Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-409-2021
https://doi.org/10.5194/gmd-14-409-2021
Model evaluation paper
 | 
25 Jan 2021
Model evaluation paper |  | 25 Jan 2021

FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation

Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa

Related authors

A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023,https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022,https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022,https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022,https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary

Related subject area

Atmospheric sciences
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary

Cited articles

Aitken, A. C.: On the least squares and linear combination of observations, Proc. R. Soc. Edimb., 55, 42–48, 1935. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Proceedings Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 90880H, https://doi.org/10.1117/12.2050433, 2014. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9–Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120, 2242–2261, https://doi.org/10.1002/2014JB011478, 2015. a
Bonasia, R., Macedonio, G., Costa, A., Mele, D., and Sulpizio, R.: Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure, J. Volcanol. Geotherm. Res., 189, 238–246, https://doi.org/10.1016/j.jvolgeores.2009.11.009, 2010. a
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Share