Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 409–436, 2021
https://doi.org/10.5194/gmd-14-409-2021
Geosci. Model Dev., 14, 409–436, 2021
https://doi.org/10.5194/gmd-14-409-2021

Model evaluation paper 25 Jan 2021

Model evaluation paper | 25 Jan 2021

FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation

Andrew T. Prata et al.

Related authors

Analysing stress field conditions of the Colima Volcanic Complex (Mexico) by integrating finite-element modelling (FEM) simulations and geological data
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020,https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020,https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0)
Soledad Osores, Juan Ruiz, Arnau Folch, and Estela Collini
Geosci. Model Dev., 13, 1–22, https://doi.org/10.5194/gmd-13-1-2020,https://doi.org/10.5194/gmd-13-1-2020, 2020
Short summary
Cyclic activity of the Fuego de Colima volcano (Mexico): insights from satellite thermal data and nonlinear models
Silvia Massaro, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra
Solid Earth, 10, 1429–1450, https://doi.org/10.5194/se-10-1429-2019,https://doi.org/10.5194/se-10-1429-2019, 2019
Short summary
Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption
Matthieu Poret, Stefano Corradini, Luca Merucci, Antonio Costa, Daniele Andronico, Mario Montopoli, Gianfranco Vulpiani, and Valentin Freret-Lorgeril
Atmos. Chem. Phys., 18, 4695–4714, https://doi.org/10.5194/acp-18-4695-2018,https://doi.org/10.5194/acp-18-4695-2018, 2018
Short summary

Related subject area

Atmospheric sciences
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021,https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary
snowScatt 1.0: consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021,https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, https://doi.org/10.5194/gmd-14-1427-2021,https://doi.org/10.5194/gmd-14-1427-2021, 2021
Short summary
On the suitability of second-order accurate finite-volume solvers for the simulation of atmospheric boundary layer flow
Beatrice Giacomini and Marco G. Giometto
Geosci. Model Dev., 14, 1409–1426, https://doi.org/10.5194/gmd-14-1409-2021,https://doi.org/10.5194/gmd-14-1409-2021, 2021
Short summary
An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev., 14, 1469–1492, https://doi.org/10.5194/gmd-14-1469-2021,https://doi.org/10.5194/gmd-14-1469-2021, 2021
Short summary

Cited articles

Aitken, A. C.: On the least squares and linear combination of observations, Proc. R. Soc. Edimb., 55, 42–48, 1935. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Proceedings Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 90880H, https://doi.org/10.1117/12.2050433, 2014. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9–Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120, 2242–2261, https://doi.org/10.1002/2014JB011478, 2015. a
Bonasia, R., Macedonio, G., Costa, A., Mele, D., and Sulpizio, R.: Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure, J. Volcanol. Geotherm. Res., 189, 238–246, https://doi.org/10.1016/j.jvolgeores.2009.11.009, 2010. a
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.