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Abstract. When estimating fossil fuel carbon dioxide
(FFCO2) emissions from observed CO2 concentrations, the
accuracy can be hampered by biogenic carbon exchanges
during the growing season, even for urban areas where
strong fossil fuel emissions are found. While biogenic car-
bon fluxes have been studied extensively across natural veg-
etation types, biogenic carbon fluxes within an urban area
have been challenging to quantify due to limited observa-
tions and differences between urban and rural regions. Here
we developed a simple model representation, i.e., Solar-
Induced Fluorescence (SIF) for Modeling Urban biogenic
Fluxes (“SMUrF”), that estimates the gross primary pro-
duction (GPP) and ecosystem respiration (Reco) over cities
around the globe. Specifically, we leveraged space-based SIF,
machine learning, eddy-covariance (EC) flux data, and ancil-
lary remote-sensing-based products, and we developed algo-
rithms to gap-fill fluxes for urban areas. Grid-level hourly
mean net ecosystem exchange (NEE) fluxes are extracted
from SMUrF and evaluated against (1) non-gap-filled mea-
surements at 67 EC sites from FLUXNET during 2010–
2014 (r > 0.7 for most data-rich biomes), (2) independent
observations at two urban vegetation and two crop EC sites
over Indianapolis from August 2017 to December 2018 (r =
0.75), and (3) an urban biospheric model based on fine-

grained land cover classification in Los Angeles (r = 0.83).
Moreover, we compared SMUrF-based NEE with inventory-
based FFCO2 emissions over 40 cities and addressed the
urban–rural contrast in both the magnitude and timing of
CO2 fluxes. To illustrate the application of SMUrF, we used
it to interpret a few summertime satellite tracks over four
cities and compared the urban–rural gradient in column CO2
(XCO2) anomalies due to NEE against XCO2 enhancements
due to FFCO2 emissions. With rapid advances in space-based
measurements and increased sampling of SIF and CO2 mea-
surements over urban areas, SMUrF can be useful to inform
the biogenic CO2 fluxes over highly vegetated regions during
the growing season.

1 Introduction

Climate change and urbanization are two major worldwide
phenomena in recent decades. In close connection with both
themes, cities have attracted increasing attention from both
researchers and policy makers. Urban ecosystems are unique
and complex given the wide variety of land use and land
cover in cities, along with higher levels of atmospheric CO2
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concentration, air temperature, and vapor pressure deficit
than surrounding rural ecosystems (George et al., 2007).
The consequences of climate change, such as severe heat,
drought, and water shortage events, may be particularly ex-
acerbated over (semi)arid and/or developing cities (Rosen-
zweig et al., 2018), resulting in possible population move-
ment from increasingly hot and dry places to relatively cool
and moist ones. Meanwhile, rapid urban expansion and pop-
ulation growth contribute to the rise in total anthropogenic
CO2 emissions into the atmosphere and the urban heat is-
land, which further influences plant phenology (Meng et al.,
2020). Human activities have been continuously modifying
the urban and natural vegetation and soil, e.g., expansion of
agricultural lands at the cost of the natural landscape, lead-
ing to less reversible ecological and climatic impacts (El-
lis and Ramankutty, 2008; Hutyra et al., 2014; Pataki et al.,
2006). Hence, urban areas function as both biophysical and
socioeconomic systems, and studying their carbon sources
and sinks facilitates understanding cities’ roles in the global
carbon cycle.

To study the urban carbon pool and its exchange with the
atmosphere, the top-down approach based on measured at-
mospheric CO2 concentrations is commonly used. McRae
and Graedel (1979) noted over 4 decades ago that sepa-
ration between anthropogenic and biogenic CO2 flux sig-
nals is needed to interpret urban CO2 observations. Biogenic
CO2 fluxes are found to modify the surface CO2 and even
atmospheric-column CO2 (XCO2) concentrations downwind
(e.g., Lin et al., 2004; Turnbull et al., 2015; Hardiman et
al., 2017; Sargent et al., 2018; Ye et al., 2020). For exam-
ple, the seasonal variation in biogenic CO2 signals in Los
Angeles was found to be one-third of the observed annual
mean anthropogenic signal and further highlights the impor-
tance of urban irrigation (Miller et al., 2020). Over the Pearl
River Delta in China, simulated biogenic contributions using
15 different models in the Multi-scale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP; Huntzinger
et al., 2013) lead to downwind XCO2 anomalies ranging
from nearly zero up to 1 ppm depending on seasons and mod-
els, which reveals the non-neglectable biogenic influence on
XCO2 as well as the large inter-model uncertainty (Ye et al.,
2020). Thus, assessing the contributions from biogenic fluxes
in observed signals is crucial for top-down estimates of urban
emissions yet remains challenging, especially given limited
urban flux observations across the globe. Although decidu-
ous trees are found to be the dominant tree type in urban areas
based on a meta-analysis of 328 global cities (J. Yang et al.,
2015), a more accurate approximation of the vegetation cov-
erages, types, and biological activities in cities is currently
hard to obtain.

Existing approaches to separate biogenic and anthro-
pogenic CO2 components involve the use of ancillary trac-
ers and terrestrial biospheric models. For instance, since ra-
diocarbon (14C) has decayed in fossil fuels, 14C serves as
a tracer for the combustion of fossil fuel (FF) emissions

(Miller et al., 2020; Turnbull et al., 2015). Carbonyl sulfide
(COS) shares a similar seasonal variation as CO2 over land
as a result of biospheric sinks (Kettle et al., 2002). However,
measurements of 14C, COS, and CO2 fluxes are costly and
lacking in most cities around the globe. Besides observa-
tions, many global terrestrial biospheric models provide in-
sights to inform and constrain CO2 fluxes at continental to
global scales (Huntzinger et al., 2013; Knorr and Heimann,
2001; Philip et al., 2019), but their relatively coarse reso-
lution and simplifications of the urban biosphere limit their
use for studying urban carbon cycles. Only a few biospheric
models are designed for simulating urban biogenic fluxes.
Research has revealed urban–rural differences in vegetation
and soil properties, in part due to management strategies and
environmental conditions, which complicate the flux quan-
tification (Decina et al., 2016; Hardiman et al., 2017; Smith
et al., 2019; Vasenev and Kuzyakov, 2018). Among these few
models, the urban Vegetation Photosynthesis and Respiration
Model (urbanVPRM; Hardiman et al., 2017) is an empirical
model that incorporates the urban heat island effect and im-
pervious surface area into its flux calculations and currently
uses conventional greenness indices, e.g., the enhanced veg-
etation index (EVI).

Our work is primarily motivated by the relatively coarse
spatial grid spacing and the simplifications of urban ecosys-
tems in many models. We attempted to bridge the gap be-
tween coarse-scale global biospheric models and highly cus-
tomized local models to offer a global solution to modeling
biogenic CO2 fluxes within and around urban areas, which
would provide insight into CO2 partitioning between fossil
fuel and biogenic components.

Thanks to advances in spaceborne and ground-based mea-
surements, solar-induced fluorescence (SIF) has been suc-
cessfully retrieved from various satellite platforms and has
proven to be an effective proxy for photosynthesis and thus
modeling gross primary production (GPP) (Frankenberg et
al., 2011; Guanter et al., 2014; Joiner et al., 2013; X. Yang
et al., 2015). SIF tracks the unique seasonal and interan-
nual variations in GPP across diverse plant functional types
(PFTs) (Luus et al., 2017; Smith et al., 2018; Turner et al.,
2020; Zuromski et al., 2018) and their responses to phys-
iological stress (Magney et al., 2019). In an effort to im-
prove long-term, high-resolution spatial mapping capabil-
ities, several spatially continuous SIF products have been
created using machine-learning (ML) techniques and light
use efficiency modeling to combine satellite-retrieved SIF
with ancillary vegetation data (Duveiller et al., 2020; Du-
veiller and Cescatti, 2016; Li and Xiao, 2019a; Turner et
al., 2021; Zhang et al., 2018). Moreover, the empirical and
PFT-specific linear correlations between GPP and SIF, de-
rived from regressions of temporally aggregated (∼monthly)
eddy-covariance GPP (Frankenberg et al., 2011; Guanter et
al., 2014; Magney et al., 2019; Sun et al., 2017; Turner et
al., 2021; Zhang et al., 2018; Zuromski et al., 2018), have
spurred the development of upscaled GPP estimates (Li and
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Xiao, 2019b; Yin et al., 2020). SIF information has also been
incorporated into existing process-based biospheric models
and data assimilation systems (MacBean et al., 2018; Van
Der Tol et al., 2009). Within the context of the urban bio-
sphere, SIF retrieved from space has been shown to reveal
the urban–rural gradient in photosynthetic phenology (Wang
et al., 2019). Given all these advantages, SIF would poten-
tially benefit GPP estimates and CO2 flux partitioning over
cities.

Ecosystem respiration (Reco), the other component of net
ecosystem exchange (NEE), is defined as the sum of the au-
totrophic (RA) and heterotrophic (RH) components. In terms
of modeling urban Reco, urbanVPRM follows the conven-
tional approach of VPRM (Mahadevan et al., 2008) to esti-
mate an initial air-temperature-scaled (Tair-scaled) Reco and
splits Reco into equal components (RA and RH) that will be
further modified by considering impervious fractions and ur-
ban heat island effects (Hardiman et al., 2017). However, the
exact partitioning of Reco between RA and RH as well as the
separation between aboveground and belowground respira-
tion can be challenging and highly uncertain, as acknowl-
edged in Hardiman et al. (2017). The initial Reco that ur-
banVPRM modified may be an overly simplistic function of
ambient air temperature. After all, the complexity of biolog-
ical and nonbiological processes of Reco and the lack of a
mechanistic understanding of how biotic and abiotic factors
affect Reco render mechanistic modeling of Reco challeng-
ing. Given the complexity in modeling Reco, we will turn
instead to ML techniques that have been increasingly ap-
plied in many disciplines to help answer complicated, en-
tangled problems by extracting patterns from data streams
for predictions and generalizations. Reichstein et al. (2019)
provided a comprehensive review of the many applications
of ML techniques in solving geoscience and remote sensing
problems and identified challenges in successfully adopting
ML approaches – e.g., interpretability, integration with phys-
ical understanding and modeling, and the ability to cope with
model–data uncertainties. In the context of ecosystem mod-
eling, an artificial neural network (NN) has been utilized to
generate SIF beyond satellite soundings (Li and Xiao, 2019a;
Zhang et al., 2018), harmonize multiple SIF satellite instru-
ments (Wen et al., 2020), map carbon and energy fluxes (Tra-
montana et al., 2016), and reveal and predict the trend in
global soil respiration (Zhao et al., 2017).

In this paper, we present a model representation of GPP,
Reco, and NEE fluxes targeting urban areas around the globe,
the Solar-Induced Fluorescence (SIF) for Modeling Urban
biogenic Fluxes (“SMUrF”), by taking advantage of SIF and
the NN technique. Our main objectives include (1) examin-
ing the biogenic and anthropogenic CO2 fluxes and their tem-
poral variations over urban and surrounding rural areas and
(2) demonstrating one application of SMUrF to help inter-
pret satellite CO2 observations by revealing the urban–rural
gradient in biogenic CO2 fluxes along satellite swaths of the
Orbiting Carbon Observatory 2 (OCO-2; Crisp et al., 2012).

2 Data and methodology

SMUrF incorporates SIF as an indicator of photosynthesis,
along with possible drivers for Reco (i.e., air and soil temper-
atures and SIF-driven GPP), and performs hourly downscal-
ing using reanalysis-based temperature and radiation fields
(Fig. 1). We accounted for variations in biome types and
Reco at 500 m before aggregating fluxes to the final grid spac-
ing of 0.05◦. Gridded uncertainties of daily mean fluxes are
quantified by assigning a biome-specific coefficient of vari-
ation (CV) from model–data comparisons (Sect. 2.5). To
gain insight into the column CO2 anomalies caused by an-
thropogenic and biogenic fluxes, we further adopted an at-
mospheric transport model to link fluxes and concentrations
(Sect. 2.6). Before introducing the steps for estimating indi-
vidual flux components, we first go through the main input
datasets (Sect. 2.1).

2.1 Input datasets

Similar to many biospheric models, SMUrF estimates grid-
ded GPP, Reco, and NEE (= Reco – GPP) fluxes based on
land cover types. Main required data streams are summarized
in Fig. 1, including (1) the 500 m MODIS-based land cover
classification, (2) the 0.05◦ spatiotemporally contiguous SIF
(CSIF) product, (3) 100 m aboveground biomass (AGB) from
GlobBiomass, (4) eddy-covariance (EC) flux measurements
across continents, and (5) gridded products of air and soil
temperatures.

2.1.1 Land cover classification

Land cover classifications with more sophisticated algo-
rithms in urban areas (e.g., NLCD 2016) are often avail-
able for limited regions. Thus, we adopted the land cover
types defined by the International Geosphere–Biosphere Pro-
gramme (IGBP) from MCD12Q1 v006 (Friedl and Sulla-
Menashe, 2019) to inform biome types over global land.
The 12 biomes include croplands (CRO), closed and open
shrublands (CSHR, OSHR), five types of forest (deciduous
broadleaf – DBF, deciduous needleleaf – DNF, evergreen
broadleaf – EBF, evergreen needleleaf – ENF, mixed forests
– MF), grasslands (GRA), savannas (SAV), woody savannas
(WSAV), and permanent wetlands (WET). Since MCD12Q1
simply treats the entire urban area as one category (URB), we
developed an algorithm to approximate the vegetation types
and fractions in cities (Sect. 2.2.2).

2.1.2 Data for GPP estimates

We used the spatiotemporally contiguous SIF (CSIF; Zhang
et al., 2018) product and GPP fluxes from FLUXNET2015
(Pastorello et al., 2017) to calculate biome-specific GPP–
CSIF slopes (α, Fig. S1 in the Supplement). A total of 98
global EC tower sites with screened data points (quality flag
< 3) from 2010 to 2014 are chosen to represent various
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Figure 1. A demonstration of SMUrF (flowchart) and a description of input data products and observations (summarized in the table). The
temporal coverage in the table indicates the years used in this study.

biomes. CSIF offers global 4 d mean SIF at a grid spacing of
0.05◦ during 2000–2018 using the NN approach (Zhang et
al., 2018). The NN model in CSIF is constructed based upon
OCO-2 SIF and four broadband reflectances from MCD43C4
V006 under clear-sky conditions, and it is used for map-
ping SIF beyond sounding locations. CSIF agrees well with

SIF retrievals from OCO-2 and GOME-2, considering the
inevitable spatial mismatch between CSIF (0.05◦) and the
direct sounding-level SIF measurements (OCO-2’s footprint
of ∼ 1 km× 2 km). The two largest biases of CSIF with re-
spect to OCO-2 SIF arise from croplands (−12.72 %) and
urban areas (−14.59 %), caused by the saturation effect in
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broadband reflectances and built-up contamination in the re-
flectance signal, respectively (Zhang et al., 2018). To com-
pensate for the potential bias of urban CSIF, we scale up the
GPP–SIF slope for urban areas (details in Sect. 2.2.2).

In addition, the clear-sky instantaneous CSIF is com-
pared to TROPOMI-based downscaled SIF for summer 2018
(Turner et al., 2021) and vegetated fractions inferred from the
WUDAPT product (Appendix A). Despite some discrepan-
cies over a few regions, these comparisons confirmed CSIF’s
performance and capability in revealing the urban–rural gra-
dient in biogenic activities (Figs. S2–S3).

2.1.3 Data for approximation of urban vegetation
globally

To assign trees and grass within the MODIS-based urban do-
main, several steps are carried out to approximate the relative
fractions of (1) tree versus non-tree, (2) individual tree types,
and (3) grassland versus shrubland (details in Sect. 2.2.2).
Relative tree fractions (i.e., ratio of tree fractions to total veg-
etated fractions) can be obtained from two data sources: a
0.6 m urban land cover product (Coleman et al. 2020) based
on the National Agriculture Imagery Program (NAIP) and
a 250 m vegetation continuous field (VCF) from MOD44B
(Dimiceli et al., 2015). Both products offer estimated tree
and vegetated fractions. The former one is produced only
over Los Angeles via random forest algorithms that trained
on Sentinel-2 (∼ 5 m) and NAIP (∼ 0.6 m) optical imagery
(Coleman et al., 2020), and it possesses much higher tree
fractions than MODIS VCF (see comparisons in Sect. 2.2.2).
Thus, we decided not to utilize MODIS VCF for indicating
urban vegetation in this work, only for comparing tree frac-
tions from Coleman et al. (2020).

To approximate relative tree fractions (ftree) in cities, we
treat the gridded AGB at 100 m from GlobBiomass (San-
toro et al., 2018) as the spatial proxy (see the methodology
explanation in Sect. 2.2.2). GlobBiomass deployed a com-
plex retrieval algorithm system that involves a series of re-
trieval algorithms using radar backscatter and several other
data types such as laser measurements from ICESAT (Schutz
et al., 2005), tree and land cover data (e.g., from Landsat),
and collections of reanalyses and models. AGB and its grid-
level uncertainty [t ha−1] by definition describe the “oven-
dry weight of the woody parts (stem, bark, branches, and
twigs) of all living trees excluding stump and roots” (San-
toro et al., 2018). GlobBiomass AGB has demonstrated good
agreement with independent data products for different con-
tinents (Santoro et al., 2018).

2.1.4 Reanalyses for Reco estimates

In an effort to train and predict Reco via neural network mod-
els, we chose GPP as well as air and soil temperatures (Tair
and Tsoil) as explanatory variables (details in Sect. 2.3). Mod-
eled Tair and Tsoil are taken from the ECMWF ReAnalysis-

5 (ERA5, 0.25◦; Copernicus Climate Change Service Infor-
mation, 2017) for the entire globe or from Daymet (1 km;
Thornton et al., 2016) and the North American Land Data
Assimilation System (NLDAS; 0.125◦; Xia et al., 2012) as
alternative inputs for CONUS runs (Fig. 1). It is worth point-
ing out that different models and reanalyses provide Tair at
2 m above the ground but Tsoil at different soil depths. For
instance, four soil depths from NLDAS are 10, 30, 60, and
100 cm below the ground, whereas ERA5 simulates mean
Tsoil over four vertical layers, i.e., 0–7, 7–28, 28–100, and
100–289 cm. Measured soil depths from FLUXNET are even
more complicated and vary among sites, with the most com-
mon shallowest soil depth at ∼ 2 cm below the ground. To
reconcile differences in soil depths, we chose measured Tsoil
from the shallowest layer in both the model and observational
datasets to separately build NN models (Sect. 2.3).

2.1.5 Data for flux comparisons

We further carried out flux comparisons against two inde-
pendent sets of eddy-covariance data, i.e., FLUXNET2015
and the Indianapolis Flux Experiment (INFLUX; Davis et
al., 2017; K. Wu, 2020), and one alternative urban biospheric
model (urbanVPRM) over Los Angeles in Sect. 3.2. Only
non-gap-filled measured NEE fluxes from FLUXNET2015
(with a quality flag of 0) are used for validation. Since NEE
fluxes measured from INFLUX have not been gap-filled, we
only chose the hours from SMUrF when valid INFLUX data
are available.

The INFLUX project includes EC flux measurements that
accompany the tower- and aircraft-based greenhouse gas
(GHG) mole fraction measurements. These sites have been
periodically moved to sample different components of the
urban landscape. For the period from 10 August 2017 to
7 June 2019, these flux towers were deployed at two urban
vegetation sites (no. 1 and no. 4) and two agricultural sites
(no. 2 and no. 3). Two urban vegetation (turf grass) sites were
located in a cemetery area (site no. 1) and on a golf course
(site no. 4). Because CSIF is not available beyond 2018 at
the time of writing, we cannot yet extend the flux compari-
son into 2019. Fluxes from INFLUX sites were computed us-
ing EddyPro software (LI-COR Biosciences, 2012) and post-
processed to filter out data when (a) the LI-COR gas analyzer
signal strength was low and (b) during periods of weak tur-
bulence (K. Wu, 2020). It is worth noting that INFLUX data
provide valuable independent evaluations as flux sites with
an urban imprint are lacking from FLUXNET2015, and ob-
served fluxes from INFLUX sites were not used when cali-
brating parameters in SMUrF.

The urbanVPRM, applied over Los Angeles, estimates
GPP from a light use efficiency modeling perspective
driven by reanalysis-based photosynthetically active radia-
tion (PAR) as well as the satellite-derived EVI and land sur-
face water index (LSWI) for phenology and water availabil-
ity. It estimates Reco via an air temperature function with ex-
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tra modifications to air temperature due to the urban heat is-
land effect and impervious surface area. The urbanVPRM-
based fluxes rely on the 60 cm NAIP-based land cover clas-
sification in Los Angeles (Coleman et al., 2020; Sect. 2.1.3).
Due to differences in grid spacing between models, fluxes
from urbanVPRM are aggregated and re-projected from 30 m
to 0.05◦ to match SMUrF for the purposes of comparison.

2.2 GPP estimates

We used 4 d mean clear-sky SIF from CSIF and 4 d mean ob-
served GPP fluxes from 98 global eddy-covariance (EC) tow-
ers from FLUXNET2015 to derive biome-specific GPP–SIF
slopes (α, Fig. S1) with special treatments to α over crop-
lands and urban areas, as described in the following subsec-
tions. While nonlinear relationships between SIF and GPP at
leaf and canopy level have been observed (Helm et al., 2020;
Magney et al., 2017; Maguire et al., 2020; Marrs et al., 2020;
Verma et al., 2017), GPP is observed to be linearly related
to SIF at increasing temporal and spatial (ecosystem and re-
gional) scales (Frankenberg et al., 2011; Sun et al., 2017) as
leaf-level differences in composition, light exposure, stress,
and stress response mix out (Magney et al., 2020). Consid-
ering uncertainty in CSIF and flux-tower-partitioned GPP as
well as the noise in the GPP–SIF relationship across global
flux sites (Fig. S1), we adopted linear fits instead of nonlin-
ear fits between GPP and CSIF. Errors due to departure from
linearity will be implicitly included in GPP uncertainties cal-
culated from model–tower validations (Sect. 2.5). The calcu-
lated α values are in proximity to those reported in Zhang
et al. (2018) from 40 towers and are assigned to each 500 m
grid cell according to the corresponding biome type.

2.2.1 C3 / C4 partitioning of croplands

GPP–SIF relationships differ between C4 and C3 crops at
the canopy scale, since GPP for C3 crops may saturate at
high PAR levels. Different statistical fits between observed
GPP and SIF are suggested for C3 versus C4 crops (He et
al., 2020). Despite the focus of SMUrF on urban areas, we
still attempted to differentiate C4 from C3 crops and esti-
mate two different α values from EC sites dominated by
C3 or C4 crops. Specifically, the Spatial Production Alloca-
tion Model (SPAM 2010V1.1; You et al., 2014) is used for
areal estimates of 42 crop species, among which the follow-
ing are identified as C4 crops: maize, pearl and small millet,
sorghum, and sugarcane. As a result, we produced maps of
C3 :C4 ratios at a grid spacing of 10 km for the entire world
(Fig. 2a, b). Four of the selected 13 cropland EC FLUXNET
sites fall within grid cells with a high C4 ratio of > 50 %;
the remaining sites fall into grid cells with C4 ratios of
< 10 %. We thereby arrive at αC4 of ∼ 35.6 [µmol m−2 s−1

] :

[mW m−2 nm−1 sr−1] from sites with a high C4 ratio and
αC3 of ∼ 19.7 [µmol m−2 s−1] : [mW m−2 nm−1 sr−1] from
the other nine cropland sites. Eventually, we calculated the

Figure 2. Spatial distribution of the estimated C3 :C4 ra-
tio [%] (a–b) using physical areas of 42 crop species
from MapSPAMv1 and weighted mean GPP–CSIF slopes
[(µmolm−2 s−1)/(mW m−2 nm−1 sr−1)] for croplands (c).

weighted mean α according to the C3 :C4 ratio map and
identified tropical regions, the midwestern US, northeastern
China, and spots in India and southern Africa as regions
with higher α and C4 crop ratios (Fig. 2c). Note that these
weighted mean α values will only be activated over MODIS-
based croplands.

2.2.2 Modification to urban vegetation

We next turn to the estimate of α over the MODIS-based
“urban” category shown in the following three steps (Fig. 1).

1. Estimate the relative tree fraction (ftree =

tree / vegetation). A power-law relationship (Fig. 3a)
between AGB bins and relative tree fractions obtained
from the NAIP-based land cover classification (top
panel in Fig. 3b) is used to predict ftree (bottom panel in
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Figure 3. (a) Power-law relationships fitted between the aboveground biomass (AGB) and raw relative tree fractions (purple line) as well as
fits using binned AGB and mean or median relative tree fractions per AGB bin (green or blue lines). The statistical fit in purple is chosen
to predict relative tree fractions within cities. (b) Spatial distributions of calculated relative tree fractions (%) from a high-resolution NAIP-
based land cover classification product (Coleman et al., 2020) (top panel), vegetation continuous fields from the MOD44B v6 product (middle
panel), and our approximation (bottom panel) using AGB and the statistical fit illustrated in panel (a).

Fig. 3b). Although the AGB binning procedure may not
fully recreate the variations in ftree, especially for grid
cells with zero AGB (dark red hexagons in Fig. 3a),
the predicted ftree using AGB is tied to a smaller bias
of +2.3 % than ftree using MOD44B (−23.5 %) when
the high-resolution NAIP-based land cover product is
compared (Fig. 3b).

2. Estimate relative fractions of five tree types, grass, and
shrubs based on climatology. Due to the lack of global
data on urban biome types, the relative non-tree vege-
tated fraction (fnon-tree = 1− ftree) is simply split into
half grass and half shrub (second row in Fig. 4). The
relative tree fractions are divided into five possible tree
types (i.e., DBF, DNF, EBF, ENF, MF). The share of
each tree type in cities is approximated as a function of
latitude based on the climatology of land cover types
(Fig. S4a), e.g., high fractions of ENF over high lati-
tudes, EBF over tropical lands, and DBF plus MF over
the midlatitudes (Fig. S4b).

3. Calculate weighted mean α. The α values for urban ar-
eas are weighted mean values calculated from biome-
specific α values and their corresponding fractions ap-
proximated in step 2. To account for the potential nega-
tive bias of ∼ 14.5 % in CSIF over cities (Zhang et al.,
2018), we scaled up urban α by 1.145.

In the end, α values at 500 m over urban and natural lands
(third row in Fig. 4) are aggregated to 0.05◦ and multiplied
by CSIF to arrive at GPP at 0.05◦. The exact partitioning be-
tween grass and shrub in step (2) plays a minor role in the
final GPP flux at 0.05◦ (Fig. S5). It is worth clarifying that
we implicitly assumed that vegetation “exists” over urban
grid cells and only solved for the relative tree versus grass
fractions as illustrated in steps (1) and (2), as information
on vegetated and impervious fractions has been embedded
in the CSIF product. Additional information about vegetated
and impervious fractions was not necessary in the calcula-
tion of α for every 500 m urban grid (see Appendix A for a
further explanation).
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Figure 4. Estimated relative deciduous broadleaf forest (DBF, first row) and non-tree fractions (fnon-tree, second row) at 500 m as well as
GPP–SIF slopes after urban gap filling (third row) for Los Angeles (a), Chicago (b), and Boston (c).

2.3 Reco estimates

Three explanatory variables – Tair, Tsoil, and GPP – are
chosen to train against the observed daily mean Reco from
FLUXNET. To account for mismatches in reported soil
depths (introduced in Sect. 2.1.4), we built separate sets of
NN models using (1) direct temperatures and GPP obser-
vations from EC towers, (2) ERA5-based temperatures and
SIF-based GPP, or (3) Daymet and NLDAS-based temper-
atures and SIF-based GPP (only for the US as alternative
runs). SIF-based GPP is ingested in order to pass SIF infor-
mation on to Reco estimation. Data points from a few EC
sites with relatively large uncertainties in modeled GPP were
excluded before the training of NN models to prevent error
propagation into Reco (Appendix B).

For each set of NN models, we manually split data points
based on their biome types and obtain 12 separate NN mod-
els. Data points from open and closed shrublands are com-
bined due to the extremely low numbers of EC sites around
the globe. To be consistent with the C3 :C4 crop partition
for GPP estimates (Sect. 2.2.1), we obtained two separate

NN models for C3 and C4 crops and calculated the weighted
meanReco based on the derived C3 :C4 ratios. 80 % and 20 %
of the data points per biome are used for training and testing,
respectively. Models with two hidden layers are constructed
with 32 and 16 neurons chosen for the first and second layer.
We computed Reco at 500 m by applying biome-specific
models and aggregated those Reco to 0.05◦. We also tested
two alternative ways to train Reco based on (1) all data points
without differentiating their land cover types and (2) addi-
tional categorical variables from biomes and the month and
season of the year. Please refer to Appendix B for sensitivity
tests and technical details about data preparation and cross-
validation of neural networks.

2.4 NEE estimates

We obtained hourly surface downward shortwave radiation
(SWrad) and air temperature (Tair) from the ERA5 reanaly-
sis to calculate the hourly scaling factors for GPP and Reco.
Tair and SWrad are initially provided at a grid spacing of
0.25◦ and then bilinearly interpolated to 0.05◦. To estimate
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the hourly radiation scaling factors Iscale for GPP, we nor-
malized the hourly SWrad by the 4 d mean SWrad with the
same time window of the 4 d mean GPP. Regarding the cal-
culation of hourly temperature scaling factors Tscale for Reco,
a temperature sensitivity function (SR1 h) has been modified
from prior studies (Fisher et al., 2016; Olsen and Randerson,
2004):

SR1 h = Q10
Tair,1 h−30 ◦C

10 ◦C , (1)

whereQ10 is a unitless temperature sensitivity parameter that
could vary across biomes, and Tair is in degrees Celsius (◦C).
Because the hourly downscaling procedure is performed on
GPP and Reco fluxes at 0.05◦ and no single biome is tied to
each 0.05◦ grid cell, we adopt a typical Q10 value of 1.5 ac-
cording to previous studies (Fisher et al., 2016) despite pos-
sible biome-dependent variations in Q10. SR1 h is then nor-
malized by its daily mean value to obtain Tscale. Finally, Tscale
and Iscale are used to temporally downscale the daily mean
Reco and 4 d mean GPP, i.e., Reco,1 d and GPP4 d.

Reco,1 h = Reco,1 d · Tscale = Reco,1 d ·
SR1 h

1
24

∑
1 d

SR1 h

GPP1 h = GPP4 d · Iscale = GPP4 d ·
SWrad,1 h

1
24·4

∑
4 d

SWrad,1 h
(2)

Examples of Iscale and Tscale over the western US on
2 July 2018 are displayed in Fig. S6bc. As a sanity check
for the ERA-based SWrad, a higher-resolution product is uti-
lized, from which SWrad and PAR were estimated based on
Earth Polychromatic Imaging Camera (EPIC, on board the
Deep Space Climate Observatory – DSCOVR) data and ran-
dom forest algorithms (Hao et al., 2020a, b). The EPIC-based
radiation data are available globally at 10 km from June 2015
to June 2019 and have been validated against in situ observa-
tions from the Baseline Surface Radiation Network and Sur-
face Radiation Budget Network. Hourly Iscale values using
ERA5-based SWrad and EPIC-based SWrad or PAR gener-
ally agree well regarding the diurnal cycles, despite small
discrepancies in peak radiation and Iscale values during noon
hours (Fig. S6de).

2.5 Uncertainty quantification and direct flux
validation

Error quantification is important for characterizing the pre-
cision and accuracy of modeled fluxes. Previous studies
have carried out comprehensive uncertainty estimates to-
wards their reported biogenic flux estimates (Dietze et al.,
2011; Hilton et al., 2014; Lin et al., 2011; Xiao et al., 2014).
Here we estimated errors in modeled GPP and Reco based on
FLUXNET observations.

We extrapolated the biome type, 4 d mean SIF, and daily
mean Tair and Tsoil from their original gridded fields to each

flux tower location and directly computed the modeled GPP
and Reco using α values and NN models. Comparisons be-
tween these direct computations and screened observations
from FLUXNET2015 yield biome-specific root mean square
errors (RMSEs), mean biases, and CVs. The uncertainties in
assuming a linear GPP–SIF relationship were not explicitly
quantified but incorporated within these error statistics on
top of other error sources such as inter-site variations. Even-
tually, biome-specific CVs are assigned to each 500 m grid
and aggregated to 0.05◦ assuming statistical independence.
For visualization purposes, we collected model–data pairs re-
gardless of their biome types as density plots in Fig. 5.

Directly computed 4 d mean GPP values at most tow-
ers match observations well regarding their magnitude and
seasonality. Modeled GPP shows underestimations against
irrigated maize sites in Nebraska (e.g., US-Ne1, US-Ne2)
and sites in the Central Valley (e.g., US-Twt) in California
(Fig. S8), likely because the irrigation effect is not explic-
itly included, and high crop chlorophyll concentrations may
not be fully recreated in the reflectance-driven CSIF data.
Nevertheless, the overall correlation coefficient between di-
rectly modeled GPP and partitioned GPP from FLUXNET
is 0.86, with a mean bias of −0.069 µmol m−2 s−1 for 89
tower sites. When removing cropland sites from consid-
eration, the RMSE in 4 d mean GPP drops from 1.91 to
1.74 µmol m−2 s−1 (Fig. 5a vs. b).

Next, we report the predicting performance of Reco only
using testing sets, i.e., 20 % of the entire data volume. Reco
values trained and predicted using measured variables from
FLUXNET overperform the ones using ERA5’s tempera-
tures and SIF-modeled GPP (r = 0.90 vs. r = 0.87; Fig. 5c
vs. d). The constant CSIF within a 4 d interval and the con-
stant α over seasons make it difficult to reproduce daily
variations in Reco as Tair and Tsoil likely become the main
drivers. Recall that temperature fields from higher-resolution
Daymet + NLDAS were also used for training and pre-
dicting Reco over CONUS. These Daymet + NLDAS runs
appear to slightly outperform the ERA5 runs (Fig. 5g vs.
f). Although the NN model using observed variables yields
the best performance, we are inclined to use NN models
trained by modeled features for two reasons: (1) to account
for discrepancies in GPP and temperature between tower
observations and models and/or reanalyses and (2) for spa-
tial generalization beyond points with “ground truth” as
only modeled GPP is available away from the EC sites.
Nevertheless, the mean bias in testing sets across biomes
remains small (< 10−3 µmol m−2 s−1), with an RMSE of
1.14 µmol m−2 s−1. Since the error statistics associated with
the ERA5 runs resemble those with the Daymet + NLDAS
runs over the US (Fig. 5f vs. g), we only present the ERA5-
based results in the following sections.

An additional hourly mean NEE evaluation against
FLUXNET can be found in Sect. 3.2.1 and Fig. 9. We stress
that the directly computed fluxes and the validation with
FLUXNET presented in this section differ from those pre-
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Figure 5. Comparisons between directly computed fluxes from SMUrF and observed fluxes from FLUXNET during 2010–2014 as density
plots with 50 bins. All fluxes have units of µmol m−2 s−1. (a–b) 4 d mean observed GPP and directly computed SIF-based GPP at 89 global
EC sites (a) and 78 non-crop sites (b). (c–d) An evaluation of the daily mean observed Reco and predicted Reco in the testing set (i.e., 20 %
of all data) using observed Tair+ Tsoil+ GPP from FLUXNET (c) or Tair+ Tsoil from ERA5 and SIF-based GPP (d) for 89 global EC sites.
(e–g) Similar to panels (c)–(d), but the model–data Reco comparison only for US EC sites and modeled Reco is calculated using Daymet Tair,
NLDAS Tsoil, and SIF-based GPP (g). Although GPP and Reco were trained and predicted separately per biome, model–data pairs from all
biomes are collected for visualization purposes. For each panel, numbers of data points in each of the 50 bins are displayed in log10 scales
as yellow–blue colors, and error statistics including the mean bias, correlation coefficient, and RMSE are printed. The 1 : 1 and ordinary-
least-square-based (OLS-based) regression lines are displayed as solid and dashed lines. RMSEs derived from these direct validations were
further used for assigning uncertainties at the 500 m grid cell (Sect. 2.5).

sented in Sect. 3.2.1, as the latter one uses the spatially
weighted mean flux at 0.05◦ that takes the spatial heterogene-
ity into account.

2.6 Comparisons of FFCO2 vs. NEE fluxes and their
contributions to column CO2

FFCO2 emissions from the Open-Data Inventory for Anthro-
pogenic Carbon dioxide (ODIAC2019; Oda et al., 2018) are
compared against NEE from SMUrF in terms of the sea-
sonal magnitude, summertime diurnal cycle, and spatial dis-
tribution (Sect. 3.1). Initial ODIAC emissions at 1 km grid
spacing are averaged to 0.05◦ for such FFCO2–NEE com-
parisons. Although the city-wide FFCO2 emissions from
ODIAC may differ from other reported emissions (Chen et
al., 2020; Oda et al., 2019), ODIAC is widely used in many
urban studies and provides sufficient insights into FFCO2
emissions from a global perspective.

To further translate CO2 fluxes into changes in column-
averaged CO2 concentrations, or XCO2 (Sect. 3.3), we made

use of an atmospheric transport model – i.e., the column
version of the Stochastic Time-Inverted Lagrangian Trans-
port (X-STILT; Wu et al., 2018) model. We carried out
four case studies by examining summertime OCO-2 tracks
over Boston, Indianapolis, Salt Lake City, and Rome. Those
four cities are chosen based on satellite data availability and
quality as well as various vegetation coverages. Specifically,
thousands of air parcels are released in STILT (Fasoli et al.,
2018; Lin et al., 2003) from the same atmospheric columns
as the OCO-2 soundings and driven by meteorological fields,
i.e., the 3 km High-Resolution Rapid Refresh (HRRR) for
US cities and 0.5◦ GDAS for non-US cities (Rolph et al.,
2017). The X-STILT model returns hourly surface influence
matrices or “column footprints” [ppm/(µmol m−2 s−1)] that
incorporate the averaging kernel and pressure weighting pro-
files from OCO-2. The hourly footprints indicate the influ-
ence of each upwind grid cell on downwind satellite sound-
ings within each hour interval. The coupling between col-
umn footprints and surface fluxes, e.g., hourly SMUrF-based
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NEE or ODIAC-based FFCO2 emissions, reveals (1) the spa-
tially explicit XCO2 contribution [ppm] due to biogenic and
anthropogenic fluxes and (2) the overall XCO2 anomalies
(XCO2.bio, XCO2.ff) at each receptor if the aforementioned
spatial contributions are summed up. For more details on
ODIAC and X-STILT, please refer to Oda et al. (2018) and
Wu et al. (2018), respectively.

3 Results

We start with modeled biogenic and anthropogenic fluxes at
the regional and urban scales (Sect. 3.1) as well as their com-
parisons against EC observations and urbanVPRM over natu-
ral biomes and urban areas (Sect. 3.2). For the purpose of this
paper gridded fluxes were produced from 1 January 2017 to
31 December 2018 only for the following populated and veg-
etated regions: CONUS, western Europe, East Asia, South
America, central Africa, and eastern Australia.

3.1 Biogenic and anthropogenic CO2 fluxes at the
regional and city scale

To reveal the role of biospheric fluxes in the context of an-
thropogenic emissions, we summed up NEE from SMUrF
and FFCO2 emissions from ODIAC for each season over
CONUS, western Europe, and East Asia (Fig. 6a, b, c).
SMUrF reveals the spatial contrasts and seasonal variations
in NEE fluxes, as informed by the use of SIF, land cover
types, and temperature fields. Places with a strong seasonal
amplitude are found to be rural regions covered by crops and
dense forests, e.g., the eastern US, northeastern and southern
China, and spotty locations over Europe (green shading ar-
eas in Fig. 6a, b, c). After adding FFCO2 emissions, the sum
of NEE and FFCO2 remains positive over East Asia even in
summer months (“brownish” spots in Fig. 6c).

We next zoom into fluxes at the city scale. SMUrF captures
the increasing biospheric activities from urban cores to their
rural surroundings inferred by gross ecosystem exchange
(GEE is −GPP), Reco, and NEE components (eight zoomed-
in panels in Fig. 6), as cities are usually associated with less
vegetation coverage than their rural counterparts. The urban–
rural difference in GEE over Salt Lake City, Boston, and
Seoul is relatively small, in contrast to cities like Guangzhou
and Tokyo. Since modeled Reco is partially driven by SIF-
based GPP, the spatial variations of GEE and Reco appear
alike to some extent. Even though GPP can be high over
JJA 2018, summertime mean NEE remains small at urban
cores, with values ranging from −1 to −2 µmol m−2 s−1.
For Boston, the spatial distribution of GEE and Reco derived
from SMUrF (Fig. 6) resembles what was reported using
urbanVPRM (Fig. 2c in Hardiman et al., 2017). Reco from
SMUrF exceeds ODIAC-based FFCO2 emissions over resi-
dential and rural areas away from urban cores (Fig. 6), which
coincides with Decina et al. (2016), who reported an elevated

rate of soil respiration approaching FFCO2 emissions in a
residential area and forest to the west of an urban core. Yet,
when it comes to interpreting observed CO2 concentrations,
it is the net flux that should be compared against FFCO2.
In short, biogenic fluxes have the potential to dominate the
overall carbon flux exchange over residential and rural areas,
while FFCO2 is the main controller within urban cores.

We further extend the analysis to 40 cities across multi-
ple continents to see how CO2 fluxes vary between (1) ur-
ban and adjacent rural areas, (2) different cities, (3) the FF
and NEE components, and (4) across seasons. Specifically,
FFCO2 and NEE fluxes are averaged over urban and rural
grid cells within a 2◦× 2◦ region around city centers. Here
urban grids are simply defined as the “urban and build-up set-
tlements” according to MCD12Q1, while rural grids contain
all the natural counterparts (e.g., forests, grasslands, crop-
lands) except for water, ice, and barren lands. In particular,
we are interested in the seasonal variation (Sect. 3.1.1) and
mean summertime diurnal cycle (Sect. 3.1.2) of these urban
and rural fluxes. The diurnal cycles of FFCO2 are calculated
using hourly scaling factors from Temporal Improvements
for Modeling Emissions by Scaling (TIMES; Nassar et al.,
2013) on top of monthly mean ODIAC-derived emissions.
Note that emission temporal patterns provided by TIMES are
climatological, based on a US gridded inventory by Gurney
et al. (2009), and thus do not change in response to local en-
vironmental conditions, such as air temperature.

3.1.1 Seasonal variation

Stronger net biospheric uptake during growing seasons and
a larger seasonal amplitude in NEE are more linked to ru-
ral grids than to urban grids as expected (Fig. 7a vs. b).
Among the selected 40 cities, the top “wet” biologically ac-
tive cities include Boston, Baltimore and DC, New York,
Taipei, London, Paris, and Rio de Janeiro. By contrast, a
few “drier” cities stand out, with the spatially averaged NEE
over urban grids close to zero, such as Los Angeles, Phoenix,
and Madrid (Fig. 7a). Besides NEE magnitude, cities reach
their maximum net uptake at different times: e.g., June–July
for most cities in the eastern US and East Asia (except for
Taipei); a slightly earlier peak for most cities in the western
US, western Europe, and Taipei; and January for cities in the
Southern Hemisphere. For instance, minimum NEE is found
in late May to June within and around London (Fig. 7a5),
which is consistent with the seasonality of the posterior NEE
fluxes reported for the UK from 2013 to 2014 (White et al.,
2019).

Since FFCO2 emissions fluctuate less across seasons than
NEE, we compare the magnitude of the seasonal amplitude
of NEE relative to the annual mean FFCO2 emission (shown
as numbers below city names in Fig. 7). Such a compar-
ison helps inform the potential interference from the bio-
sphere over cities when interpreting long-term CO2 obser-
vations, albeit without considering the atmospheric trans-
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Figure 6. The sums of seasonal mean SMUrF-based NEE and ODIAC-based FFCO2 [µmol m−2 s−1] for CONUS (a), western Europe (b),
and East Asia (c) at 0.05◦ for 2018. Spatial distributions of the average GEE (−GPP), Reco, NEE, and FFCO2 from ODIAC over JJA 2018
are provided for eight cities (hereinafter zoomed-in panels). As an optional step, these fluxes can further be spatially downscaled to 1 km
using MOD44B (Fig. S7).

port and the fact that the one single number for FFCO2 can
be affected by large point-source emissions. As expected,
most spatially averaged FFCO2 emissions over urban grids
are stronger than the seasonal amplitude of NEE (Fig. 7a).
Exceptions include Pyongyang and cities in central Africa
whose seasonal NEE amplitudes approach their annual mean
FFCO2 emissions, e.g., 2.0 vs. 2.5 µmol m−2 s−1 for La-
gos. Things can get more complex if one tries to interpret
FFCO2 signals from year-long observations over rural areas.
Annual mean FFCO2 emissions for rural grids seldom ex-
ceed 2 µmol m−2 s−1, whereas seasonal amplitudes in the 4 d
mean NEE often exceed 4 µmol m−2 s−1 (Fig. 7b), with a few
exceptions in East Asia.

3.1.2 Diurnal cycle

With regard to the magnitude of hourly fluxes, FFCO2 emis-
sions are negligible for rural grids (Fig. 8b). Intensive FFCO2
emissions ranging from 20 to 60 µmol m−2 s−1 dominate the
total CO2 fluxes, even during noon hours for East Asian cities
(Fig. 8a3–4). The urban biosphere over a few cities in the
eastern US and Europe may take up a considerable amount
of CO2, approaching or even exceeding FFCO2 emissions

during noon hours in summer months. For instance, the
peak value of summertime average NEE and FFCO2 fluxes
over Boston is about −16 and 10 µmol m−2 s−1, respectively
(Fig. 8a1), at the hourly scale.

With regard to the timing of hourly fluxes, NEE in most
midlatitude cities starts to dip below zero at 07:00 or 08:00
local time (Fig. 8a), which is slightly later than the typical
summertime sunrise hour of ∼ 06:00, with a lag associated
with the time it takes for GPP to offset Reco. NEE reaches
its minimum at different hours spanning from 11:00 to 13:00
among cities and rises back to zero at or before 18:00. In con-
trast, FFCO2 emissions start to rise largely due to morning
traffic, stay elevated during daytime, and gradually decline
between 20:00 and 21:00. As for Boston, SMUrF reported a
similar NEE magnitude compared to urbanVPRM but with
an hour delay during which NEE becomes negative (Fig. S9
vs. Fig. 3B3 in Hardiman et al., 2017), likely due to discrep-
ancies in the hourly data that drive the hourly GPP fluxes.

3.2 Hourly flux comparisons

In this section, we will see how robust the modeled fluxes are
at the hourly scale (Sect. 3.2.1–3.2.2) and how CO2 fluxes
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Figure 7. A multi-city comparison of the spatially averaged NEE fluxes [µmol m−2 s−1] over urban (a) and rural (b) grid cells within a
2◦× 2◦ area around the urban center for 2017–2018. We present the 4 d mean (in circles) and monthly mean (smoothed splines) NEE for 40
selected cities in CONUS, western Europe, East Asia, eastern Australia, South America, and central Africa. Light gray ribbons indicate the
typical northern hemispheric summer months (June–August, JJA). The numbers below city names denote the spatially averaged fossil fuel
CO2 emissions derived from ODIAC over the same grid cells as NEE.

impact the CO2 concentrations downstream after consider-
ing atmospheric transport (Sect. 3.3). Specifically, simulated
hourly mean NEE fluxes are extracted from the final grid-
ded output fields and compared against measured NEE at EC
sites from FLUXNET and INFLUX, which differs from the
model–data comparison using directly computed daily fluxes
in Sect. 2.5.

3.2.1 SMUrF vs. FLUXNET and INFLUX

We first evaluate modeled NEE against 67 EC tower sites
from FLUXNET2015 in North America and Europe from
2010 to 2014 (Fig. 9). The correlation coefficient between
simulated and measured hourly NEE ranges from 0.66 to
0.79 for most biome types except for open shrubland, likely
due to limited amounts of data. Higher random and sys-
tematic uncertainties are associated with these hourly flux
comparisons than direct daily validations shown in Sect. 2.5
(Fig. 5) given the larger flux magnitude along with errors
propagated from GPP, Reco, and hourly downscaling. The
mean bias of hourly NEE ranges from −1.51 µmol m−2 s−1

for grassland to +1.11 µmol m−2 s−1 for closed shrubland.
Croplands are associated with the highest RMSE, which
stems from their large flux magnitudes and inter-site varia-
tions in GPP–CSIF relationships (Fig. S1). The potential un-
derestimation in 4 d average GPP over irrigated maize sites
(e.g., US-Ne* as mentioned in Sect. 2.5) appears to be propa-
gated into the NEE estimate (Fig. S10a). Yet, if all sites with
the same biome are treated together, the timing and magni-
tude of the 3-month mean diurnal cycle of NEE from SMUrF
resemble those from FLUXNET (Fig. S10b). Since each
0.05◦ model grid is possibly comprised of various biome
types, areal fractions of the specific biome indicated by each
EC site over the 0.05◦ model grid are provided as a reference
in Fig. S11.

More importantly, we carried out independent NEE com-
parisons that leveraged four valuable EC sites from the IN-
FLUX network over Indianapolis (Fig. 10a, Sect. 2.1.5). In
2018, observations at site no. 3 were affected by corn, while
observations at site no. 2 were primarily influenced by soy-
beans, although site no. 2 was surrounded by mixed crops of
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Figure 8. A multi-city comparison of the average diurnal cycles of SMUrF-derived NEE fluxes (triangles and solid lines) and ODIAC–
TIMES based FFCO2 (solid dots) [µmol m−2 s−1] over JJA 2018 for urban (a) and rural (b) grid cells within a 2◦× 2◦ area around each
urban center. Note that the y scales of positive and negative fluxes are different for panel (a) to better reveal the NEE fluxes, i.e., 0 to
60 µmol m−2 s−1 for positive fluxes and −20 to 0 µmol m−2 s−1 for negative fluxes. Light gray ribbons indicate the negative flux ranges
from −10 to 0 µmol m−2 s−1, while light-yellow ribbons indicate the positive flux ranges from 0 to +10 µmol m−2 s−1. City names are
labeled at the bottom of each panel.

soybeans and corn. As a result, site no. 3 shows a stronger
observed uptake from mid-June to mid-July than site no. 2
(Fig. 10c) because corn is often associated with higher light
saturation points and lower light compensation points, lead-
ing to higher light use efficiency and GPP than soybeans.
Although the C3 :C4 fractional contribution was incorpo-
rated into the calculation of α (Sect. 2.2.1), SMUrF is un-
able to differentiate NEE at two adjacent crop sites found
essentially in the same 0.05◦ model grid. The simulated
NEE may agree better with the average observed NEE of
two crop sites. Hourly measured NEE at crop sites ranges
from −64.4 to +28.1 µmol m−2 s−1, while simulated values
span from−66.7 to+12.1 µmol m−2 s−1 with a mean bias of
−0.59 µmol m−2 s−1 and RMSE of 5.98 µmol m−2 s−1 over
the entire observed window (Fig. 10c). Uncertainties and bi-
ases in the modeled hourly NEE based on these two crop
sites outside Indianapolis are in proximity to those based on

11 FLUXNET crop sites (Fig. 10b vs. 9). Lastly, we fo-
cus on flux comparisons within Indianapolis. NEE fluxes at
sites no. 1 and no. 4 exhibit a seasonally attenuated pattern
but stronger biospheric activities in November and December
compared to the crop sites (Fig. 10c). The correlation coeffi-
cient of hourly NEE fluxes between the model and observa-
tions is 0.75. Modeled mean diurnal cycles over JJA 2018 co-
incide with those from observations at urban vegetation sites
(Fig. 10d). The spatial distribution of summertime average
NEE from SMUrF can be found in Fig. S12.

3.2.2 SMUrF vs. urbanVPRM for Los Angeles

The comparisons of SMUrF to dozens of EC sites have yet
to offer much insight into the spatial distribution of urban
CO2 fluxes. Therefore, we further compare SMUrF against
urbanVPRM simulations (Sect. 2.1.5) at 30 m grid spacing
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Figure 9. Hourly flux comparisons between modeled NEE and measured NEE from FLUXNET are presented as a density plot for each
biome. The number of EC sites per biome (n) and several error statistics including the mean bias, correlation coefficient (r), and root mean
square error (RMSE) are printed in the bottom right corner of each panel.

over Los Angeles from July to September 2017. SMUrF and
urbanVPRM agree with respect to the spatial distribution of
estimated GEE fluxes, e.g., stronger uptakes over mountain-
ous and residential areas to the northeast of Pasadena and
San Bernardino and nearly zero uptake over the Moreno Val-
ley to the south of Riverside and the LA basin (Fig. 11a).
SMUrF simulates a stronger biospheric uptake than urban-
VPRM across LA over JAS in 2017 (first column in Fig. 11a).

Both models incorporated observed GPP from EC sites for
tuning their parameters but are driven with different spatial
proxies (SIF vs. EVI and LSWI) with different model for-
mulations. As one of the key improvements, urbanVPRM re-
vises the initial VPRM-based Reco by incorporating impervi-
ous surface areas (ISAs), which in turn modify the air tem-
perature over urban cores due to the urban heat island (TUHI)
effect and affect estimated GPP as well as autotrophic and
heterotrophic respiration. For example, RH can be reduced,
while RA and GPP may be increased given enhanced TUHI
over higher ISA regions in urbanVPRM. Regardless, TUHI-
revised Reco in urbanVPRM still follows a simple function
of air temperature. ISA is implicitly contained in SIF al-
though not explicitly considered in SMUrF. Reco in SMUrF
is driven not only by air temperatures but also soil temper-
atures and GPP. Thus, Reco in SMUrF appears to be more
spatially correlated with its GPP. An overall higher Reco and
more positive NEE are associated with SMUrF compared to
urbanVPRM over LA (third column in Fig. 11a), which is at-
tributed to methodological discrepancies in producing Reco.

Similarly, the 3-month mean diurnal cycles of hourly NEE
extracted from a few grids indicate stronger daily amplitudes
according to SMUrF (Fig. 11b). Both models suggest that
Pasadena, towards the northern end of the LA basin, is asso-
ciated with a slightly stronger diurnal amplitude than down-
town LA, with discrepancies in the hourly NEE during noon
hours, likely because of differences in the data products from
which PAR and SWrad are derived (e.g., cloud coverage and
spatial resolution).

Despite the opposing signs between urbanVPRM- and
SMUrF-modeled NEE over the LA basin, the overall bi-
ological activity (either net positive or negative) remains
small, particularly when FFCO2 emissions are compared.
As a quick analysis, we defined “downtown LA” as a
rectangle with the lat–long boundaries 118.5–118◦W and
33.9–34.1◦ N and removed one grid cell with intensive
FFCO2 emissions from consideration (likely due to point
sources; Fig. 11c). The average FFCO2 over JAS 2017 within
downtown LA is ∼ 12.1 µmol m−2 s−1, while differences in
NEE between the two biogenic models remain small at
∼ 0.41 µmol m−2 s−1.

3.3 Urban–rural gradient in XCO2.ff and XCO2.bio

After presenting the hourly NEE evaluations and urban–rural
contrast around 40 cities, we examined the imprint of urban–
rural NEE contrasts in CO2 concentrations. As described in
Sect. 2.6, we analyzed OCO-2 XCO2 observations over a
few cities and accounted for the atmospheric transport be-
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Figure 10. NEE flux evaluation based on four EC towers from the INFLUX network around Indianapolis (a). Model–data flux comparisons
at the hourly scale [µmol m−2 s−1] from August 2017 to December 2018 are shown as a density plot (b) and time series (c). Error statistics
in hourly NEE including the mean bias, correlation coefficient (r), and root mean square error (RMSE) are printed in the bottom right corner
of panel (b). (d) Mean diurnal cycle of observed NEE (black triangles) and modeled NEE (colored circles) over JJA for two cropland sites
(sites no. 2 and no. 3) and the entire year of 2018 for urban vegetation sites (sites no. 1 and no. 4). For panel (c) and (d), model fluxes
are shown as solid lines or circles with four colors indicating different sites, whereas measured fluxes are shown as black dashed lines or
triangles. Supplementary information on the spatial map of modeled NEE and monthly mean NEE comparisons can be found in Fig. S12.
Note that the underlying hybrid satellite image in panel (a) was generated using the ggmap R library with Google Maps (Map data © 2021
Imagery © 2021 TerraMetrics).

tween upwind carbon sources and sinks and downwind satel-
lite soundings as reflected by X-STILT’s column footprints
(Fig. 12a). Only places with nonzero footprints and nonzero
fluxes contribute to downwind XCO2 anomalies, which can
be visualized by the spatial contribution of XCO2.ff enhance-
ments and XCO2.bio anomalies in Fig. 12cd. The sum of
those spatially explicit XCO2 contributions serves as the to-
tal anthropogenic or biogenic XCO2 anomalies per receptor
(Fig. 12b).

Boston is the main case study here as its anthropogenic and
biogenic fluxes have been extensively studied in previous re-
search (Decina et al., 2016; Hardiman et al., 2017; Sargent
et al., 2018), notwithstanding the small number of qualified
OCO-2 tracks. On 7 July 2018, the northeasterly wind trans-
ported air from Boston to downwind satellite soundings with
an overpass time of ∼ 17:00 UTC or 13:00 LT (Fig. 12a).
Over the near-field area immediately around satellite sound-
ings, most biogenic contributions stayed negative due to day-
time photosynthetic uptake (green in Fig. 12d) where strong

surface influences are found (Fig. 12a). During the few hours
prior to 13:00 LT, air parcels within the planetary boundary
layer began to encounter net biogenic release away from the
receptors, leading to slightly positive biogenic contributions
to XCO2 (light yellow in Fig. 12d). Yet, strong negative near-
field anomalies prevail over the slightly positive far-field
anomalies, resulting in total negative XCO2.bio at the recep-
tors spanning from −2 to −0.3 ppm (green dots in Fig. 12b).
The convolution between footprints and FFCO2 emissions is
simpler and always yields positive enhancements (Fig. 12c),
especially over soundings from 41.7 to 42.3◦ N with XCO2.ff
enhancements of up to 0.6 ppm (orange dots in Fig. 12b).

We then take a closer look at the modeled XCO2 anoma-
lies along latitude (Fig. 12b). XCO2 anomalies to the south
of the urban peak are close to zero due to minimal influences
from either FFCO2 or NEE. Moving northward, soundings
started to experience intensive biogenic activities that lead
to XCO2.bio anomalies of up to −2 ppm. Due to a less ac-
tive urban biosphere than its surrounding vegetation, a rise
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Figure 11. (a) Spatial maps of mean GEE, Reco, and NEE fluxes [µmol m−2 s−1] from SMUrF and urbanVPRM over the greater Los
Angeles region from July to September (JAS) in 2017. (b) Mean diurnal cycles of NEE fluxes over JAS 2017 between the two models.
(c) Map of mean FFCO2 [µmol m−2 s−1] at 0.05◦ aggregated from the 1 km ODIAC product over JAS 2017. Main cities have been labeled
on the maps including Los Angeles, Pasadena, Irvine, Riverside, and San Bernardino.

in XCO2.bio has been spotted centered at ∼ 41.9◦ N relative
to the adjacent latitude bands centered at ∼ 41.7 or 42.2◦ N.
That being said, the urban–rural gradient in XCO2.bio anoma-
lies (hereinafter 1XCO2.bio) can exceed 0.5 ppm, which is
comparable to the maximum XCO2.ff of 0.6 ppm. We will
discuss the implications of this urban–rural bio-gradient
1XCO2.bio in the context of the total measured XCO2 in
Sect. 4.1 (Fig. 12e).

Clearly, 1XCO2.bio can vary with location and the time
of day or year when measurements are taken. We studied a
few more OCO-2 tracks near Indianapolis, Salt Lake City,
and Rome given their different surrounding vegetation types
(Fig. 13). These summertime tracks were chosen given their

richness in screened soundings (quality flag of 0), which fa-
cilitates the X-STILT modeling. Although the OCO-2 track
is adjacent to Indianapolis at 18:00 UTC on 13 July 2018,
upwind regions are located to the east of the soundings
and away from Indianapolis, leading to minimal XCO2.ff
anomalies and strong biospheric uptake with XCO2.bio below
−2 ppm (Fig. 13ab). A strong influence of the surface land
is concentrated within the Salt Lake Valley on 25 June 2018,
leading to a maximum XCO2.ff of 0.5 ppm and XCO2.bio with
a comparable magnitude but negative sign (Fig. 13ef). For
Rome, strong footprints to the southwest of the city center in-
teract with positive NEE, giving rise to XCO2.bio anomalies
of up to 1.5 ppm over 42–42.5◦N where XCO2.ff is equally
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Figure 12. Demonstration of the application of SMUrF in the context of column CO2 measurements for an OCO-2 overpass at 17:00 UTC
on 7 July 2018 to the west of Boston. The time-integrated column footprints [ppm/(µmol m−2 s−1)] originating from dozens of receptor
locations have been integrated along latitude (a). The wind was blowing from the urban center of Boston onto the satellite swath. (c–
d) Spatially explicit XCO2 contributions from ODIAC-based FFCO2 and SMUrF-based NEE (XCO2.ff and XCO2.bio in ppm). Note that
the spatial footprint (a) and the spatial contribution of XCO2.ff (c) are plotted in log10 scale, with small values < 10−6 ppm/(µmol m−2 s−1)
displayed in light gray. The upwind contributions with respect to a column receptor are summed up, which leads to the total modeled XCO2.ff
or XCO2.bio anomalies per receptor (orange or green dots in panel b). Light orange and green ribbons indicate the urban-enhanced and
background latitude range, following the approach in Wu et al. (2018) (also demonstrated in Fig. S13). Note that the underlying hybrid maps
in panels (a), (c), and (d) were generated using the ggmap R library with Google Maps (Map data © 2021 Imagery © 2021 TerraMetrics).
(e) An example of incorporating 1XCO2.bio into the background estimates. The screened observed XCO2 values (QF = 0; gray triangles)
are averaged in bins to match the locations of X-STILT receptors (black triangles). The dark and light green lines indicate the constant and
bio-adjusted XCO2 background. Differences between two XCO2.bg values indicate the 1XCO2.bio, which is calculated by subtracting the
mean XCO2.bio within the rural range from all the simulated XCO2.bio values along the swath. The FFCO2 enhancements are further added
to the two different background values to arrive at the total modeled XCO2 (orange and purple lines).

significant (Fig. 13j). To sum up, XCO2.bio anomalies can
be associated with either sign and an absolute magnitude of
up to 2.5 ppm during growing seasons, as seen in the cases
of Indianapolis and Boston. The urban–rural bio-gradient
1XCO2.bio is smaller, with maximum values ranging from
0.6 to 1.0 ppm among our limited cases (second column in
Fig. 13). Based on the limited cases, XCO2.bio anomalies
are normally less negative (more positive) within the urban-
enhanced region, serving as a peak that coincides with the
XCO2.ff peak. More cities and satellite tracks, accompanied

by comprehensive error analyses, should be examined in the
future to verify these statements.

4 Discussion and summary

We now discuss some applications and limitations of SMUrF.
In particular, we examine how an urban–rural gradient in
XCO2.bio may alter the interpretation of XCO2 observations
during growing seasons.
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Figure 13. Similar to Fig. 12a–d but for three different OCO-2 tracks, including 18:00 UTC on 13 July 2018 to the east of Indianapolis
(2018071318; first row, a–d), 20:00 UTC on 25 June 2018 right over Salt Lake City (2018062520; second row, e–h), and 12:00 UTC on
15 June 2017 near Rome, Italy (2017061512; third row, i–l). The meteorological fields that drove those simulations are 3 km HRRR for US
cities and 0.5◦ GDAS fields for Rome. Note that the underlying hybrid satellite images in the first, third, and fourth columns were generated
using the ggmap R library with Google Maps (Map data © 2020 Imagery © 2020 TerraMetrics).

4.1 Implications on background XCO2 determination

As the extraction of urban emissions from column measure-
ments can be sensitive to the background definition (e.g., Wu
et al., 2018), we illustrate the impact of the urban–rural gra-
dient in XCO2.bio during the growing season in the context of

background determinations. Let us consider the background
XCO2 (XCO2.bg) defined as the average of observations over
a region unaffected by urban emissions. Observed enhance-
ments are then calculated as levels of XCO2 elevated above
XCO2.bg. This constant XCO2.bg reasonably represents the
XCO2 portion unaffected by urban emissions during non-
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growing seasons for most places (Wu et al., 2018). How-
ever, this background definition might implicitly neglect the
variation in biospheric XCO2 anomalies between the urban-
enhanced and background region. Again, it is the gradient
in XCO2.bio, not its absolute level, along satellite tracks that
modifies the background value.

The goal, then, becomes to create a latitude-dependent
background – XCO2.bg (lat) in Eq. (3) – that inte-
grates the adjustment of the urban–rural biospheric gra-
dient (1XCO2.bio). To quantify the 1XCO2.bio correction
term, we average XCO2.bio within the background latitude
band (XCO2.bio.bg) and subtract it from the latitude-varying
XCO2.bio. The correction term is then added to the constant
background (XCO2.bg.const) to yield a latitudinally varying,
bio-adjusted background:

XCO2.bg(lat)= XCO2.bg.const+1XCO2.bio(lat)

= XCO2.bg.const+XCO2.bio(lat)−XCO2.bio.bg. (3)

Recall that XCO2.bio (lat) represents the modeled bio-
spheric anomalies using SMUrF and X-STILT (Sects. 2.6
and 3.3).

To facilitate visualization and understanding of
1XCO2.bio and the bio-adjusted background, let us return to
the Boston case (Fig. 12). Following the “overpass-specific
approach” proposed in Wu et al. (2018), we estimated the
urban plume (black curve in Fig. S13a) and defined the
background latitude range of 42.26–42.76◦ N (light green
ribbon in Fig. 12e). The constant background is 403.37 ppm
(dark green line in Fig. 12e) with an uncertainty of 1.03 ppm
containing both retrieval errors and observational noise
(Fig. S13b). The mean XCO2.ff and XCO2.bio anomalies
within the background region are 0.23 ppm and −1.41 ppm,
respectively. After integrating the bio-gradient 1XCO2.bio,
a new bio-adjusted background varies along latitude (light
green line in Fig. 12e). If modeled XCO2.ff is added to the
bio-adjusted background, the resultant total XCO2 better
reproduces the latitudinal variations of the measured mean
values (Fig. 12e). Both the observed XCO2 and modeled
XCO2 with the 1XCO2.bio correction term exhibit dips
in XCO2 on both sides outside the urban peak, which is
missing from the model result using the constant background
(orange line in Fig. 12e).

A more comprehensive error analysis of various modeled
and observed errors is needed to draw further quantitative
conclusions from the model–data XCO2 comparison. For in-
stance, modeled XCO2 appears to extend wider latitudinally
with a lower amplitude and a small latitude shift of ∼ 0.1◦

compared to observed XCO2 (purple line versus black trian-
gles in Fig. 12e), likely due to a bias in wind speed and direc-
tion. Nonetheless, neglecting the latitudinal and spatial gradi-
ent in biogenic XCO2 anomalies given gradients in NEE can
affect the extracted urban signal and inferred FFCO2 emis-
sions.

4.2 Limitations and future improvement

This study aims to offer a model representation of biogenic
CO2 fluxes to help improve the CO2 flux partitioning over
cities worldwide. SMUrF takes advantage of SIF to estimate
GPP from urban to rural areas and incorporates multiple pre-
dictors to estimate Reco using a neural network approach.
Here we identify several model limitations and room for fu-
ture improvements.

The adoption of SIF has dramatically benefited the GPP
calculation over urban areas around the globe, as non-
vegetated surfaces within the satellite footprint do not con-
tribute to observed signals. However, the main caveat lies in
the assumption of a linear GPP–SIF relationship and one set
of constant α values across all seasons used in SMUrFv1.
Previous research (Magney et al., 2020; Miao et al., 2018;
Wohlfahrt et al., 2018; Yang et al., 2018) revealed the diver-
gence of the empirical linear GPP–SIF relation at sub-diurnal
and leaf scales, as well as under certain environmental con-
ditions (low light or high light and stress), owing to com-
peting fluorescence, photochemical, and non-photochemical
pathways for the absorbed light (Magney et al., 2020). For
example, Yang et al. (2018) suggest considering additional
environmental and biophysical factors related to the model-
ing of light use efficiency, e.g., relative humidity, cloudiness,
and growth stage of crops, to improve SIF-based GPP esti-
mates. Although multiple studies have shown a dependence
of the linear slope on PFT (e.g., Guanter et al., 2012; Sun
et al., 2017; Turner et al., 2021), further research is needed
to understand the scale dependence of the GPP–SIF relation
and determine if an inflection point for linearity exists. Given
noise and uncertainty in the CSIF product and EC tower data
across multiple continents, we apply a simple linear regres-
sion fit and let the uncertainty analysis incorporate deviations
from the linear assumption. Future iterations of SMUrF can
test alternative statistical fits with physical fundamentals or
expand the GPP–SIF slopes across seasons and new urban
land cover maps (e.g., Coleman et al., 2020).

Mixed pixels are difficult to account for in heterogenous
urban environments without much information on the lo-
cal biosphere. As a general solution that can be widely ap-
plied to cities around the world, we derived and utilized
the relationship between relative tree fractions and AGB.
This relationship is a simplification proposed from high-
resolution land cover data over Los Angeles. Fortunately,
recent work using high-resolution airborne and satellite im-
agery demonstrates that urban land cover mapping capabil-
ities are improving (e.g., Coleman et al., 2020). Other ad-
vanced space sensors provide SIF retrieval with broader cov-
erage over cities, land surface temperatures, biomass, and
canopy structures of forests at an unprecedented spatiotem-
poral resolution (Stavros et al., 2017). Examples of such
satellite sensors include OCO-3 (Eldering et al., 2019), the
ECOsystem Spaceborne Thermal Radiometer Experiment
(ECOSTRESS; Fisher et al., 2020), and the Global Ecosys-
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tem Dynamics Investigation lidar (GEDI; Duncanson et al.,
2020), all on board the International Space Station. These
cutting-edge and future data streams may improve the ap-
proximation of tree types and fraction over cities and flux
estimates in SMUrF.

SMUrF parameters can be fine-tuned for more localized
applications, such as using higher-resolution shortwave radi-
ation or PAR data with higher accuracy in cloud cover esti-
mates. Further, the reference temperature used in this work
(30 ◦C) can be a bit higher than that (20 ◦C) used in the cal-
culation of maintenance respiration and (25 ◦C) in the cal-
culation of heterotrophic respiration in the Community Land
Model (CLM). The Q10 parameter (here 1.5) also varies sig-
nificantly in space and time. Moreover, a few second-order
ecological and environmental variables may affect biogenic
fluxes. For example, we have tried adding soil moisture as
an explanatory variable into the Reco training system, but the
improvement in model performance is not that evident.

It is a more challenging shortcoming that current flux es-
timates in SMUrF over cities still rely on relationships de-
rived from observations over natural biomes. Urban trees are
found to possess different characteristics than natural trees
(Smith et al., 2019), which poses a difficult task for bio-
spheric models without more dedicated observations and a
mechanistic understanding of the urban environment. An-
thropogenic moisture input (i.e., urban irrigation) has been
found to effectively influence urban biogenic fluxes, partic-
ularly over (semi)arid residential areas (Johnson and Belitz,
2012; Vahmani and Hogue, 2014; Miller et al., 2020). Al-
though we currently rely on SIF to pick up possible irrigation
effects on GPP, it would be interesting to explore the linkage
between water and carbon fluxes in future analyses.

Because atmospheric CO2 concentrations measured from
satellites are mainly influenced by anthropogenic and bio-
genic carbon fluxes a few hours to days ahead of the over-
pass time, this work focused on presenting and evaluating
diurnal and seasonal CO2 fluxes. Biogenic CO2 fluxes at
other moments, e.g., their interannual variations and trends,
may require further investigations. We hope to examine more
cities and different times of the day in future studies to bet-
ter quantify the relative biogenic and anthropogenic contri-
butions to XCO2 anomalies. Incorporating uncertainties in
biogenic fluxes and resultant XCO2.bio is needed for future
top-down studies with the aim of quantifying urban signals,
especially over growing seasons.

Lastly, we summarize the potential applications of SMUrF
as follows.

1. Improve the separation between biogenic and anthro-
pogenic CO2 fluxes for urban studies. Regardless of
the exact approach adopted for background definition,
researchers can combine atmospheric transport models
with fluxes from SMUrF to get estimates of the CO2
anomalies due to biogenic flux exchanges, as shown in
Sect. 4.1.

2. Fill in the urban gap and assist regional flux inversions.
The state-of-art terrestrial models that go into flux in-
versions usually include global models with relatively
coarse resolution (e.g., 4◦ by 5◦), with possible down-
scaling approaches. At the other end of the spectrum
are highly localized models at fine resolution that some-
times require customization for individual cities. SIF-
based fluxes from SMUrF may help bridge the gap be-
tween the continental scale and the urban scale, with
reasonable fine resolution and regional to global cover-
age.

3. Understand how urbanization modifies the planet and
environment. SMUrF offers a quick solution to biogenic
fluxes within urban areas and their rural surroundings,
which provides insights on how biogenic CO2 fluxes
vary among cities with different urban planning and
emissions.
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Appendix A: Comparison of CSIF with
TROPOMI-based downscaled SIF and vegetation
fraction from WUDAPT

We carried out two tests to verify the accuracy and capabil-
ity of CSIF. Firstly, CSIF is compared against a newly de-
veloped SIF product from TROPOMI over the contiguous
United States (CONUS) from June to August in 2018 (Turner
et al., 2020, 2021). This downscaled TROPOMI-based SIF
product is initially available at 500 m and then averaged to
0.05◦ for the comparison. Due to the discrepancies in the
reported SIF retrieval wavebands between OCO-2 (757 and
771 nm) and TROPOMI (740 nm), the OCO-2 based CSIF
(757 nm) is scaled by an empirical scaling factor of 1.56
(Köhler et al., 2018) to yield comparison with TROPOMI
SIF at the far-red SIF peak of 740 nm. Note that this scaling
factor of 1.56 is only applied here for model comparisons and
not for flux calculations. OCO-2 based CSIF and TROPOMI-
based SIF both see high biological activity over the eastern
CONUS and agree well spatially (Fig. S2). Model–model
mismatch can be attributed to their different approaches
and adopted observations. For example, CSIF uses broad-
band reflectances as indicators, whereas the downscaled
TROPOMI SIF product benefits from TROPOMI’s wider
and denser spatial coverage. Nevertheless, CSIF-based α val-
ues (mostly > 20 (µmol m−2 s−1) (mW m−2 sr−1 nm−1)−1)
are higher than TROPOMI-based α, ranging from 13.5 to
18 (µmol m−2 s−1) (mW m−2 sr−1 nm−1)−1 as reported in
Turner et al. (2020, 2021), which potentially compensate for
the SIF mismatch.

We also relate CSIF to vegetated and impervious frac-
tions with a spatial resolution of 10 km from the World Ur-
ban Database and Access Portal Tools (WUDAPT) project
(Ching et al., 2018) for a few available US cities. WUDAPT
is “an international community-generated urban canopy in-
formation and modeling infrastructure to facilitate urban-
focused climate, weather, air quality, and energy-use mod-
eling application studies” (Ching et al., 2018). The local cli-
mate zones (LCZs) provided by WUDAPT contain 10 spe-
cific classifications for the urban areas and 7 natural types
with characterizations of surface properties and structures
(e.g., building and tree height and density) as well as surface
cover (pervious vs. impervious) (Stewart and Oke, 2012).
Each LCZ classification is associated with a range of frac-
tions for impervious land, buildings, and vegetation, such as
40 %–60 % of impervious percentage for compact high-rise
class (Ching et al., 2018). We calculated the mean imper-
vious and vegetated fractions for every LCZ and projected
those fractions to CSIF’s grids. Consequently, the spatial gra-
dient of CSIF coincides with that of vegetated fractions esti-
mated from WUDAPT, as suggested by the increasing trend
moving away from urban cores (Fig. S3). Thus, CSIF nicely
reveals the urban–rural contrast in biological activities.

Since CSIF nicely mimics the urban–rural gradient, addi-
tional information about vegetated and impervious fractions

was not necessary in the calculation of α for every 500 m ur-
ban grid. For instance, if half of the 0.05◦ urban grid cell is
covered by impervious land with the rest covered by DBFs,
the SIF of this grid cell would already be lower than the SIF
of a grid cell fully covered by DBFs. Thus, instead of cal-
culating a weighted mean α using slopes and land fractions
of DBF and impervious land (whose α = 0), we only need to
assign the α of DBF to this particular 500 m urban grid. Oth-
erwise, the resultant urban GPP (CSIF×α) could be under-
estimated by “double counting” of the impervious fraction in
both SIF and α.

Appendix B: Technical note on Reco prediction

As introduced in Sect. 2.3, we have tested three ways to pre-
dict Reco by applying the following:

M1. one NN model trained using data points with all biomes
to 0.05◦ grids, except for water, ice, and barren land,
without considering sub-grid-cell variations in land
cover types;

M2. one NN model with biome as well as the month and sea-
son of the year as additional categorical variables (with
one-hot encoding); and

M3. multiple biome-specific NN models to 500 m grids
with different biomes and aggregating predicted Reco to
0.05◦.

Technically speaking, we tried both the built-in R package
Neuralnet (Fritsch et al., 2016) and the R interface for Keras
(Falbel et al., 2019), which is a high-level neural network
API based on the back end including TensorFlow to build NN
models. Although M1 benefits from more sample data and
shorter processing time in predicting Reco without match-
ing NN models with land cover types at 500 m, the M2 ap-
proach is physically more meaningful as the temperature de-
pendence of respiration may vary among different vegeta-
tion species. In particular, being able to resolve sub-grid-cell
variations and different vegetation fractions (processed dur-
ing GPP estimates, Sect. 2.2.2) facilitates a more reasonable
Reco calculation over urban areas. Note that modeled Tair and
Tsoil have been bilinearly interpolated from their initial grid
spacings onto the required grid spacing. In the end, we used
the last M3 approach given its better performance.

Before training neural network models, we removed a few
flux sites with relatively large RMSE values between mod-
eled and observed GPP to avoid erroneous information being
transformed into the training process of Reco (Fig. S14). All
explanatory and response variables have been linearly nor-
malized to values in the range [0, 1] based on their maximum
and minimum values before training. Adjusting the raw data
to a common scale may dramatically speed up the training
process and avoid a situation in which the predicting vari-
able appears to be more sensitive to one of the response vari-
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ables. To determine the hyper-parameters that work the best
on our data and help avoid underfitting or overfitting situ-
ations, we carried out a 5-fold cross-validation (Fig. S15).
That being said, 80 % of the data serves as the training set,
with the remaining 20 % as the validation set. The 5-fold
cross-validation can be viewed as repeated holdouts, and the
average errors will be calculated after five different hold-
outs. The main hyper-parameter tested here is the number
of neurons (8, 16, 32, or 64 neurons per layer) for a two-
layer model. The overall RMSE and loss function between
predicted and observed Reco in the validating set turn out to
be similar for different numbers of neurons. In addition, loss
functions in the training and validating sets appear to be sim-
ilar, implying no strong sign of overfitting.
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Code and data availability. The source codes of SMUrF with the
latest changes and the SMUrF flux output are available at http:
//dienwu.me/gmd2021 (last access: 7 September 2020). The exact
version of the SMUrF model used in this work is archived on Zen-
odo (https://doi.org/10.5281/zenodo.4018123, D. Wu, 2020).

Instructions for running SMUrF. The user should start
with main scripts of main_script_*.r in sequence for comput-
ing gridded GPP, Reco, and NEE, since the calculation of
Reco using main_script_Reco.r relies on GPP generated using
main_script_GPP.r. Model-related subroutines written in R/3.6.1
are stored in SMUrF/r/src with model-required dependences in
SMUrF/data. For most of the cases, the user does not need to mod-
ify these subroutines. Model developments are ongoing, so please
contact the corresponding author to obtain model outputs for other
regions and/or cities.

Required input data products for driving SMUrF (data citation;
parameter name in the model script).

1. Clear-sky SIF provided by CSIF (Zhang et al., 2018;
csif.cpath)

2. AGB from GlobBiomass (Santoro et al., 2018; agb.path)

3. MCD12Q1 v006 (Friedl and Sulla-Menashe, 2019; lc.path)
accessed from the Application for Extracting and Explor-
ing Analysis Ready Samples (AρρEEARS); see README.md
on the GitHub repository for information on how to download
the exact format that SMUrF requires

4. Hourly air temperature and shortwave radiation downwards
from ERA5 reanalysis (Copernicus Climate Change Service
Information, 2017; TA* and SSRD*)

Other important data products used in this paper (not prerequisites
for driving SMUrF) include

1. the high-resolution 60 cm NAIP-based urban land cover clas-
sification product (Coleman, 2020) from Mendeley data,

2. the ODIAC emission data product available from the Global
Environmental Database hosted by the Center for Global Envi-
ronmental Research at the National Institute for Environmental
Studies (Oda and Maksyutov, 2015), and

3. EC measurements from FLUXNET2015 (Pastorello et al.,
2017).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-3633-2021-supplement.
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