Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-295-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)
Katixa Lajaunie-Salla
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Frédéric Diaz
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Cathy Wimart-Rousseau
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Thibaut Wagener
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Dominique Lefèvre
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Christophe Yohia
Aix Marseille Univ., CNRS, IRD, OSU Institut Pythéas, 13288, Marseille, France
Irène Xueref-Remy
Aix Marseille Univ., Université d'Avignon, CNRS, IRD, IMBE, Marseille, France
Brian Nathan
Aix Marseille Univ., Université d'Avignon, CNRS, IRD, IMBE, Marseille, France
Alexandre Armengaud
AtmoSud: Observatoire de la qualité de l'air en région Sud Provence Alpes Côte d'Azur, le Noilly Paradis, 146 rue Paradis, 13294 Marseille, France
Christel Pinazo
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, UM 110, 13288, Marseille, France
Related authors
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, https://doi.org/10.5194/nhess-19-2551-2019, 2019
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D’Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
EGUsphere, https://doi.org/10.5194/egusphere-2024-2903, https://doi.org/10.5194/egusphere-2024-2903, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, like ultra-fine particles, were higher in the port than in the city and offer a strong support to improve emission inventories. These findings may also serve as reference for assessing the benefits of a Sulphur Emission Control Area in the Mediterranean in 2025.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, and Irène Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2457, https://doi.org/10.5194/egusphere-2024-2457, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas and its emissions reduction is urgently required to mitigate the global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Brian Nathan, Joannes D. Maasakkers, Stijn Naus, Ritesh Gautam, Mark Omara, Daniel J. Varon, Melissa P. Sulprizio, Lucas A. Estrada, Alba Lorente, Tobias Borsdorff, Robert J. Parker, and Ilse Aben
Atmos. Chem. Phys., 24, 6845–6863, https://doi.org/10.5194/acp-24-6845-2024, https://doi.org/10.5194/acp-24-6845-2024, 2024
Short summary
Short summary
Venezuela's Lake Maracaibo region is notoriously hard to observe from space and features intensive oil exploitation, although production has strongly decreased in recent years. We estimate methane emissions using 2018–2020 TROPOMI satellite observations with national and regional transport models. Despite the production decrease, we find relatively constant emissions from Lake Maracaibo between 2018 and 2020, indicating that there could be large emissions from abandoned infrastructure.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021, https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
Short summary
The MAPM project showcases a method to improve estimates of PM2.5 emissions through an advanced statistical technique that is still new to the aerosol community. Using Christchurch, NZ, as a test bed, measurements from a field campaign in winter 2019 are incorporated into this new approach. An overestimation from local inventory estimates is identified. This technique may be exported to other urban areas in need.
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, Thomas Lauvaux, Bo Zheng, Michel Ramonet, Irène Xueref-Remy, Simone Kotthaus, Martial Haeffelin, and Philippe Ciais
Atmos. Chem. Phys., 21, 10707–10726, https://doi.org/10.5194/acp-21-10707-2021, https://doi.org/10.5194/acp-21-10707-2021, 2021
Short summary
Short summary
Currently there is growing interest in monitoring city-scale CO2 emissions based on atmospheric CO2 measurements, atmospheric transport modeling, and inversion technique. We analyze the various sources of uncertainty that impact the atmospheric CO2 modeling and that may compromise the potential of this method for the monitoring of CO2 emission over Paris. Results suggest selection criteria for the assimilation of CO2 measurements into the inversion system that aims at retrieving city emissions.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, https://doi.org/10.5194/nhess-19-2551-2019, 2019
Jinghui Lian, François-Marie Bréon, Grégoire Broquet, T. Scott Zaccheo, Jeremy Dobler, Michel Ramonet, Johannes Staufer, Diego Santaren, Irène Xueref-Remy, and Philippe Ciais
Atmos. Chem. Phys., 19, 13809–13825, https://doi.org/10.5194/acp-19-13809-2019, https://doi.org/10.5194/acp-19-13809-2019, 2019
Short summary
Short summary
CO2 emissions within urban areas impact nearby and downwind concentrations. A different system, based on bi-wavelength laser measurements, has been deployed over Paris. It samples CO2 concentrations along horizontal lines, between a transceiver and a reflector. In this paper, we analyze the measurements provided by this system, together with the more classical in situ sampling and high-resolution modeling. We focus on the temporal and spatial variability of atmospheric CO2 concentrations.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Audrey Gimenez, Melika Baklouti, Thibaut Wagener, and Thierry Moutin
Biogeosciences, 15, 6573–6589, https://doi.org/10.5194/bg-15-6573-2018, https://doi.org/10.5194/bg-15-6573-2018, 2018
Short summary
Short summary
During the OUTPACE cruise conducted in the oligotrophic to ultra-oligotrophic region of the western tropical South Pacific, two contrasted regions were sampled in terms of N2 fixation rates, primary production rates and nutrient availability. The aim of this work was to investigate the role of N2 fixation in the differences observed between the two contrasted areas by comparing two simulations only differing by the presence or not of N2 fixers using a 1-D biogeochemical–physical coupled model.
Thibaut Wagener, Nicolas Metzl, Mathieu Caffin, Jonathan Fin, Sandra Helias Nunige, Dominique Lefevre, Claire Lo Monaco, Gilles Rougier, and Thierry Moutin
Biogeosciences, 15, 5221–5236, https://doi.org/10.5194/bg-15-5221-2018, https://doi.org/10.5194/bg-15-5221-2018, 2018
Short summary
Short summary
The western tropical South Pacific was sampled along a longitudinal 4000 km transect (OUTPACE cruise) for the measurement of carbonate parameters (total alkalinity and total inorganic carbon) between the Melanesian Archipelago and the western part of the South Pacific gyre. This paper reports this new dataset and derived properties. We also estimate anthropogenic carbon distribution in the water column using the TrOCA method.
Thierry Moutin, Thibaut Wagener, Mathieu Caffin, Alain Fumenia, Audrey Gimenez, Melika Baklouti, Pascale Bouruet-Aubertot, Mireille Pujo-Pay, Karine Leblanc, Dominique Lefevre, Sandra Helias Nunige, Nathalie Leblond, Olivier Grosso, and Alain de Verneil
Biogeosciences, 15, 2961–2989, https://doi.org/10.5194/bg-15-2961-2018, https://doi.org/10.5194/bg-15-2961-2018, 2018
Short summary
Short summary
Surface waters of the western tropical South Pacific were sampled along a longitudinal 4000 km transect during the stratified period between the Melanesian Archipelago and the western part of the South Pacific gyre. We found a significant biological carbon pump sustained almost exclusively by N2 fixation and essentially controlled by phosphate availability in the iron-rich Melanesian Archipelago waters which appears to be a net sink for atmospheric CO2 while the gyre is in a quasi-steady state.
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018, https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
Short summary
The western tropical South Pacific Ocean has recently been shown to be a hotspot for biological nitrogen fixation. In this study, we examined the horizontal and vertical distribution of heterotrophic prokaryotic production alongside photosynthetic rates, nitrogen fixation rates and phosphate turnover times across the western tropical South Pacific Ocean, in order to relate these fluxes to bottom–up controls (related to nitrogen, phosphate and labile C availability).
Vincent Taillandier, Thibaut Wagener, Fabrizio D'Ortenzio, Nicolas Mayot, Hervé Legoff, Joséphine Ras, Laurent Coppola, Orens Pasqueron de Fommervault, Catherine Schmechtig, Emilie Diamond, Henry Bittig, Dominique Lefevre, Edouard Leymarie, Antoine Poteau, and Louis Prieur
Earth Syst. Sci. Data, 10, 627–641, https://doi.org/10.5194/essd-10-627-2018, https://doi.org/10.5194/essd-10-627-2018, 2018
Short summary
Short summary
We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats.
Pierre Marrec, Gérald Grégori, Andrea M. Doglioli, Mathilde Dugenne, Alice Della Penna, Nagib Bhairy, Thierry Cariou, Sandra Hélias Nunige, Soumaya Lahbib, Gilles Rougier, Thibaut Wagener, and Melilotus Thyssen
Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, https://doi.org/10.5194/bg-15-1579-2018, 2018
Short summary
Short summary
The objective of this study was to better understand the variability of the phytoplankton community structure in small physical structures at the surface of the ocean. After identifying such a structure in the Mediterranean Sea, we deployed cutting-edge physical and biological sensors in order to observe at a high frequency the dynamics of this structure. From these observations we described the variations of the phytoplankton community structure and how the physics controls this variability.
Irène Xueref-Remy, Elsa Dieudonné, Cyrille Vuillemin, Morgan Lopez, Christine Lac, Martina Schmidt, Marc Delmotte, Frédéric Chevallier, François Ravetta, Olivier Perrussel, Philippe Ciais, François-Marie Bréon, Grégoire Broquet, Michel Ramonet, T. Gerard Spain, and Christophe Ampe
Atmos. Chem. Phys., 18, 3335–3362, https://doi.org/10.5194/acp-18-3335-2018, https://doi.org/10.5194/acp-18-3335-2018, 2018
Short summary
Short summary
Urbanized and industrialized areas are the largest source of fossil CO2. This work analyses the atmospheric CO2 variability observed from the first in situ network deployed in the Paris megacity area. Gradients of several ppm are found between the rural, peri-urban and urban sites at the diurnal to the seasonal scales. Wind direction and speed as well as boundary layer dynamics, correlated to highly variable urban emissions, are shown to be key regulator factors of the observed CO2 records.
Amélie Saunier, Elena Ormeño, Christophe Boissard, Henri Wortham, Brice Temime-Roussel, Caroline Lecareux, Alexandre Armengaud, and Catherine Fernandez
Atmos. Chem. Phys., 17, 7555–7566, https://doi.org/10.5194/acp-17-7555-2017, https://doi.org/10.5194/acp-17-7555-2017, 2017
Short summary
Short summary
We investigated the BVOC emissions variations of Quercus Pubescens, under natural and amplified drought, in situ, in order to determine the dependency to light and/or temperature of these emissions. Our results showed that all BVOC emissions were reduced with amplified drought.
Moreover, we highlighted two dependences: (i) light and temperature and (ii) light and temperature during the day and to temperature during the night. These results can be useful to enhance emission models.
Irène Ventrillard, Irène Xueref-Remy, Martina Schmidt, Camille Yver Kwok, Xavier Faïn, and Daniele Romanini
Atmos. Meas. Tech., 10, 1803–1812, https://doi.org/10.5194/amt-10-1803-2017, https://doi.org/10.5194/amt-10-1803-2017, 2017
Short summary
Short summary
We present a comparison of CO measurements performed with a portable OF-CEAS laser spectrometer against a high-performance gas chromatograph. For both surface and airborne measurements, the instruments show an excellent agreement very close to the 2 ppb World Meteorological Organization recommendation for CO inter-laboratory comparison. This work establishes that this laser technique allows for the development of sensitive, compact, robust and reliable instruments for in situ trace-gas analysis.
Lamia Ammoura, Irène Xueref-Remy, Felix Vogel, Valérie Gros, Alexia Baudic, Bernard Bonsang, Marc Delmotte, Yao Té, and Frédéric Chevallier
Atmos. Chem. Phys., 16, 15653–15664, https://doi.org/10.5194/acp-16-15653-2016, https://doi.org/10.5194/acp-16-15653-2016, 2016
Short summary
Short summary
We propose a new approach to estimate urban emission ratios that takes advantage of the enhanced local urban signal in the atmosphere at low wind speed. We apply it to estimate monthly ratios between CO2, CO and some VOCs from atmospheric measurement datasets acquired in the centre of Paris between 2010 and 2014. We find that this approach is little sensitive to the regional background level definition. With this new method, we may reveal spatial and seasonal variability in the ratios in Paris.
Johannes Staufer, Grégoire Broquet, François-Marie Bréon, Vincent Puygrenier, Frédéric Chevallier, Irène Xueref-Rémy, Elsa Dieudonné, Morgan Lopez, Martina Schmidt, Michel Ramonet, Olivier Perrussel, Christine Lac, Lin Wu, and Philippe Ciais
Atmos. Chem. Phys., 16, 14703–14726, https://doi.org/10.5194/acp-16-14703-2016, https://doi.org/10.5194/acp-16-14703-2016, 2016
Lin Wu, Grégoire Broquet, Philippe Ciais, Valentin Bellassen, Felix Vogel, Frédéric Chevallier, Irène Xueref-Remy, and Yilong Wang
Atmos. Chem. Phys., 16, 7743–7771, https://doi.org/10.5194/acp-16-7743-2016, https://doi.org/10.5194/acp-16-7743-2016, 2016
Short summary
Short summary
This paper advances atmospheric inversion of city CO2 emissions as follows: (1) illustrate how inversion methodology can be tailored to deal with very large urban networks of sensors measuring CO2 concentrations; (2) demonstrate that atmospheric inversion could be a relevant tool of Monitoring, Reporting and Verification (MRV) of city CO2 emissions; (3) clarify the theoretical potential of inversion for reducing uncertainties in the estimates of citywide total and sectoral CO2 emissions.
C. Yver Kwok, O. Laurent, A. Guemri, C. Philippon, B. Wastine, C. W. Rella, C. Vuillemin, F. Truong, M. Delmotte, V. Kazan, M. Darding, B. Lebègue, C. Kaiser, I. Xueref-Rémy, and M. Ramonet
Atmos. Meas. Tech., 8, 3867–3892, https://doi.org/10.5194/amt-8-3867-2015, https://doi.org/10.5194/amt-8-3867-2015, 2015
Short summary
Short summary
We present the results of tests of CRDS instruments in the laboratory (47 instruments) and in the field (15 instruments). We demonstrate that, thanks to rigorous testing, newer models generally perform better than older models, especially in terms of reproducibility between instruments. In the field, we see the importance of individual diagnostics during the installation phase, and we show the value of calibration and target gases that assess the quality of the data.
L. Ammoura, I. Xueref-Remy, V. Gros, A. Baudic, B. Bonsang, J.-E. Petit, O. Perrussel, N. Bonnaire, J. Sciare, and F. Chevallier
Atmos. Chem. Phys., 14, 12871–12882, https://doi.org/10.5194/acp-14-12871-2014, https://doi.org/10.5194/acp-14-12871-2014, 2014
Short summary
Short summary
We present the first study of CO2, VOCs and NOx measured all together in a road tunnel around the Paris megacity with the aim to quantify the ratios of these species co-emitted within traffic emissions. It allows us to independently assess some of the ratios provided in the latest Paris emission inventory. It also reveals a large variability of the ratios to CO2, implying that traffic does not have a unique imprint in the urban plume, but rather leaves various signatures.
U. Christaki, D. Lefèvre, C. Georges, J. Colombet, P. Catala, C. Courties, T. Sime-Ngando, S. Blain, and I. Obernosterer
Biogeosciences, 11, 6739–6753, https://doi.org/10.5194/bg-11-6739-2014, https://doi.org/10.5194/bg-11-6739-2014, 2014
Short summary
Short summary
The concurrent investigation of several parameters has provided insight into two key roles of heterotrophic bacteria, and the microbial food web functioning, at the onset and late phase of the spring phytoplankton bloom induced by natural iron fertilization in the Southern Ocean.
K. Desboeufs, N. Leblond, T. Wagener, E. Bon Nguyen, and C. Guieu
Biogeosciences, 11, 5581–5594, https://doi.org/10.5194/bg-11-5581-2014, https://doi.org/10.5194/bg-11-5581-2014, 2014
M. Lopez, M. Schmidt, M. Delmotte, A. Colomb, V. Gros, C. Janssen, S. J. Lehman, D. Mondelain, O. Perrussel, M. Ramonet, I. Xueref-Remy, and P. Bousquet
Atmos. Chem. Phys., 13, 7343–7358, https://doi.org/10.5194/acp-13-7343-2013, https://doi.org/10.5194/acp-13-7343-2013, 2013
C. Lac, R. P. Donnelly, V. Masson, S. Pal, S. Riette, S. Donier, S. Queguiner, G. Tanguy, L. Ammoura, and I. Xueref-Remy
Atmos. Chem. Phys., 13, 4941–4961, https://doi.org/10.5194/acp-13-4941-2013, https://doi.org/10.5194/acp-13-4941-2013, 2013
Related subject area
Oceanography
PPCon 1.0: Biogeochemical-Argo profile prediction with 1D convolutional networks
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Development of a total variation diminishing (TVD) sea ice transport scheme and its application in an ocean (SCHISM v5.11) and sea ice (Icepack v1.3.4) coupled model on unstructured grids
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Modelling the water isotope distribution in the Mediterranean Sea using a high-resolution oceanic model (NEMO-MED12-watiso v1.0): evaluation of model results against in situ observations
LIGHT-bgcArgo-1.0: using synthetic float capabilities in E3SMv2 to assess spatiotemporal variability in ocean physics and biogeochemistry
Towards a real-time modeling of global ocean waves by the fully GPU-accelerated spectral wave model WAM6-GPU v1.0
A simple approach to represent precipitation-derived freshwater fluxes into nearshore ocean models: an FVCOM4.1 case study of Quatsino Sound, British Columbia
An optimal transformation method applied to diagnose the ocean carbon budget
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 2: Towards a better representation of total alkalinity when modeling the carbonate system and air–sea CO2 fluxes
DALROMS-NWA12 v1.0, a coupled circulation-ice-biogeochemistry modelling system for the northwest Atlantic Ocean: Development and validation
Development of a novel storm surge inundation model framework for efficient prediction
Skin sea surface temperature schemes in coupled ocean–atmosphere modelling: the impact of chlorophyll-interactive e-folding depth
DELWAVE 1.0: deep learning surrogate model of surface wave climate in the Adriatic Basin
StraitFlux – precise computations of water strait fluxes on various modeling grids
Comparison of the Coastal and Regional Ocean COmmunity model (CROCO) and NCAR-LES in non-hydrostatic simulations
Intercomparisons of Tracker v1.1 and four other ocean particle-tracking software packages in the Regional Ocean Modeling System
CAR36, a regional high-resolution ocean forecasting system for improving drift and beaching of Sargassum in the Caribbean archipelago
Implementation of additional spectral wave field exchanges in a three-dimensional wave–current coupled WAVEWATCH-III (version 6.07) and CROCO (version 1.2) configuration: assessment of their implications for macro-tidal coastal hydrodynamics
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
A revised ocean mixed layer model for better simulating the diurnal variation of ocean skin temperature
Great Lakes wave forecast system on high-resolution unstructured meshes
Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2)
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet-ocean modelling
A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0)
A flexible z-layers approach for the accurate representation of free surface flows in a coastal ocean model (SHYFEM v. 7_5_71)
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2)
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Open-ocean tides simulated by ICON-O, version icon-2.6.6
Using Probability Density Functions to Evaluate Models (PDFEM, v1.0) to compare a biogeochemical model with satellite-derived chlorophyll
An optimal transformation method for inferring ocean tracer sources and sinks
Data assimilation sensitivity experiments in the East Auckland Current system using 4D-Var
Using the COAsT Python package to develop a standardised validation workflow for ocean physics models
Improving Antarctic Bottom Water precursors in NEMO for climate applications
Formulation, optimization, and sensitivity of NitrOMZv1.0, a biogeochemical model of the nitrogen cycle in oceanic oxygen minimum zones
Waves in SKRIPS: WAVEWATCH III coupling implementation and a case study of Tropical Cyclone Mekunu
Adding sea ice effects to a global operational model (NEMO v3.6) for forecasting total water level: approach and impact
Enhanced ocean wave modeling by including effect of breaking under both deep- and shallow-water conditions
An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS)
The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5.10.0)
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants
Gloria Pietropolli, Luca Manzoni, and Gianpiero Cossarini
Geosci. Model Dev., 17, 7347–7364, https://doi.org/10.5194/gmd-17-7347-2024, https://doi.org/10.5194/gmd-17-7347-2024, 2024
Short summary
Short summary
Monitoring the ocean is essential for studying marine life and human impact. Our new software, PPCon, uses ocean data to predict key factors like nitrate and chlorophyll levels, which are hard to measure directly. By leveraging machine learning, PPCon offers more accurate and efficient predictions.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Qian Wang, Yang Zhang, Fei Chai, Y. Joseph Zhang, and Lorenzo Zampieri
Geosci. Model Dev., 17, 7067–7081, https://doi.org/10.5194/gmd-17-7067-2024, https://doi.org/10.5194/gmd-17-7067-2024, 2024
Short summary
Short summary
We coupled an unstructured hydro-model with an advanced column sea ice model to meet the growing demand for increased resolution and complexity in unstructured sea ice models. Additionally, we present a novel tracer transport scheme for the sea ice coupled model and demonstrate that this scheme fulfills the requirements for conservation, accuracy, efficiency, and monotonicity in an idealized test. Our new coupled model also has good performance in realistic tests.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Cara Nissen, Nicole S. Lovenduski, Mathew Maltrud, Alison R. Gray, Yohei Takano, Kristen Falcinelli, Jade Sauvé, and Katherine Smith
Geosci. Model Dev., 17, 6415–6435, https://doi.org/10.5194/gmd-17-6415-2024, https://doi.org/10.5194/gmd-17-6415-2024, 2024
Short summary
Short summary
Autonomous profiling floats have provided unprecedented observational coverage of the global ocean, but uncertainties remain about whether their sampling frequency and density capture the true spatiotemporal variability of physical, biogeochemical, and biological properties. Here, we present the novel synthetic biogeochemical float capabilities of the Energy Exascale Earth System Model version 2 and demonstrate their utility as a test bed to address these uncertainties.
Ye Yuan, Fujiang Yu, Zhi Chen, Xueding Li, Fang Hou, Yuanyong Gao, Zhiyi Gao, and Renbo Pang
Geosci. Model Dev., 17, 6123–6136, https://doi.org/10.5194/gmd-17-6123-2024, https://doi.org/10.5194/gmd-17-6123-2024, 2024
Short summary
Short summary
Accurate and timely forecasting of ocean waves is of great importance to the safety of marine transportation and offshore engineering. In this study, GPU-accelerated computing is introduced in WAve Modeling Cycle 6 (WAM6). With this effort, global high-resolution wave simulations can now run on GPUs up to tens of times faster than the currently available models can on a CPU node with results that are just as accurate.
Krysten Rutherford, Laura Bianucci, and William Floyd
Geosci. Model Dev., 17, 6083–6104, https://doi.org/10.5194/gmd-17-6083-2024, https://doi.org/10.5194/gmd-17-6083-2024, 2024
Short summary
Short summary
Nearshore ocean models often lack complete information about freshwater fluxes due to numerous ungauged rivers and streams. We tested a simple rain-based hydrological model as inputs into an ocean model of Quatsino Sound, Canada, with the aim of improving the representation of the land–ocean connection in the nearshore model. Through multiple tests, we found that the performance of the ocean model improved when providing 60 % or more of the freshwater inputs from the simple runoff model.
Neill Mackay, Taimoor Sohail, Jan David Zika, Richard G. Williams, Oliver Andrews, and Andrew James Watson
Geosci. Model Dev., 17, 5987–6005, https://doi.org/10.5194/gmd-17-5987-2024, https://doi.org/10.5194/gmd-17-5987-2024, 2024
Short summary
Short summary
The ocean absorbs carbon dioxide from the atmosphere, mitigating climate change, but estimates of the uptake do not always agree. There is a need to reconcile these differing estimates and to improve our understanding of ocean carbon uptake. We present a new method for estimating ocean carbon uptake and test it with model data. The method effectively diagnoses the ocean carbon uptake from limited data and therefore shows promise for reconciling different observational estimates.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
EGUsphere, https://doi.org/10.5194/egusphere-2024-1372, https://doi.org/10.5194/egusphere-2024-1372, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the oceans’ capture of atmospheric carbon dioxide which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Xuanxuan Gao, Shuiqing Li, Dongxue Mo, Yahao Liu, and Po Hu
Geosci. Model Dev., 17, 5497–5509, https://doi.org/10.5194/gmd-17-5497-2024, https://doi.org/10.5194/gmd-17-5497-2024, 2024
Short summary
Short summary
Storm surges generate coastal inundation and expose populations and properties to danger. We developed a novel storm surge inundation model for efficient prediction. Estimates compare well with in situ measurements and results from a numerical model. The new model is a significant improvement on existing numerical models, with much higher computational efficiency and stability, which allows timely disaster prevention and mitigation.
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024, https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
Short summary
This study explores methods to reconstruct diurnal variations in skin sea surface temperature in a model of the Mediterranean Sea. Our new approach, considering chlorophyll concentration, enhances spatial and temporal variations in the warm layer. Comparative analysis shows context-dependent improvements. The proposed "chlorophyll-interactive" method brings the surface net total heat flux closer to zero annually, despite a net heat loss from the ocean to the atmosphere.
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024, https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary
Short summary
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the Simulating WAves Nearshore model (SWAN) over synoptic to climate timescales. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024, https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Short summary
Oceanic transports shape the global climate, but the evaluation and validation of this key quantity based on reanalysis and model data are complicated by the distortion of the used modelling grids and the large number of different grid types. We present two new methods that allow the calculation of oceanic fluxes of volume, heat, salinity, and ice through almost arbitrary sections for various models and reanalyses that are independent of the used modelling grids.
Xiaoyu Fan, Baylor Fox-Kemper, Nobuhiro Suzuki, Qing Li, Patrick Marchesiello, Peter P. Sullivan, and Paul S. Hall
Geosci. Model Dev., 17, 4095–4113, https://doi.org/10.5194/gmd-17-4095-2024, https://doi.org/10.5194/gmd-17-4095-2024, 2024
Short summary
Short summary
Simulations of the oceanic turbulent boundary layer using the nonhydrostatic CROCO ROMS and NCAR-LES models are compared. CROCO and the NCAR-LES are accurate in a similar manner, but CROCO’s additional features (e.g., nesting and realism) and its compressible turbulence formulation carry additional costs.
Jilian Xiong and Parker MacCready
Geosci. Model Dev., 17, 3341–3356, https://doi.org/10.5194/gmd-17-3341-2024, https://doi.org/10.5194/gmd-17-3341-2024, 2024
Short summary
Short summary
The new offline particle tracking package, Tracker v1.1, is introduced to the Regional Ocean Modeling System, featuring an efficient nearest-neighbor algorithm to enhance particle-tracking speed. Its performance was evaluated against four other tracking packages and passive dye. Despite unique features, all packages yield comparable results. Running multiple packages within the same circulation model allows comparison of their performance and ease of use.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024, https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
Short summary
The LOCATE numerical model was developed to conduct Lagrangian simulations of the transport and dispersion of marine debris at coastal scales. High-resolution hydrodynamic data and a beaching module that used particle distance to the shore for land–water boundary detection were used on a realistic debris discharge scenario comparing hydrodynamic data at various resolutions. Coastal processes and complex geometric structures were resolved when using nested grids and distance-to-shore beaching.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024, https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Short summary
We present a new way of solving the quasi-geostrophic (QG) equations, a simple set of equations describing ocean dynamics. Our method is solely based on the numerical methods used to solve the equations and requires no parameter tuning. Moreover, it can handle non-rectangular geometries, opening the way to study QG equations on realistic domains. We release a PyTorch implementation to ease future machine-learning developments on top of the presented method.
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024, https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary
Short summary
Parameter estimation is the process that optimizes model parameters using observations, which could reduce model errors and improve forecasting. In this study, we conducted parameter estimation experiments using the CESM and the ensemble adjustment Kalman filter. The obtained initial conditions and parameters are used to perform ensemble forecast experiments for ENSO forecasting. The results revealed that parameter estimation could reduce analysis errors and improve ENSO forecast skills.
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-23, https://doi.org/10.5194/gmd-2024-23, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The recently available ERA5 hourly ocean skin temperature (Tint) data is expected to be valuable for various science studies. However, when analyzing the hourly variations of Tint, questions arise about its reliability, the deficiency of which may be related to errors in the ocean mixed layer (OML) model. To address this, we reexamined and corrected significant errors in the OML model. Validation of the simulated SST using the revised OML model against observations demonstrated good agreement.
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024, https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Short summary
This article presents an overview of the development and implementation of Great Lake Wave Unstructured (GLWUv2.0), including the core model and workflow design and development. The validation was conducted against in situ data for the re-forecasted duration for summer and wintertime (ice season). The article describes the limitations and challenges encountered in the operational environment and the path forward for the next generation of wave forecast systems in enclosed basins like the GL.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-244, https://doi.org/10.5194/gmd-2023-244, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We have introduced an "accelerated forcing" approach to address the discrepancy in timescales between ice sheet and ocean models in coupled modelling, by reducing the ocean model simulation duration. We evaluate the approach's applicability and limitations based on idealized coupled models. Our results suggest that, when used carefully, the approach can be a useful tool in coupled ice sheet-ocean modelling, especially relevant to studies on sea level rise projections.
Andrew C. Ross, Charles A. Stock, Alistair Adcroft, Enrique Curchitser, Robert Hallberg, Matthew J. Harrison, Katherine Hedstrom, Niki Zadeh, Michael Alexander, Wenhao Chen, Elizabeth J. Drenkard, Hubert du Pontavice, Raphael Dussin, Fabian Gomez, Jasmin G. John, Dujuan Kang, Diane Lavoie, Laure Resplandy, Alizée Roobaert, Vincent Saba, Sang-Ik Shin, Samantha Siedlecki, and James Simkins
Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, https://doi.org/10.5194/gmd-16-6943-2023, 2023
Short summary
Short summary
We evaluate a model for northwest Atlantic Ocean dynamics and biogeochemistry that balances high resolution with computational economy by building on the new regional features in the MOM6 ocean model and COBALT biogeochemical model. We test the model's ability to simulate impactful historical variability and find that the model simulates the mean state and variability of most features well, which suggests the model can provide information to inform living-marine-resource applications.
Luca Arpaia, Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 16, 6899–6919, https://doi.org/10.5194/gmd-16-6899-2023, https://doi.org/10.5194/gmd-16-6899-2023, 2023
Short summary
Short summary
We propose a discrete multilayer shallow water model based on z-layers which, thanks to the insertion and removal of surface layers, can deal with an arbitrarily large tidal oscillation independently of the vertical resolution. The algorithm is based on a two-step procedure used in numerical simulations with moving boundaries (grid movement followed by a grid topology change, that is, the insertion/removal of surface layers), which avoids the appearance of very thin surface layers.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Short summary
Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023, https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Short summary
This paper describes the model performance of three global ocean–sea ice configurations, from non-eddying (1°) to eddy-rich (1/16°) resolutions. Model simulations are obtained following the Ocean Model Intercomparison Project phase 2 (OMIP2) protocol. We compare key global climate variables across the three models and against observations, emphasizing the relative advantages and disadvantages of running forced ocean–sea ice models at higher resolution.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Jin-Song von Storch, Eileen Hertwig, Veit Lüschow, Nils Brüggemann, Helmuth Haak, Peter Korn, and Vikram Singh
Geosci. Model Dev., 16, 5179–5196, https://doi.org/10.5194/gmd-16-5179-2023, https://doi.org/10.5194/gmd-16-5179-2023, 2023
Short summary
Short summary
The new ocean general circulation model ICON-O is developed for running experiments at kilometer scales and beyond. One targeted application is to simulate internal tides crucial for ocean mixing. To ensure their realism, which is difficult to assess, we evaluate the barotropic tides that generate internal tides. We show that ICON-O is able to realistically simulate the major aspects of the observed barotropic tides and discuss the aspects that impact the quality of the simulated tides.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Jan David Zika and Sohail Taimoor
EGUsphere, https://doi.org/10.5194/egusphere-2023-1220, https://doi.org/10.5194/egusphere-2023-1220, 2023
Short summary
Short summary
We describe a method to relate the fluxes of heat and fresh water at the sea surface, to the resulting distribution of sea water among categories such as warm and salty, cold and salty, etc. The method exploits the laws that govern how heat and salt change when water mixes. The method will allow the climate community to improve estimates of how much heat the ocean is absorbing and how rainfall and evaporation are changing across the globe.
Rafael Santana, Helen Macdonald, Joanne O'Callaghan, Brian Powell, Sarah Wakes, and Sutara H. Suanda
Geosci. Model Dev., 16, 3675–3698, https://doi.org/10.5194/gmd-16-3675-2023, https://doi.org/10.5194/gmd-16-3675-2023, 2023
Short summary
Short summary
We show the importance of assimilating subsurface temperature and velocity data in a model of the East Auckland Current. Assimilation of velocity increased the representation of large oceanic vortexes. Assimilation of temperature is needed to correctly simulate temperatures around 100 m depth, which is the most difficult region to simulate in ocean models. Our simulations showed improved results in comparison to the US Navy global model and highlight the importance of regional models.
David Byrne, Jeff Polton, Enda O'Dea, and Joanne Williams
Geosci. Model Dev., 16, 3749–3764, https://doi.org/10.5194/gmd-16-3749-2023, https://doi.org/10.5194/gmd-16-3749-2023, 2023
Short summary
Short summary
Validation is a crucial step during the development of models for ocean simulation. The purpose of validation is to assess how accurate a model is. It is most commonly done by comparing output from a model to actual observations. In this paper, we introduce and demonstrate usage of the COAsT Python package to standardise the validation process for physical ocean models. We also discuss our five guiding principles for standardised validation.
Katherine Hutchinson, Julie Deshayes, Christian Éthé, Clément Rousset, Casimir de Lavergne, Martin Vancoppenolle, Nicolas C. Jourdain, and Pierre Mathiot
Geosci. Model Dev., 16, 3629–3650, https://doi.org/10.5194/gmd-16-3629-2023, https://doi.org/10.5194/gmd-16-3629-2023, 2023
Short summary
Short summary
Bottom Water constitutes the lower half of the ocean’s overturning system and is primarily formed in the Weddell and Ross Sea in the Antarctic due to interactions between the atmosphere, ocean, sea ice and ice shelves. Here we use a global ocean 1° resolution model with explicit representation of the three large ice shelves important for the formation of the parent waters of Bottom Water. We find doing so reduces salt biases, improves water mass realism and gives realistic ice shelf melt rates.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
Geosci. Model Dev., 16, 3435–3458, https://doi.org/10.5194/gmd-16-3435-2023, https://doi.org/10.5194/gmd-16-3435-2023, 2023
Short summary
Short summary
In this work, we integrated the WAVEWATCH III model into the regional coupled model SKRIPS. We then performed a case study using the newly implemented model to study Tropical Cyclone Mekunu, which occurred in the Arabian Sea. We found that the coupled model better simulates the cyclone than the uncoupled model, but the impact of waves on the cyclone is not significant. However, the waves change the sea surface temperature and mixed layer, especially in the cold waves produced due to the cyclone.
Pengcheng Wang and Natacha B. Bernier
Geosci. Model Dev., 16, 3335–3354, https://doi.org/10.5194/gmd-16-3335-2023, https://doi.org/10.5194/gmd-16-3335-2023, 2023
Short summary
Short summary
Effects of sea ice are typically neglected in operational flood forecast systems. In this work, we capture these effects via the addition of a parameterized ice–ocean stress. The parameterization takes advantage of forecast fields from an advanced ice–ocean model and features a novel, consistent representation of the tidal relative ice–ocean velocity. The new parameterization leads to improved forecasts of tides and storm surges in polar regions. Associated physical processes are discussed.
Yue Xu and Xiping Yu
Geosci. Model Dev., 16, 2811–2831, https://doi.org/10.5194/gmd-16-2811-2023, https://doi.org/10.5194/gmd-16-2811-2023, 2023
Short summary
Short summary
An accurate description of the wind energy input into ocean waves is crucial to ocean wave modeling, and a physics-based consideration of the effect of wave breaking is absolutely necessary to obtain such an accurate description, particularly under extreme conditions. This study evaluates the performance of a recently improved formula, taking into account not only the effect of breaking but also the effect of airflow separation on the leeside of steep wave crests in a reasonably consistent way.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
Y. Joseph Zhang, Tomas Fernandez-Montblanc, William Pringle, Hao-Cheng Yu, Linlin Cui, and Saeed Moghimi
Geosci. Model Dev., 16, 2565–2581, https://doi.org/10.5194/gmd-16-2565-2023, https://doi.org/10.5194/gmd-16-2565-2023, 2023
Short summary
Short summary
Simulating global ocean from deep basins to coastal areas is a daunting task but is important for disaster mitigation efforts. We present a new 3D global ocean model on flexible mesh to study both tidal and nontidal processes and total water prediction. We demonstrate the potential for
seamlesssimulation, on a single mesh, from the global ocean to a few estuaries along the US West Coast. The model can serve as the backbone of a global tide surge and compound flooding forecasting framework.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Cited articles
Abril, G., Commarieu, M. V., Sottolichio, A., Bretel, P., and Guérin, F.:
Turbidity limits gas exchange in a large macrotidal estuary,
Estuar. Coast. Shelf S.,
83, 342–348, https://doi.org/10.1016/j.ecss.2009.03.006, 2009.
Allen, M. R., Frame, D. J., Huntingford, C., Jones, C., Lowe, J. A., Meinshausen, M., and Meinshausen, N.:
Warming caused by cumulative carbon emissions towards the trillionth tonne,
Nature,
458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Andersson, A. J. and Mackenzie, F. T.:
Shallow-water oceans: a source or sink of atmospheric CO2?,
Front. Ecol. Environ.,
2, 348–353, https://doi.org/10.1890/1540-9295(2004)002[0348:SOASOS]2.0.CO;2, 2004.
Andersson, A. J. and Mackenzie, F. T.: Revisiting four scientific debates in ocean acidification research, Biogeosciences, 9, 893–905, https://doi.org/10.5194/bg-9-893-2012, 2012.
Auger, P. A., Diaz, F., Ulses, C., Estournel, C., Neveux, J., Joux, F., Pujo-Pay, M., and Naudin, J. J.: Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modelling combined approach, Biogeosciences, 8, 3231–3261, https://doi.org/10.5194/bg-8-3231-2011, 2011.
Baklouti, M., Faure, V., Pawlowski, L., and Sciandra, A.:
Investigation and sensitivity analysis of a mechanistic phytoplankton model implemented in a new modular numerical tool (Eco3M) dedicated to biogeochemical modelling,
Prog. Oceanogr.,
71, 34–58, https://doi.org/10.1016/j.pocean.2006.05.003, 2006.
Borges, A. V. and Abril, G.:
Carbon dioxide and methane dynamics in estuaries,
in :Treatise on Estuarine and Coastal Science,
edited by: Wolanski, E. and McLusky, D.,
Academic Press, Waltham, 119–161, 2011.
Cai, W.-J.:
Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?,
Annu. Rev. Mar. Sci.,
3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.:
Acidification of subsurface coastal waters enhanced by eutrophication,
Nat. Geosci.,
4, 766–770, https://doi.org/10.1038/ngeo1297, 2011.
Campbell, R., Diaz, F., Hu, Z., Doglioli, A., Petrenko, A., and Dekeyser, I.:
Nutrients and plankton spatial distributions induced by a coastal eddy in the Gulf of Lion. Insights from a numerical model,
Prog. Oceanogr.,
109, 47–69, https://doi.org/10.1016/j.pocean.2012.09.005, 2013.
Chen, C.-T. A. and Borges, A. V:
Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2,
Deep-Sea Res. Pt. II,
56, 578–590, https://doi.org/10.1016/j.dsr2.2009.01.001, 2009.
Chen, C.-T. A., Huang, T.-H., Chen, Y.-C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges of CO2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, https://doi.org/10.5194/bg-10-6509-2013, 2013.
Cloern, J. E.:
Our evolving conceptual model of the coastal eutrophication problem,
Mar. Ecol. Prog. Ser.,
210, 223–253, https://doi.org/10.3354/meps210223, 2001.
Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, https://doi.org/10.5194/bg-11-2477-2014, 2014.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Copin-Montégut, C., Bégovic, M., and Merlivat, L.:
Variability of the partial pressure of CO2 on diel to annual time scales in the Northwestern Mediterranean Sea,
Mar. Chem.,
85, 169–189, https://doi.org/10.1016/j.marchem.2003.10.005, 2004.
De Carlo, E. H., Mousseau, L., Passafiume, O., Drupp, P. S., and Gattuso, J.-P.:
Carbonate Chemistry and Air–Sea CO2 Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011,
Aquat. Geochem.,
19, 399–442, https://doi.org/10.1007/s10498-013-9217-4, 2013.
Dickson, A. G.:
Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion in synthetic sea water from 273.15 to 318.15 K,
J. Chem. Thermodyn.,
22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990a.
Dickson, A. G.:
Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K,
Deep-Sea Res.,
37, 755–766, https://doi.org/10.1016/0198-0149(90)90004-F, 1990b.
Dickson, A. G. and Riley, J. P.:
The estimation of acid dissociation constants in sea-water media from potentiometric titrations with strong base. II. The dissociation of phosphoric acid,
Mar. Chem.,
7, 101–109, https://doi.org/10.1016/0304-4203(79)90002-1, 1979.
Doney, S. C., Tilbrook, B., Roy, S., Metzl, N., Le Quéré, C., Hood, M., Feely, R. A., and Bakker, D.:
Surface-ocean CO2 variability and vulnerability,
Deep-Sea Res. Pt. II,
56, 504–511, https://doi.org/10.1016/j.dsr2.2008.12.016, 2009.
Esbaugh, A. J., Heuer, R., and Grosell, M.:
Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta,
J. Comp. Physiol. B,
182, 921–934, https://doi.org/10.1007/s00360-012-0668-5, 2012.
Faure, V., Pinazo, C., Torréton, J.-P., and Jacquet, S.:
Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: A new biogeochemical model based on microbial loop recycling,
Mar. Pollut. Bull.,
61, 465–479, https://doi.org/10.1016/j.marpolbul.2010.06.041, 2010.
Fraysse, M., Pinazo, C., Faure, V., Fuchs, R., Lazzari, P., Raimbault, P., and Pairaud, I.:
Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): What complexity is required in the Coastal Zone?,
PLoS One,
8, 1–18, https://doi.org/10.1371/journal.pone.0080012, 2013.
Fraysse, M., Pairaud, I., Ross, O. N., Faure, V., and Pinazo, C.:
Intrusion of Rhône River diluted water into the Bay of Marseille: Generation processes and impacts on ecosystem functioning,
J. Geophys. Res.-Oceans,
119, 6535–6556, https://doi.org/10.1002/2014JC010022, 2014.
Fukuda, R., Ogawa, H., Nagata, T., and Koike, I.:
Direct Determination of Carbon and Nitrogen Contents of Natural Bacterial Assemblages in Marine Environments,
Appl. Environ. Microb.,
64, 3352–3358,
https://doi.org/10.1128/AEM.64.9.3352-3358.1998, 1998.
Gatti, J., Petrenko, A., Devenon, J.-L., Leredde, Y., and Ulses, C.:
The Rhône river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003,
Cont. Shelf Res.,
26, 1794–1805, https://doi.org/10.1016/j.csr.2006.05.012, 2006.
Gattuso, J.-P., Frankignoulle, M., and Wollast, R.:
Carbon and carbonate metabolism in coastal aquatic ecosystems,
Annu. Rev. Ecol. Syst.,
29, 405–34, https://doi.org/10.1146/annurev.ecolsys.29.1.405, 1998.
Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C.:
Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios,
Science,
349, https://doi.org/10.1126/science.aac4722, 2015.
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O., and Ethe, C.: The fate of pelagic CaCO3 production in a high CO2 ocean: a model study, Biogeosciences, 4, 505–519, https://doi.org/10.5194/bg-4-505-2007, 2007.
Gemayel, E., Hassoun, A. E. R., Benallal, M. A., Goyet, C., Rivaro, P., Abboud-Abi Saab, M., Krasakopoulou, E., Touratier, F., and Ziveri, P.: Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters, Earth Syst. Dynam., 6, 789–800, https://doi.org/10.5194/esd-6-789-2015, 2015.
Gerber, R. P. and Gerber, M. B.:
Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton,
Mar. Biol.,
52, 33–43, https://doi.org/10.1007/BF00386855, 1979.
Gouze, E., Raimbault, P., Garcia, N., and Picon, P.:
Nutrient dynamics and primary production in the eutrophic Berre Lagoon (Mediterranean, France),
Transitional Waters Bull.,
2, 17–40, https://doi.org/10.1285/i18252273v2n2p17, 2008.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R. H.:
The oceanic sink for anthropogenic CO2 from 1994 to 2007,
Science,
363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019.
Gutiérrez-Rodríguez, A., Latasa, M., Scharek, R., Massana, R., Vila, G., and Gasol, J. M.:
Growth and grazing rate dynamics of major phytoplankton groups in an oligotrophic coastal site,
Estuar. Coast. Shelf S.,
95, 77–87, https://doi.org/10.1016/j.ecss.2011.08.008, 2011.
Harrison, W. G., Harris, L. R., and Irwin, B. D.:
The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations,
Limnol. Oceanogr.,
41, 16–32, https://doi.org/10.4319/lo.1996.41.1.0016, 1996.
Herrmann, M., Somot, S., Calmanti, S., Dubois, C., and Sevault, F.: Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration, Nat. Hazards Earth Syst. Sci., 11, 1983–2001, https://doi.org/10.5194/nhess-11-1983-2011, 2011.
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S. I., Thomas, A., Warren, R., and Zhou, G.:
Impacts of 1.5 ∘C Global Warming on Natural and Human Systems, in Global warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.,
World Meteorological Organization Technical Document,
2018.
Kapsenberg, L., Alliouane, S., Gazeau, F., Mousseau, L., and Gattuso, J.-P.: Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea, Ocean Sci., 13, 411–426, https://doi.org/10.5194/os-13-411-2017, 2017.
Lacroix, G. and Grégoire, M.:
Revisited ecosystem model (MODECOGeL) of the Ligurian Sea: seasonal and interannual variability due to atmospheric forcing,
J. Marine Syst.,
37, 229–258, https://doi.org/10.1016/S0924-7963(02)00190-2, 2002.
Lajaunie-Salla, K., Diaz, F., and Pinazo, C.: configuration files and code for Eco3M-CarbOx v1.1, Zenodo, https://doi.org/10.5281/zenodo.3757677, 2020.
Le Borgne, R.:
Zooplankton production in the eastern tropical Atlantic Ocean: Net growth efficiency and P:B in terms of carbon, nitrogen, and phosphorus,
Limnol. Oceanogr.,
27, 681–698, https://doi.org/10.4319/lo.1982.27.4.0681, 1982.
Le Borgne, R. and Rodier, M.:
Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific,
Deep-Sea Res. Pt. II,
44, 2003–2023, https://doi.org/10.1016/S0967-0645(97)00034-9, 1997.
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu de Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori, G., Rembauville, M., Grosso, O., Poulain, J., de Vargas, C., Pujo-Pay, M., and Conan, P.:
Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export,
Nat. Commun.,
9, 953, https://doi.org/10.1038/s41467-018-03376-9, 2018.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.:
Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium,
Mar. Chem.,
70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Margalef, R.:
Life-forms of phytoplankton as survival alternatives in an unstable environment,
edited by: Gauthier-Villars,
Oceanol. Acta,
1, 493–509,
available at: https://archimer.ifremer.fr/doc/00123/23403/ (last access: December 2019), 1978.
Marty, J.-C., Chiavérini, J., Pizay, M.-D., and Avril, B.:
Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999),
Deep-Sea Res. Pt. II,
49, 1965–1985, https://doi.org/10.1016/S0967-0645(02)00022-X, 2002.
Matthews, H. D., Gillett, N. P., Stott, P. A., and Zickfeld, K.:
The proportionality of global warming to cumulative carbon emissions,
Nature,
459, 829–32, https://doi.org/10.1038/nature08047, 2009.
Mella-Flores, D., Mazard, S., Humily, F., Partensky, F., Mahé, F., Bariat, L., Courties, C., Marie, D., Ras, J., Mauriac, R., Jeanthon, C., Mahdi Bendif, E., Ostrowski, M., Scanlan, D. J., and Garczarek, L.: Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?, Biogeosciences, 8, 2785–2804, https://doi.org/10.5194/bg-8-2785-2011, 2011.
Middelburg, J. J.:
Marine carbon biogeochemistry. A primer for earth system scientists,
Springer Briefs in Earth System Sciences, Springer Nature Switzerland AG,
Cham, Switzerland,
2019.
Millero, F. J.:
Thermodynamics Seawater – 1. The PVT Properties,
Ocean Science and Engineering,
7, 403–460 1982.
Millero, F. J.:
Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Ac.,
59, 661–677, https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
Millet, B., Pinazo, C., Daniela, B., Remi, P., Pierre, G., and Ivane, P.:
Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France),
PLoS One,
13, e0195257, https://doi.org/10.1371/journal.pone.0195257, 2018.
Millot, C.:
The Gulf of Lions hydrodynamics,
Cont. Shelf Res.,
10, 885–894, https://doi.org/10.1016/0278-4343(90)90065-T, 1990.
Monterey, G. and Levitus, S.:
Seasonal variability of mixed layer depth for the World Ocean, NOAA Atlas NESDIS 14,
U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Washington, D.C., 1997.
Moran, M. A.:
The global ocean microbiome,
Sci. Am. Assoc. Adv. Sci.,
350, https://doi.org/10.1126/science.aac8455, 2015.
Morris, A. W. and Riley, J. P.:
The bromide/chlorinity and sulphate/chlorinity ratio in sea water,
Deep Sea Res. Oceanogr. Abstr.,
13, 699–705, https://doi.org/10.1016/0011-7471(66)90601-2, 1966.
Mucci, A.:
The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure,
Am. J. Sci.,
283, 780–799, https://doi.org/10.2475/ajs.283.7.780, 1983.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.:
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms,
Nature,
437, 681–6, https://doi.org/10.1038/nature04095, 2005.
Pairaud, I., Gatti, J., Bensoussan, N., Verney, R., and Garreau, P.:
Hydrology and circulation in a coastal area off Marseille: Validation of a nested 3D model with observations,
J. Marine Syst.,
88, 20–33, https://doi.org/10.1016/j.jmarsys.2011.02.010, 2011.
Para, J., Coble, P. G., Charrière, B., Tedetti, M., Fontana, C., and Sempéré, R.: Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River, Biogeosciences, 7, 4083–4103, https://doi.org/10.5194/bg-7-4083-2010, 2010.
Petrenko, A.:
Variability of circulation features in the Gulf of Lion, NW Mediterranean Sea. Importance of inertial currents,
Oceanol. Acta,
26, 323–338, https://doi.org/10.1016/S0399-1784(03)00038-0, 2003.
Pont, D., Simonnet, J.-P., and Walter, A. V.:
Medium-term changes in suspended sediment delivery to the Ocean: Consequences of catchment heterogeneity and river management (Rhône River, France),
Estuar. Coast. Shelf S.,
54, 1–18, https://doi.org/10.1006/ecss.2001.0829, 2002.
Raven, J. A. and Falkowski, P. G.:
Oceanic sinks for atmospheric CO2,
Plant Cell Environ.,
22, 741–755, https://doi.org/10.1046/j.1365-3040.1999.00419.x, 1999.
Riley, J. P.:
The occurrence of anomalously high fluoride concentrations in the North Atlantic,
Deep Sea Research and Oceanographic Abstracts,
12, 219–220, https://doi.org/10.1016/0011-7471(65)90027-6, 1965.
Riley, J. P. and Tongudai, M.:
The major cation/chlorinity ratios in sea water,
Chem. Geol.,
2, 263–269, https://doi.org/10.1016/0009-2541(67)90026-5, 1967.
Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., and Regnier, P.:
The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean,
Global Biogeochem. Cy.,
33, https://doi.org/10.1029/2019GB006239, 2019.
Ross, O. N., Fraysse, M., Pinazo, C., and Pairaud, I.:
Impact of an intrusion by the Northern Current on the biogeochemistry in the eastern Gulf of Lion, NW Mediterranean,
Estuar. Coast. Shelf S.,
170, 1–9, https://doi.org/10.1016/j.ecss.2015.12.022, 2016.
Rykiel, E. J.:
Testing ecological models: The meaning of validation,
Ecol. Model.,
90, 229–244, https://doi.org/10.1016/0304-3800(95)00152-2, 1996.
Sarthou, G., Timmermans, K. R., Blain, S., and Tréguer, P.:
Growth physiology and fate of diatoms in the ocean: a review,
J. Sea Res.,
53, 25–42, https://doi.org/10.1016/j.seares.2004.01.007, 2005.
Schneider, A., Wallace, D. W. R., and Körtzinger, A.:
Alkalinity of the Mediterranean Sea,
Geophys. Res. Lett.,
34, https://doi.org/10.1029/2006GL028842, 2007.
Sempéré, R., Charrìère, B., van Wambeke, F., and Cauwet, G.:
Carbon inputs of the Rhône River to the Mediterranean Sea: Biogeochemical implications,
Global Biogeochem. Cy.,
14, 669–681, https://doi.org/10.1029/1999GB900069, 2000.
Small, C. and Nicholls, R. J.:
A global analysis of human settlement in coastal zones,
J. Coastal Res.,
19, 584–599,
available at: http://www.jstor.org/stable/4299200 (last access: August 2019), 2003.
Smith, C. L. and Tett, P.:
A depth-resolving numerical model of physically forced microbiology at the European shelf edge,
J. Marine Syst.,
26, 1–36, https://doi.org/10.1016/S0924-7963(00)00010-5, 2000.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J.:
The effect of biogeochemical processes on pH,
Mar. Chem.,
105, 30–51, https://doi.org/10.1016/j.marchem.2006.12.012, 2007.
Tett, P.:
A three-layer vertical and microbiological processes model for shelf seas,
Report No. 14. Proudman Oceanographic Laboratory, Birkenhead, UK, 85 pp., 1990.
Thingstad, T. F.:
Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of “maintenance” metabolism,
Mar. Ecol. Prog. Ser.,
35, 99–109, https://doi.org/10.3354/meps035099, 1987.
Uppström, L. R.:
The boron/chlorinity ratio of deep-sea water from the Pacific Ocean,
Deep Sea Res. Oceanogr. Abstr.,
21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Upstill-Goddard, R. C.:
Air–sea gas exchange in the coastal zone,
Estuar. Coast. Shelf S.,
70, 388–404, https://doi.org/10.1016/j.ecss.2006.05.043, 2006.
Wanninkhof, R. H.:
Relationship between wind speed and gas exchange,
J. Geophys. Res.,
97, 7373–7382, 1992.
Weiss, R. F.:
Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
Mar. Chem.,
2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Willmott, C. J.:
Some comments on the evaluation of model performance,
B. Am. Meteorol. Soc.,
63, 1309–1313,
https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2,
1982.
Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P. E., Armengaud, A., and Lefèvre, D.:
Temporal variability of the carbonate system and air–sea CO2 exchanges in a Mediterranean human-impacted coastal site,
Estuar. Coast. Shelf S.,
236, https://doi.org/10.1016/j.ecss.2020.106641, 2020.
Xueref-Remy, I., Milne, M., Zoghbi, N., Yohia, C., Armengaud, A., Blanc, P.-E., Delmotte, M., Piazzola, J., Nathan, B., Ramonet, M., and Lac, C.:
Assessing atmospheric CO2 variability in the Aix–Marseille metropolis area (France) and its coastal Mediterranean Sea at different time scales within the AMC project, Prague, Aus,
available at: https://conference.icos-ri.eu/wp-ontent/uploads/2018/09/ICOS2018SC_Book_of_Abstracts.pdf (last access: February 2020), 2018a.
Xueref-Remy, I., Dieudonné, E., Vuillemin, C., Lopez, M., Lac, C., Schmidt, M., Delmotte, M., Chevallier, F., Ravetta, F., Perrussel, O., Ciais, P., Bréon, F.-M., Broquet, G., Ramonet, M., Spain, T. G., and Ampe, C.: Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area, Atmos. Chem. Phys., 18, 3335–3362, https://doi.org/10.5194/acp-18-3335-2018, 2018.
Yohia, C.:
Genèse du mistral par interaction barocline et advection du tourbillon potentiel,
Climatologie,
13, 24–37, https://doi.org/10.4267/climatologie.1182, 2017.
Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. R.:
Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary,
Estuaries,
26, 1401–1415, 2003.
Short summary
A biogeochemical model of planktonic food webs including a carbonate balance module is applied in the Bay of Marseille (France) to represent the carbon marine cycle expected to change in the future owing to significant increases in anthropogenic emissions of CO2. The model correctly simulates the ranges and seasonal dynamics of most variables of the carbonate system (pH). This study shows that external physical forcings have an important impact on the carbonate equilibrium in this coastal area.
A biogeochemical model of planktonic food webs including a carbonate balance module is applied...