Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-409-2021
https://doi.org/10.5194/gmd-14-409-2021
Model evaluation paper
 | 
25 Jan 2021
Model evaluation paper |  | 25 Jan 2021

FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation

Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa

Related authors

A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023,https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022,https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Quantifying the impact of meteorological uncertainty on emission estimates and the risk to aviation using source inversion for the Raikoke 2019 eruption
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022,https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Data assimilation of volcanic aerosol observations using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022,https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Least travel time ray tracer version 2 (LTT v2) adapted to the grid geometry of the OpenIFS atmospheric model
Maksym Vasiuta, Angel Navarro Trastoy, Sanam Motlaghzadeh, Lauri Tuppi, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 18, 5015–5030, https://doi.org/10.5194/gmd-18-5015-2025,https://doi.org/10.5194/gmd-18-5015-2025, 2025
Short summary
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary

Cited articles

Aitken, A. C.: On the least squares and linear combination of observations, Proc. R. Soc. Edimb., 55, 42–48, 1935. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Proceedings Proc. SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 90880H, https://doi.org/10.1117/12.2050433, 2014. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9–Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. a
Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120, 2242–2261, https://doi.org/10.1002/2014JB011478, 2015. a
Bonasia, R., Macedonio, G., Costa, A., Mele, D., and Sulpizio, R.: Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure, J. Volcanol. Geotherm. Res., 189, 238–246, https://doi.org/10.1016/j.jvolgeores.2009.11.009, 2010. a
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Share