Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Frédéric Diaz
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Cathy Wimart-Rousseau
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Thibaut Wagener
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Dominique Lefèvre
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Christophe Yohia
Aix Marseille Univ., CNRS, IRD, OSU Institut Pythéas, 13288, Marseille, France
Irène Xueref-Remy
Aix Marseille Univ., Université d'Avignon, CNRS, IRD, IMBE, Marseille, France
Brian Nathan
Aix Marseille Univ., Université d'Avignon, CNRS, IRD, IMBE, Marseille, France
Alexandre Armengaud
AtmoSud: Observatoire de la qualité de l'air en région Sud Provence Alpes Côte d'Azur, le Noilly Paradis, 146 rue Paradis, 13294 Marseille, France
Christel Pinazo
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Related authors
No articles found.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Thierry Moutin, Dominique Lefevre, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Cathy Wimart-Rousseau, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4028, https://doi.org/10.5194/egusphere-2025-4028, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In this study we examined how oxygen is absorbed, released, and transported in the Levantine Sea, a nutrient-poor part of the Eastern Mediterranean. Using computer models with ocean data, we found that the sea takes up oxygen from the air in winter, carries it to deeper layers, and exports it to nearby seas. The Rhodes Gyre is a major hotspot, while winter heat loss drives shifts between oxygen gain and loss, showing how climate controls oxygen supply.
Gaëlle Capitaine, Samir Alliouane, Thierry Cariou, Jonathan Fin, Paola Fisicaro, and Thibaut Wagener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3588, https://doi.org/10.5194/egusphere-2025-3588, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Measuring total alkalinity in seawater is essential for understanding and monitoring the ocean carbonate system. To improve the reliability of these measurements, we developed reference materials and tested them in an inter-laboratory comparison. We also thoroughly quantified, for the first time, the uncertainty of the standard measurement method. These results, as well as the key metrological tools developed, support more accurate long-term monitoring of the ocean carbonate system.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Quentin Gunti, Benjamin Chazeau, Brice Temime-Roussel, Irène Xueref-Remy, Alexandre Armengaud, Henri Wortham, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2025-2215, https://doi.org/10.5194/egusphere-2025-2215, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A measurement campaign in Toulon’s port area in September 2021 showed a decrease in sulfur-related emissions in both gaseous and particulate phases, while soot, organics and PAHs, remained at pre-IMO regulation levels. PMF analysis attributed 5.6% and 11.2% of OA mass to road and maritime traffic, respectively, with PAHs mostly emitted by these sectors (31% and 35%), highlighting the need for monitoring shipping emissions as the Mediterranean becomes a Sulfur Emission Control Area in May 2025.
Marvin Dufresne, Thérèse Salameh, Thierry Leonardis, Grégory Gille, Alexandre Armengaud, and Stéphane Sauvage
Atmos. Chem. Phys., 25, 5977–5999, https://doi.org/10.5194/acp-25-5977-2025, https://doi.org/10.5194/acp-25-5977-2025, 2025
Short summary
Short summary
This paper discusses the 18-month-long measurement of non-methane hydrocarbons (NMHCs) in Marseille, where there was no measurement since early 2000, despite the impact of NMHCs on air quality and climate. Traffic-related sources are the largest contributor to NMHC concentrations in Marseille, and shipping strongly contributes to the formation of aerosols. Finally, the Covid-19 lockdown had an impact on NMHC concentrations, reaching a 50 % decrease for traffic-related sources.
Liang Feng, Paul Palmer, Luke Smallman, Jingfeng Xiao, Paulo Cristofanelli, Ove Hermansen, John Lee, Casper Labuschagne, Simonetta Montaguti, Steffen Noe, Stephen Platt, Xinrong Ren, Martin Steinbacher, and Irene Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2025-1793, https://doi.org/10.5194/egusphere-2025-1793, 2025
Short summary
Short summary
2023 saw an unexpectedly high global atmospheric CO2 growth. Satellite data reveal a role for increased emissions over the tropics. Larger emissions over eastern Brazil can be explained by warmer temperatures, while changes in rainfall and soil moisture play more of a role in emission increases elsewhere in the tropics.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Brian Nathan, Joannes D. Maasakkers, Stijn Naus, Ritesh Gautam, Mark Omara, Daniel J. Varon, Melissa P. Sulprizio, Lucas A. Estrada, Alba Lorente, Tobias Borsdorff, Robert J. Parker, and Ilse Aben
Atmos. Chem. Phys., 24, 6845–6863, https://doi.org/10.5194/acp-24-6845-2024, https://doi.org/10.5194/acp-24-6845-2024, 2024
Short summary
Short summary
Venezuela's Lake Maracaibo region is notoriously hard to observe from space and features intensive oil exploitation, although production has strongly decreased in recent years. We estimate methane emissions using 2018–2020 TROPOMI satellite observations with national and regional transport models. Despite the production decrease, we find relatively constant emissions from Lake Maracaibo between 2018 and 2020, indicating that there could be large emissions from abandoned infrastructure.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Short summary
The MAPM project showcases a method to improve estimates of PM2.5 emissions through an advanced statistical technique that is still new to the aerosol community. Using Christchurch, NZ, as a test bed, measurements from a field campaign in winter 2019 are incorporated into this new approach. An overestimation from local inventory estimates is identified. This technique may be exported to other urban areas in need.
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021, https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Short summary
Currently there is growing interest in monitoring city-scale CO2 emissions based on atmospheric CO2 measurements, atmospheric transport modeling, and inversion technique. We analyze the various sources of uncertainty that impact the atmospheric CO2 modeling and that may compromise the potential of this method for the monitoring of CO2 emission over Paris. Results suggest selection criteria for the assimilation of CO2 measurements into the inversion system that aims at retrieving city emissions.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cited articles
Abril, G., Commarieu, M. V., Sottolichio, A., Bretel, P., and Guérin, F.:
Turbidity limits gas exchange in a large macrotidal estuary,
Estuar. Coast. Shelf S.,
83, 342–348, https://doi.org/10.1016/j.ecss.2009.03.006, 2009.
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C., Lowe, J. A., Meinshausen, M., and Meinshausen, N.:
Warming caused by cumulative carbon emissions towards the trillionth tonne,
Nature,
458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Andersson, A. J. and Mackenzie, F. T.:
Shallow-water oceans: a source or sink of atmospheric CO2?,
Front. Ecol. Environ.,
2, 348–353, https://doi.org/10.1890/1540-9295(2004)002[0348:SOASOS]2.0.CO;2, 2004.
Andersson, A. J. and Mackenzie, F. T.: Revisiting four scientific debates in ocean acidification research, Biogeosciences, 9, 893–905, https://doi.org/10.5194/bg-9-893-2012, 2012.
Auger, P. A., Diaz, F., Ulses, C., Estournel, C., Neveux, J., Joux, F., Pujo-Pay, M., and Naudin, J. J.: Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modelling combined approach, Biogeosciences, 8, 3231–3261, https://doi.org/10.5194/bg-8-3231-2011, 2011.
Baklouti, M., Faure, V., Pawlowski, L., and Sciandra, A.:
Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (Eco3M) dedicated to biogeochemical modelling,
Prog. Oceanogr.,
71, 34–58, https://doi.org/10.1016/j.pocean.2006.05.003, 2006.
Borges, A. V. and Abril, G.:
Carbon dioxide and methane dynamics in estuaries,
in :Treatise on Estuarine and Coastal Science,
edited by: Wolanski, E. and McLusky, D.,
Academic Press, Waltham, 119–161, 2011.
Cai, W.-J.:
Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?,
Annu. Rev. Mar. Sci.,
3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.:
Acidification of subsurface coastal waters enhanced by eutrophication,
Nat. Geosci.,
4, 766–770, https://doi.org/10.1038/ngeo1297, 2011.
Campbell, R., Diaz, F., Hu, Z., Doglioli, A., Petrenko, A., and Dekeyser, I.:
Nutrients and plankton spatial distributions induced by a coastal eddy in the Gulf of Lion. Insights from a numerical model,
Prog. Oceanogr.,
109, 47–69, https://doi.org/10.1016/j.pocean.2012.09.005, 2013.
Chen, C.-T. A. and Borges, A. V:
Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,
Deep-Sea Res. Pt. II,
56, 578–590, https://doi.org/10.1016/j.dsr2.2009.01.001, 2009.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Cloern, J. E.:
Our evolving conceptual model of the coastal eutrophication problem,
Mar. Ecol. Prog. Ser.,
210, 223–253, https://doi.org/10.3354/meps210223, 2001.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Copin-Montégut, C., Bégovic, M., and Merlivat, L.:
Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea,
Mar. Chem.,
85, 169–189, https://doi.org/10.1016/j.marchem.2003.10.005, 2004.
De Carlo, E. H., Mousseau, L., Passafiume, O., Drupp, P. S., and Gattuso, J.-P.:
Carbonate Chemistry and Air–Sea CO2 Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011,
Aquat. Geochem.,
19, 399–442, https://doi.org/10.1007/s10498-013-9217-4, 2013.
Dickson, A. G.:
Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion in synthetic sea water from 273.15 to 318.15 K,
J. Chem. Thermodyn.,
22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990a.
Dickson, A. G.:
Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K,
Deep-Sea Res.,
37, 755–766, https://doi.org/10.1016/0198-0149(90)90004-F, 1990b.
Dickson, A. G. and Riley, J. P.:
The estimation of acid dissociation constants in sea-water media from potentiometric titrations with strong base. II. The dissociation of phosphoric acid,
Mar. Chem.,
7, 101–109, https://doi.org/10.1016/0304-4203(79)90002-1, 1979.
Doney, S. C., Tilbrook, B., Roy, S., Metzl, N., Le Quéré, C., Hood, M., Feely, R. A., and Bakker, D.:
Surface-ocean CO2 variability and vulnerability,
Deep-Sea Res. Pt. II,
56, 504–511, https://doi.org/10.1016/j.dsr2.2008.12.016, 2009.
Esbaugh, A. J., Heuer, R., and Grosell, M.:
Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta,
J. Comp. Physiol. B,
182, 921–934, https://doi.org/10.1007/s00360-012-0668-5, 2012.
Faure, V., Pinazo, C., Torréton, J.-P., and Jacquet, S.:
Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: A new biogeochemical model based on microbial loop recycling,
Mar. Pollut. Bull.,
61, 465–479, https://doi.org/10.1016/j.marpolbul.2010.06.041, 2010.
Fraysse, M., Pinazo, C., Faure, V., Fuchs, R., Lazzari, P., Raimbault, P., and Pairaud, I.:
Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): What complexity is required in the Coastal Zone?,
PLoS One,
8, 1–18, https://doi.org/10.1371/journal.pone.0080012, 2013.
Fraysse, M., Pairaud, I., Ross, O. N., Faure, V., and Pinazo, C.:
Intrusion of Rhône River diluted water into the Bay of Marseille: Generation processes and impacts on ecosystem functioning,
J. Geophys. Res.-Oceans,
119, 6535–6556, https://doi.org/10.1002/2014JC010022, 2014.
Fukuda, R., Ogawa, H., Nagata, T., and Koike, I.:
Direct Determination of Carbon and Nitrogen Contents of Natural Bacterial Assemblages in Marine Environments,
Appl. Environ. Microb.,
64, 3352–3358,
https://doi.org/10.1128/AEM.64.9.3352-3358.1998, 1998.
Gatti, J., Petrenko, A., Devenon, J.-L., Leredde, Y., and Ulses, C.:
The Rhône river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003,
Cont. Shelf Res.,
26, 1794–1805, https://doi.org/10.1016/j.csr.2006.05.012, 2006.
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.:
Carbon and carbonate metabolism in coastal aquatic ecosystems,
Annu. Rev. Ecol. Syst.,
29, 405–34, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998.
Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C.:
Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios,
Science,
349, https://doi.org/10.1126/science.aac4722, 2015.
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O., and Ethe, C.: The fate of pelagic CaCO3 production in a high CO2 ocean: a model study, Biogeosciences, 4, 505–519, https://doi.org/10.5194/bg-4-505-2007, 2007.
Gemayel, E., Hassoun, A. E. R., Benallal, M. A., Goyet, C., Rivaro, P., Abboud-Abi Saab, M., Krasakopoulou, E., Touratier, F., and Ziveri, P.: Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters, Earth Syst. Dynam., 6, 789–800, https://doi.org/10.5194/esd-6-789-2015, 2015.
Gerber, R. P. and Gerber, M. B.:
Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton,
Mar. Biol.,
52, 33–43, https://doi.org/10.1007/BF00386855, 1979.
Gouze, E., Raimbault, P., Garcia, N., and Picon, P.:
Nutrient dynamics and primary production in the eutrophic Berre Lagoon (Mediterranean, France),
Transitional Waters Bull.,
2, 17–40, https://doi.org/10.1285/i18252273v2n2p17, 2008.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R. H.:
The oceanic sink for anthropogenic CO2 from 1994 to 2007,
Science,
363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019.
Gutiérrez-Rodríguez, A., Latasa, M., Scharek, R., Massana, R., Vila, G., and Gasol, J. M.:
Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site,
Estuar. Coast. Shelf S.,
95, 77–87, https://doi.org/10.1016/j.ecss.2011.08.008, 2011.
Harrison, W. G., Harris, L. R., and Irwin, B. D.:
The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations,
Limnol. Oceanogr.,
41, 16–32, https://doi.org/10.4319/lo.1996.41.1.0016, 1996.
Herrmann, M., Somot, S., Calmanti, S., Dubois, C., and Sevault, F.: Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration, Nat. Hazards Earth Syst. Sci., 11, 1983–2001, https://doi.org/10.5194/nhess-11-1983-2011, 2011.
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S. I., Thomas, A., Warren, R., and Zhou, G.:
Impacts of 1.5 ∘C Global Warming on Natural and Human Systems, in Global warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.,
World Meteorological Organization Technical Document,
2018.
Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L., and Gattuso, J.-P.: Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea, Ocean Sci., 13, 411–426, https://doi.org/10.5194/os-13-411-2017, 2017.
Lacroix, G. and Grégoire, M.:
Revisited ecosystem model (MODECOGeL) of the Ligurian Sea: seasonal and interannual variability due to atmospheric forcing,
J. Marine Syst.,
37, 229–258, https://doi.org/10.1016/S0924-7963(02)00190-2, 2002.
Lajaunie-Salla, K., Diaz, F., and Pinazo, C.: configuration files and code for Eco3M-CarbOx v1.1, Zenodo, https://doi.org/10.5281/zenodo.3757677, 2020.
Le Borgne, R.:
Zooplankton production in the eastern tropical Atlantic Ocean: Net growth efficiency and P:B in terms of carbon, nitrogen, and phosphorus,
Limnol. Oceanogr.,
27, 681–698, https://doi.org/10.4319/lo.1982.27.4.0681, 1982.
Le Borgne, R. and Rodier, M.:
Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific,
Deep-Sea Res. Pt. II,
44, 2003–2023, https://doi.org/10.1016/S0967-0645(97)00034-9, 1997.
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu de Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori, G., Rembauville, M., Grosso, O., Poulain, J., de Vargas, C., Pujo-Pay, M., and Conan, P.:
Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export,
Nat. Commun.,
9, 953, https://doi.org/10.1038/s41467-018-03376-9, 2018.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.:
Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium,
Mar. Chem.,
70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Margalef, R.:
Life-forms of phytoplankton as survival alternatives in an unstable environment,
edited by: Gauthier-Villars,
Oceanol. Acta,
1, 493–509,
available at: https://archimer.ifremer.fr/doc/00123/23403/ (last access: December 2019), 1978.
Marty, J.-C., Chiavérini, J., Pizay, M.-D., and Avril, B.:
Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999),
Deep-Sea Res. Pt. II,
49, 1965–1985, https://doi.org/10.1016/S0967-0645(02)00022-X, 2002.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.:
The proportionality of global warming to cumulative carbon emissions,
Nature,
459, 829–32, https://doi.org/10.1038/nature08047, 2009.
Mella-Flores, D., Mazard, S., Humily, F., Partensky, F., Mahé, F., Bariat, L., Courties, C., Marie, D., Ras, J., Mauriac, R., Jeanthon, C., Mahdi Bendif, E., Ostrowski, M., Scanlan, D. J., and Garczarek, L.: Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?, Biogeosciences, 8, 2785–2804, https://doi.org/10.5194/bg-8-2785-2011, 2011.
Middelburg, J. J.:
Marine carbon biogeochemistry. A primer for earth system scientists,
Springer Briefs in Earth System Sciences, Springer Nature Switzerland AG,
Cham, Switzerland,
2019.
Millero, F. J.:
Thermodynamics Seawater – 1. The PVT Properties,
Ocean Science and Engineering,
7, 403–460 1982.
Millero, F. J.:
Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Ac.,
59, 661–677, https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
Millet, B., Pinazo, C., Daniela, B., Remi, P., Pierre, G., and Ivane, P.:
Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France),
PLoS One,
13, e0195257, https://doi.org/10.1371/journal.pone.0195257, 2018.
Millot, C.:
The Gulf of Lions hydrodynamics,
Cont. Shelf Res.,
10, 885–894, https://doi.org/10.1016/0278-4343(90)90065-T, 1990.
Monterey, G. and Levitus, S.:
Seasonal variability of mixed layer depth for the World Ocean, NOAA Atlas NESDIS 14,
U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Washington, D.C., 1997.
Moran, M. A.:
The global ocean microbiome,
Sci. Am. Assoc. Adv. Sci.,
350, https://doi.org/10.1126/science.aac8455, 2015.
Morris, A. W. and Riley, J. P.:
The bromide/chlorinity and sulphate/chlorinity ratio in sea water,
Deep Sea Res. Oceanogr. Abstr.,
13, 699–705, https://doi.org/10.1016/0011-7471(66)90601-2, 1966.
Mucci, A.:
The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure,
Am. J. Sci.,
283, 780–799, https://doi.org/10.2475/ajs.283.7.780, 1983.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.:
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms,
Nature,
437, 681–6, https://doi.org/10.1038/nature04095, 2005.
Pairaud, I., Gatti, J., Bensoussan, N., Verney, R., and Garreau, P.:
Hydrology and circulation in a coastal area off Marseille: Validation of a nested 3D model with observations,
J. Marine Syst.,
88, 20–33, https://doi.org/10.1016/j.jmarsys.2011.02.010, 2011.
Para, J., Coble, P. G., Charrière, B., Tedetti, M., Fontana, C., and Sempéré, R.: Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River, Biogeosciences, 7, 4083–4103, https://doi.org/10.5194/bg-7-4083-2010, 2010.
Petrenko, A.:
Variability of circulation features in the Gulf of Lion, NW Mediterranean Sea. Importance of inertial currents,
Oceanol. Acta,
26, 323–338, https://doi.org/10.1016/S0399-1784(03)00038-0, 2003.
Pont, D., Simonnet, J.-P., and Walter, A. V.:
Medium-term changes in suspended sediment delivery to the Ocean: Consequences of catchment heterogeneity and river management (Rhône River, France),
Estuar. Coast. Shelf S.,
54, 1–18, https://doi.org/10.1006/ecss.2001.0829, 2002.
Raven, J. A. and Falkowski, P. G.:
Oceanic sinks for atmospheric CO2,
Plant Cell Environ.,
22, 741–755, https://doi.org/10.1046/j.1365-3040.1999.00419.x, 1999.
Riley, J. P.:
The occurrence of anomalously high fluoride concentrations in the North Atlantic,
Deep Sea Research and Oceanographic Abstracts,
12, 219–220, https://doi.org/10.1016/0011-7471(65)90027-6, 1965.
Riley, J. P. and Tongudai, M.:
The major cation/chlorinity ratios in sea water,
Chem. Geol.,
2, 263–269, https://doi.org/10.1016/0009-2541(67)90026-5, 1967.
Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and Regnier, P.:
The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean,
Global Biogeochem. Cy.,
33, https://doi.org/10.1029/2019GB006239, 2019.
Ross, O. N., Fraysse, M., Pinazo, C., and Pairaud, I.:
Impact of an intrusion by the Northern Current on the biogeochemistry in the eastern Gulf of Lion, NW Mediterranean,
Estuar. Coast. Shelf S.,
170, 1–9, https://doi.org/10.1016/j.ecss.2015.12.022, 2016.
Rykiel, E. J.:
Testing ecological models: The meaning of validation,
Ecol. Model.,
90, 229–244, https://doi.org/10.1016/0304-3800(95)00152-2, 1996.
Sarthou, G., Timmermans, K. R., Blain, S., and Tréguer, P.:
Growth physiology and fate of diatoms in the ocean: a review,
J. Sea Res.,
53, 25–42, https://doi.org/10.1016/j.seares.2004.01.007, 2005.
Schneider, A., Wallace, D. W. R., and Körtzinger, A.:
Alkalinity of the Mediterranean Sea,
Geophys. Res. Lett.,
34, https://doi.org/10.1029/2006GL028842, 2007.
Sempéré, R., Charrìère, B., van Wambeke, F., and Cauwet, G.:
Carbon inputs of the Rhône River to the Mediterranean Sea: Biogeochemical implications,
Global Biogeochem. Cy.,
14, 669–681, https://doi.org/10.1029/1999GB900069, 2000.
Small, C. and Nicholls, R. J.:
A global analysis of human settlement in coastal zones,
J. Coastal Res.,
19, 584–599,
available at: http://www.jstor.org/stable/4299200 (last access: August 2019), 2003.
Smith, C. L. and Tett, P.:
A depth-resolving numerical model of physically forced microbiology at the European shelf edge,
J. Marine Syst.,
26, 1–36, https://doi.org/10.1016/S0924-7963(00)00010-5, 2000.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J.:
The effect of biogeochemical processes on pH,
Mar. Chem.,
105, 30–51, https://doi.org/10.1016/j.marchem.2006.12.012, 2007.
Tett, P.:
A three-layer vertical and microbiological processes model for shelf seas,
Report No. 14. Proudman Oceanographic Laboratory, Birkenhead, UK, 85 pp., 1990.
Thingstad, T. F.:
Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of “maintenance” metabolism,
Mar. Ecol. Prog. Ser.,
35, 99–109, https://doi.org/10.3354/meps035099, 1987.
Uppström, L. R.:
The boron/chlorinity ratio of deep-sea water from the Pacific Ocean,
Deep Sea Res. Oceanogr. Abstr.,
21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Upstill-Goddard, R. C.:
Air–sea gas exchange in the coastal zone,
Estuar. Coast. Shelf S.,
70, 388–404, https://doi.org/10.1016/j.ecss.2006.05.043, 2006.
Wanninkhof, R. H.:
Relationship between wind speed and gas exchange,
J. Geophys. Res.,
97, 7373–7382, 1992.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Willmott, C. J.:
Some comments on the evaluation of model performance,
B. Am. Meteorol. Soc.,
63, 1309–1313,
https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2,
1982.
Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P. E., Armengaud, A., and Lefèvre, D.:
Temporal variability of the carbonate system and air–sea CO2 exchanges in a Mediterranean human-impacted coastal site,
Estuar. Coast. Shelf S.,
236, https://doi.org/10.1016/j.ecss.2020.106641, 2020.
Xueref-Remy, I., Milne, M., Zoghbi, N., Yohia, C., Armengaud, A., Blanc, P.-E., Delmotte, M., Piazzola, J., Nathan, B., Ramonet, M., and Lac, C.:
Assessing atmospheric CO2 variability in the Aix–Marseille metropolis area (France) and its coastal Mediterranean Sea at different time scales within the AMC project, Prague, Aus,
available at: https://conference.icos-ri.eu/wp-ontent/uploads/2018/09/ICOS2018SC_Book_of_Abstracts.pdf (last access: February 2020), 2018a.
Xueref-Remy, I., Dieudonné, E., Vuillemin, C., Lopez, M., Lac, C., Schmidt, M., Delmotte, M., Chevallier, F., Ravetta, F., Perrussel, O., Ciais, P., Bréon, F.-M., Broquet, G., Ramonet, M., Spain, T. G., and Ampe, C.: Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area, Atmos. Chem. Phys., 18, 3335–3362, https://doi.org/10.5194/acp-18-3335-2018, 2018.
Yohia, C.:
Genèse du mistral par interaction barocline et advection du tourbillon potentiel,
Climatologie,
13, 24–37, https://doi.org/10.4267/climatologie.1182, 2017.
Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. R.:
Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary,
Estuaries,
26, 1401–1415, 2003.
Short summary
A biogeochemical model of planktonic food webs including a carbonate balance module is applied in the Bay of Marseille (France) to represent the carbon marine cycle expected to change in the future owing to significant increases in anthropogenic emissions of CO2. The model correctly simulates the ranges and seasonal dynamics of most variables of the carbonate system (pH). This study shows that external physical forcings have an important impact on the carbonate equilibrium in this coastal area.
A biogeochemical model of planktonic food webs including a carbonate balance module is applied...