could be used to estimate spatial variation in soil respiration and (with knowledge of key thresholds) empirically constrain models that predict ecosystem responses to permafrost thaw.
betterin particular circumstances. We also decompose precipitation into a CO2 portion and a non-CO2 portion. The methodologies discussed in this paper can help provide precipitation fields for other models for a wide variety of scenarios of future climate change.
Related subject area
Inaccuracies in air–sea heat fluxes severely degrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct air–sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
This study introduces a new 3D lake–ice–atmosphere coupled model that significantly improves winter climate simulations for the Great Lakes compared to traditional 1D lake model coupling. The key contribution is the identification of critical hydrodynamic processes – ice transport, heat advection, and shear-driven turbulence production – that influence lake thermal structure and ice cover and explain the superior performance of 3D lake models to their 1D counterparts.