Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-409-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-409-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 2: Model validation
Barcelona Supercomputing Center (BSC), Barcelona, Spain
Leonardo Mingari
Barcelona Supercomputing Center (BSC), Barcelona, Spain
Arnau Folch
Barcelona Supercomputing Center (BSC), Barcelona, Spain
Giovanni Macedonio
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
Related authors
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Anita Grezio, Damiano Delrosso, Marco Anzidei, Marco Bianucci, Giovanni Chiodini, Antonio Costa, Antonio Guarnieri, Marina Locritani, Silvia Merlino, Filippo Muccini, Marco Paterni, Dmitri Rouwet, Giancarlo Tamburello, and Georg Umgiesser
EGUsphere, https://doi.org/10.5194/egusphere-2025-286, https://doi.org/10.5194/egusphere-2025-286, 2025
Short summary
Short summary
Volcanic lakes have been recognized as a rare but devastating source of disasters after the limnic eruption of Lake Nyos in 1986. The potential risk of Lake Albano (20 km southeast of the centre of Rome, Italy) is due to exposed elements (people presence, economic and touristic activities). The 3D modelling of the lake dynamics is crucial to investigate the lake stratification and degassing and the current and future behavior and stability of Lake Albano.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Cited articles
Aitken, A. C.: On the least squares and linear combination of observations,
Proc. R. Soc. Edimb., 55, 42–48, 1935. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch,
J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in:
Proceedings Proc. SPIE 9088,
Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XX, Baltimore, MD, USA, 90880H, https://doi.org/10.1117/12.2050433,
2014. a
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y.,
Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to
Himawari-8/9–Japan's New-Generation Geostationary
Meteorological Satellites, J. Meteorol. Soc.
Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009,
2016. a
Bonadonna, C., Pistolesi, M., Cioni, R., Degruyter, W., Elissondo, M., and
Baumann, V.: Dynamics of wind-affected volcanic plumes: The example of the
2011 Cordón Caulle eruption, Chile, J. Geophys. Res.-Sol. Ea., 120,
2242–2261, https://doi.org/10.1002/2014JB011478, 2015. a
Bonasia, R., Macedonio, G., Costa, A., Mele, D., and Sulpizio, R.: Numerical
inversion and analysis of tephra fallout deposits from the 472 AD
sub-Plinian eruption at Vesuvius (Italy) through a new best-fit
procedure, J. Volcanol. Geotherm. Res., 189, 238–246,
https://doi.org/10.1016/j.jvolgeores.2009.11.009, 2010. a
Carboni, E., Grainger, R. G., Mather, T. A., Pyle, D. M., Thomas, G. E., Siddans, R., Smith, A. J. A., Dudhia, A., Koukouli, M. E., and Balis, D.: The vertical distribution of volcanic SO2 plumes measured by IASI, Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, 2016. a, b
Carn, S., Clarisse, L., and Prata, A.: Multi-decadal satellite measurements of
global volcanic degassing, J. Volcanol. Geotherm. Res.,
311, 99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002,
2016. a
Carn, S. A., Yang, K., Prata, A. J., and Krotkov, N. A.: Extending the
long-term record of volcanic SO2 emissions with the Ozone
Mapping and Profiler Suite nadir mapper: OMPS volcanic SO2
measurements, Geophys. Res. Lett., 42, 925–932,
https://doi.org/10.1002/2014GL062437,
2015. a
Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and Coheur, P.-F.: Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, https://doi.org/10.5194/amt-5-581-2012, 2012. a
Collini, E., Osores, S., Folch, A., Viramonte, J., Villarosa, G., and Salmuni,
G.: Volcanic ash forecast during the June 2011 Cordón Caulle eruption,
Nat. Hazards, 66, 389–412, https://doi.org/10.1007/s11069-012-0492-y,
2013. a
Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M.,
Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash retrieval and
sensitivity analysis using moderate resolution imaging spectroradiometer
measurements, J. Appl. Remote Sens., 2, 023550,
https://doi.org/10.1117/1.3046674,
2008. a, b
Corradini, S., Merucci, L., and Prata, A. J.: Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash, Atmos. Meas. Tech., 2, 177–191, https://doi.org/10.5194/amt-2-177-2009, 2009. a
Corradini, S., Merucci, L., and Folch, A.: Volcanic Ash Cloud Properties:
Comparison Between MODIS Satellite Retrievals and FALL3D
Transport Model, IEEE Geosci. Remote S., 8, 248–252,
https://doi.org/10.1109/LGRS.2010.2064156,
2011. a
Costa, A., Macedonio, G., and Folch, A.: A three-dimensional Eulerian model for
transport and deposition of volcanic ashes, Earth Planet. Sc.
Lett., 241, 634–647, https://doi.org/10.1016/j.epsl.2005.11.019,
2006. a
Costa, A., Dell'Erba, F., Di Vito, M. A., Isaia, R., Macedonio, G., Orsi,
G., and Pfeiffer, T.: Tephra fallout hazard assessment at the Campi
Flegrei caldera (Italy), Bull. Volcanol., 71, 259–273,
https://doi.org/10.1007/s00445-008-0220-3, 2009. a
Dacre, H.: A new method for evaluating regional air quality forecasts,
Atmos. Environ., 45, 993–1002, https://doi.org/10.1016/j.atmosenv.2010.10.048,
2011. a
De Cort, M., Sangiorgi, M., Hernandez, C., Miguel, A., Vanzo, S., Nweke, E.,
Tognoli, P. V., and Tollefsen, T.: REM data bank – Years 1984–2006,
European Commission, Joint Research Centre (JRC) dataset,
https://doi.org/10.2905/jrc-10117-10024,
2007. a, b, c
Dominguez, L., Bonadonna, C., Forte, P., Jarvis, P. A., Cioni, R., Mingari, L.,
Bran, D., and Panebianco, J. E.: Aeolian Remobilisation of the 2011-Cordón
Caulle Tephra-Fallout Deposit: Example of an Important Process in the Life
Cycle of Volcanic Ash, Front. Earth Sci., 7, 343,
https://doi.org/10.3389/feart.2019.00343, 2020. a
Doutriaux-Boucher, M. and Dubuisson, P.: Detection of volcanic SO2 by
spaceborne infrared radiometers, Atmos. Res., 92, 69–79,
https://doi.org/10.1016/j.atmosres.2008.08.009, 2009. a, b, c
Elissondo, M., Baumann, V., Bonadonna, C., Pistolesi, M., Cioni, R., Bertagnini, A., Biass, S., Herrero, J.-C., and Gonzalez, R.: Chronology and impact of the 2011 Cordón Caulle eruption, Chile, Nat. Hazards Earth Syst. Sci., 16, 675–704, https://doi.org/10.5194/nhess-16-675-2016, 2016. a, b
Fisher, B. L., Krotkov, N. A., Bhartia, P. K., Li, C., Carn, S. A., Hughes, E., and Leonard, P. J. T.: A new discrete wavelength backscattered ultraviolet algorithm for consistent volcanic SO2 retrievals from multiple satellite missions, Atmos. Meas. Tech., 12, 5137–5153, https://doi.org/10.5194/amt-12-5137-2019, 2019. a
Folch, A.: FALL3D (Version 8.0.1), Zenodo, https://doi.org/10.5281/zenodo.4434649, 2021. a
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A Computational Model for
Transport and Deposition of Volcanic Ash, Comput. Geosci., 35, 1334–1342,
https://doi.org/10.1016/j.cageo.2008.08.008, 2009. a
Folch, A., Costa, A., Durant, A., and Macedonio, G.: A model for wet
aggregation of ash particles in volcanic plumes and clouds: II. Model
application, J. Geophys. Res., 115, B09202,
https://doi.org/10.1029/2009JB007176, 2010. a
Folch, A., Costa, A., and Basart, S.: Validation of the FALL3D ash dispersion
model using observations of the 2010 Eyjafjallajokull volcanic ash clouds,
Atmos. Environ., 48, 165–183,
https://doi.org/10.1016/j.atmosenv.2011.06.072,
2012. a
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020. a, b, c, d, e, f, g, h, i, j, k
Francis, P. N., Cooke, M. C., and Saunders, R. W.: Retrieval of physical
properties of volcanic ash using Meteosat: A case study from the 2010
Eyjafjallajökull eruption, J. Geophys. Res.-Atmos.,
117, D00U09, https://doi.org/10.1029/2011JD016788,
2012. a
Fu, G., Prata, F., Lin, H. X., Heemink, A., Segers, A., and Lu, S.: Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption, Atmos. Chem. Phys., 17, 1187–1205, https://doi.org/10.5194/acp-17-1187-2017, 2017. a
Galmarini, S., Bonnardot, F., Jones, A., Potempski, S., Robertson, L., and
Martet, M.: Multi-model vs. EPS-based ensemble atmospheric dispersion
simulations: A quantitative assessment on the ETEX-1 tracer experiment
case, Atmos. Environ., 44, 3558–3567,
https://doi.org/10.1016/j.atmosenv.2010.06.003,
2010. a
Global Volcanism Program: Report on Raikoke (Russia), Bulletin of the
Global Volcanism Network, edited by: A. E. Crafford and E. Venzke, Smithsonian Institution, 44, https://doi.org/10.5479/si.GVP.BGVN201908-290250, 2019. a, b, c, d
Gu, Y., Rose, W. I., Schneider, D. J., Bluth, G. J. S., and Watson, I. M.:
Advantageous GOES IR results for ash mapping at high latitudes: Cleveland
eruptions 2001, Geophys. Res. Lett., 32, L02305, https://doi.org/10.1029/2004GL021651,
2005. a, b, c
Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J.:
Re-evaluation of SO2 release of the 15 June 1991 Pinatubo
eruption using ultraviolet and infrared satellite sensors, Geochem.
Geophy. Geosy., 5, 1–34, https://doi.org/10.1029/2003GC000654,
2004. a
Hyman, D. M. and Pavolonis, M. J.: Probabilistic retrieval of volcanic SO2 layer height and partial column density using the Cross-track Infrared Sounder (CrIS), Atmos. Meas. Tech., 13, 5891–5921, https://doi.org/10.5194/amt-13-5891-2020, 2020. a, b, c
Klüser, L., Erbertseder, T., and Meyer-Arnek, J.: Observation of volcanic ash from Puyehue–Cordón Caulle with IASI, Atmos. Meas. Tech., 6, 35–46, https://doi.org/10.5194/amt-6-35-2013, 2013. a
Kylling, A., Kahnert, M., Lindqvist, H., and Nousiainen, T.: Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles, Atmos. Meas. Tech., 7, 919–929, https://doi.org/10.5194/amt-7-919-2014, 2014. a
Laszlo, I., Stamnes, K., Wiscombe, W. J., and Tsay, S.-C.: The Discrete
Ordinate Algorithm, DISORT for Radiative Transfer, in: Light
Scattering Reviews, Volume 11, edited by: Kokhanovsky, A., Springer, Berlin and Heidelberg, Germany,
3–65,
https://doi.org/10.1007/978-3-662-49538-4_1,
2016. a
Marti, A. and Folch, A.: Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors, Atmos. Chem. Phys., 18, 4019–4038, https://doi.org/10.5194/acp-18-4019-2018, 2018. a, b
NCEP: NCEP GFS 0.25 Degree Global Forecast Grids Historical
Archive, Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, Boulder, CO, USA,
https://doi.org/10.5065/D65D8PWK, 2015. a
Pardini, F., Corradini, S., Costa, A., Esposti Ongaro, T., Merucci, L., Neri,
A., Stelitano, D., and de’ Michieli Vitturi, M.: Ensemble-Based Data
Assimilation of Volcanic Ash Clouds from Satellite Observations:
Application to the 24 December 2018 Mt. Etna Explosive Eruption,
Atmosphere, 11, 359, https://doi.org/10.3390/atmos11040359,
2020. a
Pavolonis, M. J., Heidinger, A. K., and Sieglaff, J.: Automated retrievals of
volcanic ash and dust cloud properties from upwelling infrared measurements,
J. Geophys. Res.-Atmos., 118, 1436–1458,
https://doi.org/10.1002/jgrd.50173,
2013. a
Platt, C. and Prata, A.: Nocturnal effects in the retrieval of land surface
temperatures from satellite measurements, Remote Sens. Environ., 45,
127–136, https://doi.org/10.1016/0034-4257(93)90037-X,
1993. a
Poret, M., Costa, A., Andronico, D., Scollo, S., Gouhier, M., and Cristaldi,
A.: Modeling Eruption Source Parameters by Integrating Field, Ground-Based,
and Satellite-Based Measurements: The Case of the 23 February 2013 Etna
Paroxysm, J. Geophys. Res.-Sol. Ea., 123, 5427–5450,
https://doi.org/10.1029/2017JB015163, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Potts, R. and Ebert, E.: On the detection of volcanic ash in NOAA AVHRR
infrared satellite imagery, in: 8th Australasian Remote Sensing Conference,
25–29, Canberra, Australia,
25–29 March 1996. a
Prata, A. J.: Observations of volcanic ash clouds in the 10–12 μm window
using AVHRR/2 data, Int. J. Remote Sens., 10, 751–761,
https://doi.org/10.1080/01431168908903916, 1989a. a
Prata, A. J.: Infrared radiative transfer calculations for volcanic ash clouds,
Geophys. Res. Lett., 16, 1293–1296, https://doi.org/10.1029/GL016i011p01293,
1989b. a, b, c
Prata, A. J. and Bernardo, C.: Retrieval of volcanic SO2 column
abundance from Atmospheric Infrared Sounder data, J.
Geophys. Res., 112, D20204, https://doi.org/10.1029/2006JD007955,
2007. a
Prata, A. J. and Grant, I. F.: Retrieval of microphysical and morphological
properties of volcanic ash plumes from satellite data: Application to Mt
Ruapehu, New Zealand, Q. J. Roy. Meteor. Soc.,
127, 2153–2179, https://doi.org/10.1002/qj.49712757615,
2001. a, b
Prata, A. J. and Prata, A. T.: Eyjafjallajökull volcanic ash concentrations
determined using Spin Enhanced Visible and Infrared Imager measurements,
J. Geophys. Res.-Atmos., 117, D00U23,
https://doi.org/10.1029/2011JD016800,
2012. a, b, c, d
Prata, A. J., Carn, S. A., Stohl, A., and Kerkmann, J.: Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat, Atmos. Chem. Phys., 7, 5093–5103, https://doi.org/10.5194/acp-7-5093-2007, 2007. a
Prata, A. T., Young, S. A., Siems, S. T., and Manton, M. J.: Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements, Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, 2017. a, b
Prata, F. and Lynch, M.: Passive Earth Observations of Volcanic Clouds in the
Atmosphere, Atmosphere, 10, 199, https://doi.org/10.3390/atmos10040199,
2019. a
Prata, F., Bluth, G., Rose, B., Schneider, D., and Tupper, A.: Comments on
“Failures in detecting volcanic ash from a satellite-based technique”,
Remote Sens. Environ., 78, 341–346,
https://doi.org/10.1016/S0034-4257(01)00231-0,
2001. a
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 volcanic ash data insertion simulations for the 2011 Puyehue-Cordón Caulle (Chile) eruption,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47095, 2020a. a, b, c
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 volcanic SO2 data insertion simulations for the 2019 Raikoke (Russia) eruption,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47096, 2020b. a, b, c
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 volcanic ash simulations for the 2013 Mt Etna (Italy) eruption,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47097, 2020c. a, b
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 Cs-134 radionuclide simulations for the 1986 Chernobyl (Ukraine) nuclear accident,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47098, 2020d. a, b
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 Cs-137 radionuclide simulations for the 1986 Chernobyl (Ukraine) nuclear accident,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47099, 2020e. a, b
Prata, A. T., Mingari, L., Folch, A., Macedonio, G., and Costa, A.:
FALL3D-8.0 I-131 radionuclide simulations for the 1986 Chernobyl (Ukraine) nuclear accident,
Technische Informationsbibliothek (TIB) – AV Portal, https://doi.org/10.5446/47100, 2020f. a, b
Realmuto, V. J., Abrams, M. J., Buongiorno, M. F., and Pieri, D. C.: The use of
multispectral thermal infrared image data to estimate the sulfur dioxide flux
from volcanoes: A case study from Mount Etna, Sicily, July 29,
1986, J. Geophys. Res.-Sol. Ea., 99, 481–488,
https://doi.org/10.1029/93JB02062,
1994. a
Rose, W. I., Bluth, G. J. S., Schneider, D. J., Ernst, G. G. J., Riley, C. M.,
Henderson, L. J., and McGimsey, R. G.: Observations of Volcanic Clouds in
Their First Few Days of Atmospheric Residence: The 1992
Eruptions of Crater Peak, Mount Spurr Volcano, Alaska,
J. Geol., 109, 677–694, https://doi.org/10.1086/323189,
2001. a
Rose, W. I., Gu, Y., Watson, I. M., Yu, T., Blut, G. J. S., Prata, A. J.,
Krueger, A. J., Krotkov, N., Carn, S., Fromm, M. D., Hunton, D. E., Ernst, G.
G. J., Viggiano, A. A., Miller, T. M., Ballenthin, J. O., Reeves, J. M.,
Wilson, J. C., Anderson, B. E., and Flittner, D. E.: The February–March
2000 eruption of Hekla, Iceland from a satellite perspective, in: Volcanism and the Earth's Atmosphere, edited by: Robock, A. and Oppenheimer, C., American Geophysical Union,
139,
107–132, https://doi.org/10.1029/139GM07,
2003. a
Rose, W. I., Bluth, G. J., and Watson, I. M.: Ice in volcanic clouds: When
and where, in: Proceedings of the 2nd International Conference on Volcanic Ash and
Aviation Safety, OFCM, Washington, DC, USA,
p. 61, 21–24 June
2004. a
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and
Ratier, A.: An Introduction to Meteosat Second Generation (MSG), B.
Am. Meteorol. Soc., 83, 977–992,
https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2,
2002. a
Seemann, S. W., Borbas, E. E., Knuteson, R. O., Stephenson, G. R., and Huang,
H.-L.: Development of a Global Infrared Land Surface Emissivity
Database for Application to Clear Sky Sounding Retrievals from
Multispectral Satellite Radiance Measurements, J. Appl.
Meteorol. Clim., 47, 108–123, https://doi.org/10.1175/2007JAMC1590.1,
2008. a
Simpson, J.: Failures in Detecting Volcanic Ash from a Satellite-Based
Technique, Remote Sens. Environ., 72, 191–217,
https://doi.org/10.1016/S0034-4257(99)00103-0,
2000. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR, Technical Report, National Center for Atmospheric
Research, Boulder, CO, USA, 113 pp.,
2008. a
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502,
https://doi.org/10.1364/AO.27.002502,
1988. a
Stevenson, J. A., Millington, S. C., Beckett, F. M., Swindles, G. T., and Thordarson, T.: Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash, Atmos. Meas. Tech., 8, 2069–2091, https://doi.org/10.5194/amt-8-2069-2015, 2015. a
Theys, N., De Smedt, I., Yu, H., Danckaert, T., van Gent, J., Hörmann, C., Wagner, T., Hedelt, P., Bauer, H., Romahn, F., Pedergnana, M., Loyola, D., and Van Roozendael, M.: Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis, Atmos. Meas. Tech., 10, 119–153, https://doi.org/10.5194/amt-10-119-2017, 2017. a
Vernier, J.-P., Fairlie, T. D., Murray, J. J., Tupper, A., Trepte, C., Winker,
D., Pelon, J., Garnier, A., Jumelet, J., Pavolonis, M., Omar, A. H., and
Powell, K. A.: An Advanced System to Monitor the 3D Structure of Diffuse
Volcanic Ash Clouds, J. Appl. Meteorol. Clim., 52,
2125–2138, https://doi.org/10.1175/JAMC-D-12-0279.1,
2013. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I.,
Feng, Y., Moore, E. W., Van der Plas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,
Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A.,
Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C.,
Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A.,
Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich,
J. P., Silterra, J., Webber, J. T., Slaviĉ, J., Nothman, J., Buchner, J.,
Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,
Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre,
M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb,
P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S.,
Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T.,
Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie,
T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., Vázquez-Baeza, Y.,
and SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for
scientific computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2,
2020. a
Watson, I., Realmuto, V., Rose, W., Prata, A., Bluth, G., Gu, Y., Bader, C.,
and Yu, T.: Thermal infrared remote sensing of volcanic emissions using the
moderate resolution imaging spectroradiometer, J. Volcanol.
Geotherm. Res., 135, 75–89, https://doi.org/10.1016/j.jvolgeores.2003.12.017,
2004. a
Western, L. M., Watson, M. I., and Francis, P. N.: Uncertainty in two-channel
infrared remote sensing retrievals of a well-characterised volcanic ash
cloud, B. Volcanol., 77, 67, https://doi.org/10.1007/s00445-015-0950-y,
2015. a, b
Wilkins, K. L., Watson, I. M., Kristiansen, N. I., Webster, H. N., Thomson,
D. J., Dacre, H. F., and Prata, A. J.: Using data insertion with the NAME
model to simulate the 8 May 2010 Eyjafjallajökull volcanic ash cloud,
J. Geophys. Res.-Atmos., 121, 306–323,
https://doi.org/10.1002/2015JD023895,
2016. a, b, c
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean.
Tech., 26, 2310–2323, https://doi.org/10.1175/2009JTECHA1281.1,
2009. a
Yamanouchi, T., Suzuki, K., and Kawaguchi, S.: Detection of Clouds in
Antarctica from Infrared Multispectral Data of AVHRR, J.
Meteorol. Soc. Jpn., 65, 949–962,
https://doi.org/10.2151/jmsj1965.65.6_949, 1987. a
Yang, K., Krotkov, N. A., Krueger, A. J., Carn, S. A., Bhartia, P. K., and
Levelt, P. F.: Retrieval of large volcanic SO2 columns from
the Aura Ozone Monitoring Instrument: Comparison and limitations,
J. Geophys. Res., 112, D24S43, https://doi.org/10.1029/2007JD008825,
2007. a
Yu, T., Rose, W. I., and Prata, A. J.: Atmospheric correction for
satellite-based volcanic ash mapping and retrievals using “split window”
IR data from GOES and AVHRR, J. Geophys. Res., 107, D16,
https://doi.org/10.1029/2001JD000706,
2002. a
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track...