Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A model for urban biogenic CO2 fluxes: Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes (SMUrF v1)
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT, USA
now at: Division of Geological and Planetary Sciences, California
Institute of Technology, Pasadena, CA, USA
John C. Lin
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT, USA
Henrique F. Duarte
Department of Atmospheric Sciences, University of Utah, Salt Lake
City, UT, USA
now at: Earth System Science Center, National Institute for
Space Research, São José dos Campos, Brazil
Vineet Yadav
NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Nicholas C. Parazoo
NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Tomohiro Oda
Goddard Earth Sciences Technology and Research, Universities Space
Research Association, Columbia, MD, USA
Global Modeling and Assimilation Office, NASA Goddard Space Flight
Center, Greenbelt, MD, USA
Department of Atmospheric and Oceanic Science, University of Maryland,
College Park, MD, USA
Eric A. Kort
Climate and Space Sciences and Engineering, University of Michigan,
Ann Arbor, MI, USA
Related authors
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yu Yan Cui, Dien Wu, Alex Turner, and Marc Fischer
Atmos. Chem. Phys., 25, 8475–8492, https://doi.org/10.5194/acp-25-8475-2025, https://doi.org/10.5194/acp-25-8475-2025, 2025
Short summary
Short summary
Satellites, such as NASA's Orbiting Carbon Observatory-2 and -3 (OCO-2 and OCO-3, respectively), retrieve carbon dioxide (CO2) concentrations, which provide vital information for estimating surface CO2 emissions. Here, we investigate the ability of OCO-2/3 retrievals to constrain CO2 emissions for the state of California for the major emission sectors (i.e., fossil fuels, net ecosystem exchange, and wildfire).
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023, https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Short summary
We evaluate the theoretical ability of the upcoming MicroCarb satellite to estimate urban CO2 emissions over Paris and London. We explore the relative performance of alternative two-sweep and three-sweep city observing modes and take into account the impacts of cloud cover and urban biological CO2 fluxes. Our results find both the two-sweep and three-sweep observing modes are able to reduce prior flux errors by 20 %–40 % depending on the prevailing wind direction and cloud coverage.
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
Short summary
Prior studies have derived the combustion efficiency for a region/city using observed CO2 and CO. We further zoomed into the urban domain and accounted for factors affecting the calculation of spatially resolved combustion efficiency from two satellites. The intra-city variability in combustion efficiency was linked to heavy industry within Shanghai and LA without relying on emission inventories. Such an approach can be applied when analyzing data from future geostationary satellites.
Dustin Roten, John C. Lin, Lewis Kunik, Derek Mallia, Dien Wu, Tomohiro Oda, and Eric A. Kort
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-315, https://doi.org/10.5194/acp-2022-315, 2022
Revised manuscript not accepted
Short summary
Short summary
The systems used to monitor carbon dioxide (CO2) emissions from urban areas provides a means to observe and quantify emissions reductions from policy-related reduction efforts. Space-based instruments, such as NASA's Orbiting Carbon Observatory-3 (OCO-3), provides detailed "snapshots" of CO2 emissions from many megacities around the world. This work quantifies the amount of emission "information" contained in these snapshots and uses this information to update previous estimates of urban CO2.
Taylor J. Adams, Genevieve Plant, and Eric A. Kort
EGUsphere, https://doi.org/10.5194/egusphere-2025-4201, https://doi.org/10.5194/egusphere-2025-4201, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse gas and ozone-depleting substance emitted from agriculture. Emissions cannot presently be observed from space. We leverage the co-emission of reactive nitrogen oxides (NO+NO2=NOx) from croplands by determining N2O:NOx emissions ratios with aircraft. We apply these ratios to daily estimates of NOx emissions derived from space-based observations, thus generating a space-based proxy for N2O emissions, with close agreement against independent observations.
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yu Yan Cui, Dien Wu, Alex Turner, and Marc Fischer
Atmos. Chem. Phys., 25, 8475–8492, https://doi.org/10.5194/acp-25-8475-2025, https://doi.org/10.5194/acp-25-8475-2025, 2025
Short summary
Short summary
Satellites, such as NASA's Orbiting Carbon Observatory-2 and -3 (OCO-2 and OCO-3, respectively), retrieve carbon dioxide (CO2) concentrations, which provide vital information for estimating surface CO2 emissions. Here, we investigate the ability of OCO-2/3 retrievals to constrain CO2 emissions for the state of California for the major emission sectors (i.e., fossil fuels, net ecosystem exchange, and wildfire).
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Riley Duren, Daniel Cusworth, Alana Ayasse, Kate Howell, Alex Diamond, Tia Scarpelli, Jinsol Kim, Kelly O'neill, Judy Lai-Norling, Andrew Thorpe, Sander R. Zandbergen, Lucas Shaw, Mark Keremedjiev, Jeff Guido, Paul Giuliano, Malkam Goldstein, Ravi Nallapu, Geert Barentsen, David R. Thompson, Keely Roth, Daniel Jensen, Michael Eastwood, Frances Reuland, Taylor Adams, Adam Brandt, Eric A. Kort, James Mason, and Robert O. Green
EGUsphere, https://doi.org/10.5194/egusphere-2025-2275, https://doi.org/10.5194/egusphere-2025-2275, 2025
Short summary
Short summary
We describe the Carbon Mapper emissions monitoring system including methane and carbon dioxide observations from the constellation of Tanager hyperspectral satellites, a global monitoring strategy optimized for enabling mitigation impact at the scale of individual facilities, and a data platform that delivers timely and transparent information for diverse stakeholders. We present early findings from Tanager-1 including the use of our data to locate and repair a leaking oil and gas pipeline.
Russell Doughty, Michael C. Wimberly, Dan Wanyama, Helene Peiro, Nicholas Parazoo, Sean Crowell, and Moses Azong Cho
Biogeosciences, 22, 1985–2004, https://doi.org/10.5194/bg-22-1985-2025, https://doi.org/10.5194/bg-22-1985-2025, 2025
Short summary
Short summary
We find West African solar-induced fluorescence (SIF) increases during the dry season and peaks before precipitation, similar to the Amazon. In central Africa, a continental-scale bimodal SIF seasonality appears; its minimum aligns with precipitation, but its maximum seems less environmentally driven. Notably, differences between SIF and vegetation index (VI) seasonality indicate VI-based photosynthesis estimates may be inaccurate.
Cynthia D. Nevison, Qing Liang, Paul A. Newman, Britton B. Stephens, Geoff Dutton, Xin Lan, Roisin Commane, Yenny Gonzalez, and Eric Kort
Atmos. Chem. Phys., 24, 10513–10529, https://doi.org/10.5194/acp-24-10513-2024, https://doi.org/10.5194/acp-24-10513-2024, 2024
Short summary
Short summary
This study examines the drivers of interannual variability in tropospheric N2O. New insights are obtained from aircraft data and a chemistry–climate model that explicitly simulates stratospheric N2O. The stratosphere is found to be the dominant driver of N2O variability in the Northern Hemisphere, while both the stratosphere and El Niño cycles are important in the Southern Hemisphere. These results are consistent with known atmospheric dynamics and differences between the hemispheres.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Russell Doughty, Yujie Wang, Jennifer Johnson, Nicholas Parazoo, Troy Magney, Zoe Pierrat, Xiangming Xiao, Luis Guanter, Philipp Köhler, Christian Frankenberg, Peter Somkuti, Shuang Ma, Yuanwei Qin, Sean Crowell, and Berrien Moore III
EGUsphere, https://doi.org/10.22541/essoar.168167172.20799710/v1, https://doi.org/10.22541/essoar.168167172.20799710/v1, 2024
Preprint archived
Short summary
Short summary
Here we present a novel model of global photosynthesis, ChloFluo, which uses spaceborne chlorophyll fluorescence to estimate the amount of photosynthetically active radiation absorbed by chlorophyll. Potential uses of our model are to advance our understanding of the timing and magnitude of photosynthesis, its effect on atmospheric carbon dioxide fluxes, and vegetation response to climate events and change.
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Short summary
The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Jinsol Kim, John B. Miller, Charles E. Miller, Scott J. Lehman, Sylvia E. Michel, Vineet Yadav, Nick E. Rollins, and William M. Berelson
Atmos. Chem. Phys., 23, 14425–14436, https://doi.org/10.5194/acp-23-14425-2023, https://doi.org/10.5194/acp-23-14425-2023, 2023
Short summary
Short summary
In this study, we present the partitioning of CO2 signals from biogenic, petroleum and natural gas sources by combining CO, 13CO2 and 14CO2 measurements. Using measurements from flask air samples at three sites in the greater Los Angeles region, we find larger and positive contributions of biogenic signals in winter and smaller and negative contributions in summer. The largest contribution of natural gas combustion generally occurs in summer.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
Geosci. Model Dev., 16, 6161–6185, https://doi.org/10.5194/gmd-16-6161-2023, https://doi.org/10.5194/gmd-16-6161-2023, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and assess its performance against TROPOMI v2 over power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind directions and prior emissions.
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023, https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Short summary
Measuring the performance of inversions in linear Bayesian problems is crucial in real-life applications. In this work, we provide analytical forms of the local and global sensitivities of the estimated fluxes with respect to various inputs. We provide methods to uniquely map the observational signal to spatiotemporal domains. Utilizing this, we also show techniques to assess correlations between the Jacobians that naturally translate to nonstationary covariance matrix components.
Alexander J. Norton, A. Anthony Bloom, Nicholas C. Parazoo, Paul A. Levine, Shuang Ma, Renato K. Braghiere, and T. Luke Smallman
Biogeosciences, 20, 2455–2484, https://doi.org/10.5194/bg-20-2455-2023, https://doi.org/10.5194/bg-20-2455-2023, 2023
Short summary
Short summary
This study explores how the representation of leaf phenology affects our ability to predict changes to the carbon balance of land ecosystems. We calibrate a new leaf phenology model against a diverse range of observations at six forest sites, showing that it improves the predictive capability of the processes underlying the ecosystem carbon balance. We then show how changes in temperature and rainfall affect the ecosystem carbon balance with this new model.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023, https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Short summary
We evaluate the theoretical ability of the upcoming MicroCarb satellite to estimate urban CO2 emissions over Paris and London. We explore the relative performance of alternative two-sweep and three-sweep city observing modes and take into account the impacts of cloud cover and urban biological CO2 fluxes. Our results find both the two-sweep and three-sweep observing modes are able to reduce prior flux errors by 20 %–40 % depending on the prevailing wind direction and cloud coverage.
Dien Wu, Junjie Liu, Paul O. Wennberg, Paul I. Palmer, Robert R. Nelson, Matthäus Kiel, and Annmarie Eldering
Atmos. Chem. Phys., 22, 14547–14570, https://doi.org/10.5194/acp-22-14547-2022, https://doi.org/10.5194/acp-22-14547-2022, 2022
Short summary
Short summary
Prior studies have derived the combustion efficiency for a region/city using observed CO2 and CO. We further zoomed into the urban domain and accounted for factors affecting the calculation of spatially resolved combustion efficiency from two satellites. The intra-city variability in combustion efficiency was linked to heavy industry within Shanghai and LA without relying on emission inventories. Such an approach can be applied when analyzing data from future geostationary satellites.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Dustin Roten, John C. Lin, Lewis Kunik, Derek Mallia, Dien Wu, Tomohiro Oda, and Eric A. Kort
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-315, https://doi.org/10.5194/acp-2022-315, 2022
Revised manuscript not accepted
Short summary
Short summary
The systems used to monitor carbon dioxide (CO2) emissions from urban areas provides a means to observe and quantify emissions reductions from policy-related reduction efforts. Space-based instruments, such as NASA's Orbiting Carbon Observatory-3 (OCO-3), provides detailed "snapshots" of CO2 emissions from many megacities around the world. This work quantifies the amount of emission "information" contained in these snapshots and uses this information to update previous estimates of urban CO2.
Russell Doughty, Thomas P. Kurosu, Nicholas Parazoo, Philipp Köhler, Yujie Wang, Ying Sun, and Christian Frankenberg
Earth Syst. Sci. Data, 14, 1513–1529, https://doi.org/10.5194/essd-14-1513-2022, https://doi.org/10.5194/essd-14-1513-2022, 2022
Short summary
Short summary
We describe and compare solar-induced chlorophyll fluorescence data produced by NASA from the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 platforms.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Jennifer D. Hegarty, Karen E. Cady-Pereira, Vivienne H. Payne, Susan S. Kulawik, John R. Worden, Valentin Kantchev, Helen M. Worden, Kathryn McKain, Jasna V. Pittman, Róisín Commane, Bruce C. Daube Jr., and Eric A. Kort
Atmos. Meas. Tech., 15, 205–223, https://doi.org/10.5194/amt-15-205-2022, https://doi.org/10.5194/amt-15-205-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is produced by combustion of substances such as fossil fuels and plays an important role in atmospheric pollution and climate. We evaluated estimates of atmospheric CO derived from outgoing radiation measurements of the Atmospheric Infrared Sounder (AIRS) on a satellite orbiting the Earth against CO measurements from aircraft to show that these satellite measurements are reliable for continuous global monitoring of atmospheric CO concentrations.
Eric J. Hintsa, Fred L. Moore, Dale F. Hurst, Geoff S. Dutton, Bradley D. Hall, J. David Nance, Ben R. Miller, Stephen A. Montzka, Laura P. Wolton, Audra McClure-Begley, James W. Elkins, Emrys G. Hall, Allen F. Jordan, Andrew W. Rollins, Troy D. Thornberry, Laurel A. Watts, Chelsea R. Thompson, Jeff Peischl, Ilann Bourgeois, Thomas B. Ryerson, Bruce C. Daube, Yenny Gonzalez Ramos, Roisin Commane, Gregory W. Santoni, Jasna V. Pittman, Steven C. Wofsy, Eric Kort, Glenn S. Diskin, and T. Paul Bui
Atmos. Meas. Tech., 14, 6795–6819, https://doi.org/10.5194/amt-14-6795-2021, https://doi.org/10.5194/amt-14-6795-2021, 2021
Short summary
Short summary
We built UCATS to study atmospheric chemistry and transport. It has measured trace gases including CFCs, N2O, SF6, CH4, CO, and H2 with gas chromatography, as well as ozone and water vapor. UCATS has been part of missions to study the tropical tropopause; transport of air into the stratosphere; greenhouse gases, transport, and chemistry in the troposphere; and ozone chemistry, on both piloted and unmanned aircraft. Its design, capabilities, and some results are shown and described here.
Brad Weir, Lesley E. Ott, George J. Collatz, Stephan R. Kawa, Benjamin Poulter, Abhishek Chatterjee, Tomohiro Oda, and Steven Pawson
Atmos. Chem. Phys., 21, 9609–9628, https://doi.org/10.5194/acp-21-9609-2021, https://doi.org/10.5194/acp-21-9609-2021, 2021
Short summary
Short summary
We present a collection of carbon surface fluxes, the Low-order Flux Inversion (LoFI), derived from satellite observations of the Earth's surface and calibrated to match long-term inventories and atmospheric and oceanic records. Simulations using LoFI reproduce background atmospheric carbon dioxide measurements with comparable skill to the leading surface flux products. Available both retrospectively and as a forecast, LoFI enables the study of the carbon cycle as it occurs.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Christoph A. Keller, Mathew J. Evans, K. Emma Knowland, Christa A. Hasenkopf, Sruti Modekurty, Robert A. Lucchesi, Tomohiro Oda, Bruno B. Franca, Felipe C. Mandarino, M. Valeria Díaz Suárez, Robert G. Ryan, Luke H. Fakes, and Steven Pawson
Atmos. Chem. Phys., 21, 3555–3592, https://doi.org/10.5194/acp-21-3555-2021, https://doi.org/10.5194/acp-21-3555-2021, 2021
Short summary
Short summary
This study combines surface observations and model simulations to quantify the impact of COVID-19 restrictions on air quality across the world. The presented methodology removes the confounding impacts of meteorology on air pollution. Our results indicate that surface concentrations of nitrogen dioxide, an important air pollutant emitted during the combustion of fossil fuels, declined by up to 60 % following the implementation of COVID-19 containment measures.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Yuming Jin, Ralph F. Keeling, Eric J. Morgan, Eric Ray, Nicholas C. Parazoo, and Britton B. Stephens
Atmos. Chem. Phys., 21, 217–238, https://doi.org/10.5194/acp-21-217-2021, https://doi.org/10.5194/acp-21-217-2021, 2021
Short summary
Short summary
We propose a new atmospheric coordinate (Mθe) based on equivalent potential temperature (θe) but with mass as the unit. This coordinate is useful in studying the spatial and temporal distribution of long-lived chemical tracers (CO2, CH4, O2 / N2, etc.) from sparse data, like airborne observation. Using this coordinate and sparse airborne observation (HIPPO and ATom), we resolve the Northern Hemisphere mass-weighted average CO2 seasonal cycle with high accuracy.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Cited articles
Chen, J., Zhao, F., Zeng, N. and Oda, T.: Comparing a global
high-resolution downscaled fossil fuel - CO2 emission dataset to local inventory-based estimates over 14 global cities, Carbon Balance Manag., 15, 1–15,
https://doi.org/10.1186/s13021-020-00146-3, 2020.
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brorousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J.,
Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell,
N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwesits, N.: WUDAPT: An
urban weather, climate, and environmental modeling infrastructure for the
anthropocene, B. Am. Meteorol. Soc., 99, 1907–1924,
https://doi.org/10.1175/BAMS-D-16-0236.1, 2018.
Coleman, R. W.: Southern California 60-cm Urban Land Cover
Classification, Mendeley Data, V1, https://doi.org/10.17632/zykyrtg36g.1, 2020.
Coleman, R. W., Stavros, E. N., Yadav, V., and Parazoo, N.: A Simplified
Framework for High-Resolution Urban Vegetation Classification with Optical
Imagery in the Los Angeles Megacity, Remote Sensing, 12, 2399, https://doi.org/10.3390/rs12152399,
2020.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate. Copernicus Climate Change
Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 14 April 2020), https://doi.org/10.24381/cds.bd0915c6, 2017.
Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D. M., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO2 retrieval algorithm – Part II: Global XCO2 data characterization, Atmos. Meas. Tech., 5, 687–707, https://doi.org/10.5194/amt-5-687-2012, 2012.
Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J., Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, T. A., Brewer, W. A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney, C., Turnbull, J. C., Whetstone, J., and Karion, A.: The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements, Elementa, 5, 21, https://doi.org/10.1525/elementa.188, 2017.
Decina, S. M., Hutyra, L. R., Gately, C. K., Getson, J. M., Reinmann, A. B.,
Short Gianotti, A. G., and Templer, P. H.: Soil respiration contributes
substantially to urban carbon fluxes in the greater Boston area, Environ.
Pollut., 212, 433–439, https://doi.org/10.1016/j.envpol.2016.01.012, 2016.
Dietze, M. C., Vargas, R., Richardson, A. D., Stoy, P. C., Barr, A. G.,
Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M.,
Ciais, P., Flanagan, L. B., Gough, C. M., Grant, R. F., Hollinger, D.,
Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Liu, S., Lokupitiya, E.,
Luo, Y., Munger, J. W., Peng, C., Poulter, B., Price, D. T., Ricciuto, D.
M., Riley, W. J., Sahoo, A. K., Schaefer, K., Suyker, A. E., Tian, H.,
Tonitto, C., Verbeeck, H., Verma, S. B., Wang, W., and Weng, E.:
Characterizing the performance of ecosystem models across time scales: A
spectral analysis of the North American Carbon Program site-level synthesis,
J. Geophys. Res.-Biogeo., 116, G04029, https://doi.org/10.1029/2011JG001661, 2011.
DiMiceli, C., Carroll, M., Sohlberg, R., Kim, D., Kelly, M., and Townshend, J.: MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD44B.006, 2020.
Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T.,
Simard, M., Silva, C. A., Armston, J., Luthcke, S. B., Hofton, M., Kellner,
J. R., and Dubayah, R.: Biomass estimation from simulated GEDI, ICESat-2 and
NISAR across environmental gradients in Sonoma County, California, Remote
Sens. Environ., 242, 111779, https://doi.org/10.1016/j.rse.2020.111779, 2020.
Duveiller, G. and Cescatti, A.: Spatially downscaling sun-induced
chlorophyll fluorescence leads to an improved temporal correlation with
gross primary productivity, Remote Sens. Environ., 182, 72–89,
https://doi.org/10.1016/j.rse.2016.04.027, 2016.
Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.
Eldering, A., Taylor, T. E., O'Dell, C. W., and Pavlick, R.: The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data, Atmos. Meas. Tech., 12, 2341–2370, https://doi.org/10.5194/amt-12-2341-2019, 2019.
Ellis, E. C. and Ramankutty, N.: Putting people in the map: Anthropogenic
biomes of the world, Front. Ecol. Environ., 6, 439–447,
https://doi.org/10.1890/070062, 2008.
Falbel, D., Allaire, J. J., and Chollet, F.: keras: R Interface to “Keras”
version 2.2.5.0, available at: https://keras.rstudio.com/index.html (last access: 14 April 2020), 2019.
Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., and Mendoza, D.: Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2), Geosci. Model Dev., 11, 2813–2824, https://doi.org/10.5194/gmd-11-2813-2018, 2018.
Fisher, J. B., Sikka, M., Huntzinger, D. N., Schwalm, C., and Liu, J.: Technical note: 3-hourly temporal downscaling of monthly global terrestrial biosphere model net ecosystem exchange, Biogeosciences, 13, 4271–4277, https://doi.org/10.5194/bg-13-4271-2016, 2016.
Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B.,
Cawse-Nicholson, K., Wang, A., Anderson, R. G., Aragon, B., Arain, M. A.,
Baldocchi, D. D., Baker, J. M., Barral, H., Bernacchi, C. J., Bernhofer, C.,
Biraud, S. C., Bohrer, G., Brunsell, N., Cappelaere, B., Castro-Contreras,
S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., Desai, A. R., De
Ligne, A., Foltýnová, L., Goulden, M. L., Griffis, T. J.,
Grünwald, T., Johnson, M. S., Kang, M., Kelbe, D., Kowalska, N., Lim, J.
H., Maïnassara, I., McCabe, M. F., Missik, J. E. C., Mohanty, B. P.,
Moore, C. E., Morillas, L., Morrison, R., Munger, J. W., Posse, G.,
Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt,
M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson,
M., Hain, C., French, A., Wood, E., and Hook, S.: ECOSTRESS: NASA's Next
Generation Mission to Measure Evapotranspiration From the International
Space Station, Water Resour. Res., 56, e2019WR026058, https://doi.org/10.1029/2019WR026058,
2020.
Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chlorophyll
fluorescence from atmospheric scattering effects in O2 A-band spectra
of reflected sun-light, Geophys. Res. Lett., 38, L03801,
https://doi.org/10.1029/2010GL045896, 2011.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land
Processes DAAC, https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Fritsch, S., Guenther, F., and Guenther, M. F: Package “neuralnet” version
1.44.2. The Comprehensive R Archive Network, available at: https://github.com/bips-hb/neuralnet (last access: 14 April 2020), 2016.
George, K., Ziska, L. H., Bunce, J. A., and Quebedeaux, B.: Elevated
atmospheric CO2 concentration and temperature across an urban-rural
transect, Atmos. Environ., 41, 7654–7665,
https://doi.org/10.1016/j.atmosenv.2007.08.018, 2007.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.
Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du Can, S.: High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States, Environ. Sci. Technol., 43, 5535–5541, https://doi.org/10.1021/es900806c, 2009.
Hao, D., Asrar, G. R., Zeng, Y., Zhu, Q., Wen, J., Xiao, Q., and Chen, M.: DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at resolution, Earth Syst. Sci. Data, 12, 2209–2221, https://doi.org/10.5194/essd-12-2209-2020, 2020a.
Hao, D., Chen, M., Asrar, G. R., Zeng, Y., Zhu, Q., Wen, J., and Xiao, Q: A
global DSCOVR/EPIC-based hourly/daily shortwave radiation/PAR dataset,
DataHub for Pacific Northwest National Laboratory,
https://doi.org/10.25584/1595069, 2020b.
Hardiman, B. S., Wang, J. A., Hutyra, L. R., Gately, C. K., Getson, J. M.
and Friedl, M. A.: Accounting for urban biogenic fluxes in regional carbon
budgets, Sci. Total Environ., 592, 366–372, 2017.
He, L., Magney, T., Dutta, D., Yin, Y., Köhler, P., Grossmann, K.,
Stutz, J., Dold, C., Hatfield, J., Guan, K., Peng, B., and Frankenberg, C.:
From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to
Estimate Crop Productivity, Geophys. Res. Lett., 47, e2020GL087474,
https://doi.org/10.1029/2020GL087474, 2020.
Helm, L. T., Shi, H., Lerdau, M. T., and Yang, X.: Solar-induced chlorophyll
fluorescence and short-term photosynthetic response to drought, Ecol. Appl.,
30, e02101, https://doi.org/10.1002/eap.2101, 2020.
Hilton, T. W., Davis, K. J., and Keller, K.: Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals, Biogeosciences, 11, 217–235, https://doi.org/10.5194/bg-11-217-2014, 2014.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. Model Dev., 6, 2121–2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013.
Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E.,
and Shrestha, G.: Urbanization and the carbon cycle: Current capabilities
and research outlook from the natural sciences perspective, Earth's Future,
2, 473–495, https://doi.org/10.1002/2014EF000255, 2014.
Johnson, T. D. and Belitz, K.: A remote sensing approach for estimating the
location and rate of urban irrigation in semi-arid climates, J. Hydrol.,
414–415, 86–98, https://doi.org/10.1016/j.jhydrol.2011.10.016, 2012.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Kettle, A. J., Kuhn, U., Von Hobe, M., Kesselmeier, J., and Andreae, M. O.:
Global budget of atmospheric carbonyl sulfide: Temporal and spatial
variations of the dominant sources and sinks, J. Geophys. Res.-Atmos.,
107, 4658, https://doi.org/10.1029/2002JD002187, 2002.
Knorr, W. and Heimann, M.: Uncertainties in global terrestrial biosphere
modelling, Part II: Global constraints for a process-based vegetation model,
Global Biogeochem. Cy., 15, 227–246, https://doi.org/10.1029/1998GB001060, 2001.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf, J.: Global retrievals of solar-induced chlorophyll fluorescence
with TROPOMI: First results and intersensor comparison to OCO-2, Geophys.
Res. Lett., 45, 10456–10463, https://doi.org/10.1029/2018GL079031, 2018.
Li, X. and Xiao, J.: A Global, 0.05-Degree Product of Solar-Induced
Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data,
Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019a.
Li, X. and Xiao, J.: Mapping photosynthesis solely from solar-induced
chlorophyll fluorescence: A global, fine-resolution dataset of gross primary
production derived from OCO-2, Remote Sens., 11, 2563,
https://doi.org/10.3390/rs11212563,
2019b.
LI-COR Biosciences: EddyPro® (Version 4.1) [Computer software], Lincoln, NE, LI-COR, Inc, Infrastructure for Measurements of the European Carbon Cycle consortium, 2012.
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis,
K. J., and Grainger, C. A.: A near-field tool for simulating the upstream
influence of atmospheric observations: The Stochastic Time-Inverted
Lagrangian Transport (STILT) model, J. Geophys. Res.-Atmos., 108, 4493, https://doi.org/10.1029/2002JD003161, 2003.
Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C.,
Grainger, C. A., Stephens, B. B., Bakwin, P. S., and Hollinger, D. Y.:
Measuring fluxes of trace gases at regional scales by Lagrangian
observations: Application to the CO2 Budget and Rectification Airborne
(COBRA) study, J. Geophys. Res.-Atmos., 109, 1–23,
https://doi.org/10.1029/2004JD004754, 2004.
Lin, J. C., Pejam, M. R., Chan, E., Wofsy, S. C., Gottlieb, E. W., Margolis,
H. A., and McCaughey, J. H.: Attributing uncertainties in simulated
biospheric carbon fluxes to different error sources, Global Biogeochem.
Cy., 25, GB2018, https://doi.org/10.1029/2010GB003884, 2011.
Luus, K. A., Commane, R., Parazoo, N. C., Benmergui, J., Euskirchen, E. S.,
Frankenberg, C., Joiner, J., Lindaas, J., Miller, C. E., Oechel, W. C.,
Zona, D., Wofsy, S., and Lin, J. C.: Tundra photosynthesis captured by
satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res.
Lett., 44, 1564–1573, https://doi.org/10.1002/2016GL070842, 2017.
MacBean, N., Maignan, F., Bacour, C., Lewis, P., Peylin, P., Guanter, L.,
Köhler, P., Gómez-Dans, J., and Disney, M.: Strong constraint on
modelled global carbon uptake using solar-induced chlorophyll fluorescence
data, Sci. Rep., 8, 1–12, https://doi.org/10.1038/s41598-018-28697-z, 2018.
Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B., Davis,
T. S., Kornfeld, A., and Siebke, K.: Connecting active to passive
fluorescence with photosynthesis: a method for evaluating remote sensing
measurements of Chl fluorescence, New Phytol., 215, 1594–1608,
https://doi.org/10.1111/nph.14662, 2017.
Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J.,
Blanken, P. D., Burns, S. P., Cheng, R., Garcia, M. A., Kohler, P., and
others: Mechanistic evidence for tracking the seasonality of photosynthesis
with solar-induced fluorescence, P. Natl. Acad. Sci. USA, 116,
11640–11645, 2019.
Magney, T. S., Barnes, M. L., and Yang, X.: On the co-variation of
chlorophyll fluorescence and photosynthesis across scales, Geophys. Res. Lett., 47, e2020GL091098,
https://doi.org/10.1029/2020GL091098, 2020.
Maguire, A. J., Eitel, J. U. H., Griffin, K. L., Magney, T. S., Long, R. A.,
Vierling, L. A., Schmiege, S. C., Jennewein, J. S., Weygint, W. A., Boelman,
N. T., and Bruner, S. G.: On the Functional Relationship Between Fluorescence
and Photochemical Yields in Complex Evergreen Needleleaf Canopies, Geophys.
Res. Lett., 47, e2020GL087858, https://doi.org/10.1029/2020GL087858, 2020.
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J.
C., Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A
satellite-based biosphere parameterization for net ecosystem CO2
exchange: Vegetation Photosynthesis and Respiration Model (VPRM), Global
Biogeochem. Cy., 22, GB2005, https://doi.org/10.1029/2006GB002735, 2008.
Marrs, J. K., Reblin, J. S., Logan, B. A., Allen, D. W., Reinmann, A. B.,
Bombard, D. M., Tabachnik, D., and Hutyra, L. R.: Solar-Induced Fluorescence
Does Not Track Photosynthetic Carbon Assimilation Following Induced Stomatal
Closure, Geophys. Res. Lett., 47, e2020GL087956, https://doi.org/10.1029/2020GL087956, 2020.
McRae, J. E. and Graedel, T. E.: Carbon dioxide in the urban atmosphere: dependencies and trends, J. Geophys. Res., 84, 5011–5017, https://doi.org/10.1029/JC084iC08p05011, 1979.
Meng, L., Mao, J., Zhou, Y., Richardson, A. D., Lee, X., Thornton, P. E.,
Ricciuto, D. M., Li, X., Dai, Y., Shi, X., and Jia, G.: Urban warming
advances spring phenology but reduces the response of phenology to
temperature in the conterminous United States, P. Natl. Acad. Sci. USA, 117, 4228–4233, https://doi.org/10.1073/pnas.1911117117, 2020.
Miao, G., Guan, K., Yang, X., Bernacchi, C. J., Berry, J. A., DeLucia, E.
H., Wu, J., Moore, C. E., Meacham, K., Cai, Y., Peng, B., Kimm, H., and
Masters, M. D.: Sun-Induced Chlorophyll Fluorescence, Photosynthesis, and
Light Use Efficiency of a Soybean Field from Seasonally Continuous
Measurements, J. Geophys. Res.-Biogeo., 123, 610–623,
https://doi.org/10.1002/2017JG004180, 2018.
Miller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M.,
Yadav, V., Newman, S., and Sloop, C. D.: Large and seasonally varying
biospheric CO2 fluxes in the Los Angeles megacity revealed by
atmospheric radiocarbon, P. Natl. Acad. Sci. USA, 117,
26681–26687, https://doi.org/10.1073/pnas.2005253117, 2020.
Nassar, R., Napier-Linton, L., Gurney, K. R., Andres, R. J., Oda, T., Vogel,
F. R., and Deng, F.: Improving the temporal and spatial distribution of
CO2 emissions from global fossil fuel emission data sets, J. Geophys.
Res.-Atmos., 118, 917–933, https://doi.org/10.1029/2012JD018196, 2013.
Oda, T. and Maksyutov, S.: ODIAC Fossil Fuel CO2 Emissions Dataset
(Version name: ODIAC2019), Center for Global Environmental Research,
National Institute for Environmental Studies,
https://doi.org/10.17595/20170411.001, 2015.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
Oda, T., Bun, R., Kinakh, V., Topylko, P., Halushchak, M., Marland, G.,
Lauvaux, T., Jonas, M., Maksyutov, S., Nahorski, Z., Lesiv, M., Danylo, O.,
and Horabik-Pyzel, J.: Errors and uncertainties in a gridded carbon dioxide
emissions inventory, Mitig. Adapt. Strateg. Glob. Chang., 24, 1007–1050,
https://doi.org/10.1007/s11027-019-09877-2, 2019.
Olsen, S. C. and Randerson, J. T.: Differences between surface and column
atmospheric CO2 and implications for carbon cycle research, J. Geophys.
Res.-Atmos., 109, D02301, https://doi.org/10.1029/2003JD003968, 2004.
Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E.,
Baldocchi, D., and Torn, M.: A New Data Set to Keep a Sharper Eye on Land-Air
Exchanges, Eos, Washington DC, August, https://doi.org/10.1029/2017eo071597, 2017.
Pataki, D. E., Alig, R. J., Fung, A. S., Golubiewski, N. E., Kennedy, C. A.,
Mcpherson, E. G., Nowak, D. J., Pouyat, R. V., and Lankao, P. R.: Urban
ecosystems and the North American carbon cycle, Glob. Change Biol., 12,
2092–2102, https://doi.org/10.1111/j.1365-2486.2006.01242.x, 2006.
Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F., Haynes, K. D., Henze, D. K., Liu, J., and Poulter, B.: Prior biosphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals, Atmos. Chem. Phys., 19, 13267–13287, https://doi.org/10.5194/acp-19-13267-2019, 2019.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding
for data-driven Earth system science, Nature, 566, 7743, https://doi.org/10.1038/s41586-019-0912-1,
2019.
Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications
and display system: READY, Environ. Model. Softw., 95, 210–228, 2017.
Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S.,
and Ali Ibrahim, S. Climate Change and Cities: Second Assessment Report of
the Urban Climate Change Research Network, Cambridge University Press, available at: https://uccrn.ei.columbia.edu/arc3.2 (last access: 1 September 2020), 2018.
Santoro, M., Cartus, O., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Rozendaal, D., Herold, M., Avitabile, V., Quegan, S., Carreiras, J., Rauste, Y., Balzter, H., Schmullius, C., and Seifert, F. M.: GlobBiomass global above-ground biomass and growing stock volume datasets, available at: http://globbiomass.org/products/global-mapping (last access: 1 September 2020), 2018.
Sargent, M., Barrera, Y., Nehrkorn, T., Hutyra, L. R., Gately, C. K., Jones,
T., McKain, K., Sweeney, C., Hegarty, J., Hardiman, B., Wang, J. A., and Wofsy, S. C.:
Anthropogenic and biogenic CO2 fluxes in the Boston urban region, P.
Natl. Acad. Sci. USA, 115, 7491–7496, https://doi.org/10.1073/pnas.1803715115, 2018.
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J.
P.: Overview of the ICESat mission, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL024009, 2005.
Smith, I. A., Dearborn, V. K., and Hutyra, L. R.: Live fast, die young:
Accelerated growth, mortality, and turnover in street trees, PLoS One,
14,
e0215846, https://doi.org/10.1371/journal.pone.0215846, 2019.
Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J. P., He, M.,
Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., MacBean, N., Fox, A. M.,
and Litvak, M. E.: Chlorophyll Fluorescence Better Captures Seasonal and
Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of
Southwestern North America, Geophys. Res. Lett., 45, 748–757,
https://doi.org/10.1002/2017GL075922, 2018.
Stavros, E. N., Schimel, D., Pavlick, R., Serbin, S., Swann, A., Duncanson,
L., Fisher, J. B., Fassnacht, F., Ustin, S., Dubayah, R., Schweiger, A., and
Wennberg, P.: ISS observations offer insights into plant function, Nat.
Ecol. Evol., 1, 0194, https://doi.org/10.1038/s41559-017-0194, 2017.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter,
L., Drewry, D. T., Verma, M., Porcar-Castell, A., Griffis, T. J., Gu, L.,
Magney, T. S., Kohler, P., Evans, B., and Yuen, K.: OCO-2 advances
photosynthesis observation from space via solar- induced chlorophyll
fluorescence, Science, 358, aam5747,
https://doi.org/10.1126/science.aam5747, 2017.
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., and Cook, R. B.: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1328, 2016.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J.,
Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J.,
Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov,
I.: Toward quantification and source sector identification of fossil fuel
CO2 emissions from an urban area: Results from the INFLUX experiment,
J. Geophys. Res., 120, 292–312, https://doi.org/10.1002/2014JD022555, 2015.
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., and Cohen, R. C.: A double peak in the seasonality of California's photosynthesis as observed from space, Biogeosciences, 17, 405–422, https://doi.org/10.5194/bg-17-405-2020, 2020.
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., and Cohen, R. C.: Extreme events driving year-to-year differences in gross primary productivity across the US, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2021-49, in review, 2021.
Vahmani, P. and Hogue, T. S.: Incorporating an Urban Irrigation Module into
the Noah Land Surface Model Coupled with an Urban Canopy Model, J.
Hydrometeorol., 15, 1440–1456, https://doi.org/10.1175/jhm-d-13-0121.1, 2014.
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-2009, 2009.
Vasenev, V. and Kuzyakov, Y.: Urban soils as hot spots of anthropogenic
carbon accumulation: Review of stocks, mechanisms and driving factors, L.
Degrad. Dev., 29, 1607–1622, 2018.
Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer, J., Drewry, D.
T., Magney, T., Marang, I., Hutley, L., Moore, C., and Eldering, A.: Effect
of environmental conditions on the relationship between solar-induced
fluorescence and gross primary productivity at an OzFlux grassland site, J.
Geophys. Res.-Biogeo., 122, 716–733, https://doi.org/10.1002/2016JG003580,
2017.
Wang, S., Ju, W., Peñuelas, J., Cescatti, A., Zhou, Y., Fu, Y., Huete,
A., Liu, M., and Zhang, Y.: Urban−rural gradients reveal joint control of
elevated CO2 and temperature on extended photosynthetic seasons, Nat.
Ecol. Evol., 3, 1076–1085, https://doi.org/10.1038/s41559-019-0931-1, 2019.
Wen, J., Köhler, P., Duveiller, G., Parazoo, N. C., Magney, T. S.,
Hooker, G., Yu, L., Chang, C. Y., and Sun, Y.: A framework for harmonizing
multiple satellite instruments to generate a long-term global high
spatial-resolution solar-induced chlorophyll fluorescence (SIF), Remote
Sens. Environ., 239, 111644,
https://doi.org/10.1016/j.rse.2020.111644, 2020.
White, E. D., Rigby, M., Lunt, M. F., Smallman, T. L., Comyn-Platt, E., Manning, A. J., Ganesan, A. L., O'Doherty, S., Stavert, A. R., Stanley, K., Williams, M., Levy, P., Ramonet, M., Forster, G. L., Manning, A. C., and Palmer, P. I.: Quantifying the UK's carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network, Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, 2019.
Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F.,
Müller, J., Hammerle, A., Julitta, T., Spielmann, F. M., and Yakir, D.:
Sun-induced fluorescence and gross primary productivity during a heat wave,
Sci. Rep., 8, 1–9, https://doi.org/10.1038/s41598-018-32602-z, 2018.
Wu, D.: Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes
(SMUrFv1), Zenodo, https://doi.org/10.5281/zenodo.4018123, 2020.
Wu, D., Lin, J. C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., Yang, E. G., and Kort, E. A.: A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”), Geosci. Model Dev., 11, 4843–4871, https://doi.org/10.5194/gmd-11-4843-2018, 2018.
Wu, K.: Joint Estimation of Fossil Fuel and Biogenic CO2 Fluxes in an
Urban Environment, unpublished Doctor of Philosophy Dissertation, available at: https://etda.libraries.psu.edu/catalog/17434kzw151, last access: 1 September 2020.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo,
L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V.,
Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy
flux analysis and validation for the North American Land Data Assimilation
System project phase 2 (NLDAS-2): 1. Intercomparison and application of
model products, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048,
2012.
Xiao, J., Davis, K. J., Urban, N. M., and Keller, K.: Uncertainty in model
parameters and regional carbon fluxes: A model-data fusion approach, Agr.
Forest Meteorol., 189–190, 175–186, https://doi.org/10.1016/j.agrformet.2014.01.022,
2014.
Yang, J., Chang, Y., and Yan, P.: Ranking the suitability of common urban
tree species for controlling PM2.5 pollution, Atmos. Pollut. Res., 6,
267–277, https://doi.org/10.5094/APR.2015.031, 2015.
Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang, C., Kang,
M., Kim, J., Kimm, H., Kornfeld, A., and Yang, X.: Sun-induced chlorophyll
fluorescence is more strongly related to absorbed light than to
photosynthesis at half-hourly resolution in a rice paddy, Remote Sens.
Environ., 216, 658–673, https://doi.org/10.1016/j.rse.2018.07.008, 2018.
Yang, X., Tang, J., Mustard, J. F., Lee, J. E., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced chlorophyll
fluorescence that correlates with canopy photosynthesis on diurnal and
seasonal scales in a temperate deciduous forest, Geophys. Res. Lett., 42,
2977–2987, https://doi.org/10.1002/2015GL063201, 2015.
Ye, X., Lauvaux, T., Kort, E. A., Oda, T., Feng, S., Lin, J. C., Yang, E. G.,
and Wu, D.: Constraining fossil fuel CO2 emissions from urban area
using OCO-2 observations of total column CO2, J. Geophys. Res.-Atmos., 125,
e2019JD030528, https://doi.org/10.1029/2019jd030528, 2020.
Yin, Y., Byrne, B., Liu, J., Wennberg, P. O., Davis, K. J., Magney, T., Kohler, P., He, L., Jeyaram, R., Humphrey, V., Gerken, T., Feng, S., Digangi, J. P., and Frankenberg, C.: Cropland
Carbon Uptake Delayed and Reduced by 2019 Midwest Floods, 1, e2019AV000140,
https://doi.org/10.1029/2019AV000140, 2020.
You, L., Wood, S., Wood-Sichra, U., and Wu, W.: Generating global crop
distribution maps: From census to grid, Agric. Syst., 127, 53–60,
https://doi.org/10.1016/j.agsy.2014.01.002, 2014.
Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., and Gentine, P.: A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks, Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, 2018.
Zhao, Z., Peng, C., Yang, Q., Meng, F. R., Song, X., Chen, S., Epule, T. E.,
Li, P., and Zhu, Q.: Model prediction of biome-specific global soil
respiration from 1960 to 2012, Earth's Future, 5, 715–729,
https://doi.org/10.1002/2016EF000480, 2017.
Zuromski, L. M., Bowling, D. R., Köhler, P., Frankenberg, C., Goulden,
M. L., Blanken, P. D., and Lin, J. C.: Solar-Induced Fluorescence Detects
Interannual Variation in Gross Primary Production of Coniferous Forests in
the Western United States, Geophys. Res. Lett., 45, 7184–7193, 2018.
Short summary
A model (SMUrF) is presented that estimates biogenic CO2 fluxes over cities around the globe to separate out biogenic fluxes from anthropogenic emissions. The model leverages satellite-based solar-induced fluorescence data and a machine-learning technique. We evaluate the biogenic fluxes against flux observations and show contrasts between biogenic and anthropogenic fluxes over cities, revealing urban–rural flux gradients, diurnal cycles, and the resulting imprints on atmospheric-column CO2.
A model (SMUrF) is presented that estimates biogenic CO2 fluxes over cities around the globe to...