Articles | Volume 14, issue 5
Geosci. Model Dev., 14, 2351–2369, 2021
https://doi.org/10.5194/gmd-14-2351-2021
Geosci. Model Dev., 14, 2351–2369, 2021
https://doi.org/10.5194/gmd-14-2351-2021

Model description paper 03 May 2021

Model description paper | 03 May 2021

pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python

Daniel M. Gilford

Related subject area

Atmospheric sciences
Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021,https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
MSDM v1.0: A machine learning model for precipitation nowcasting over eastern China using multisource data
Dawei Li, Yudi Liu, and Chaohui Chen
Geosci. Model Dev., 14, 4019–4034, https://doi.org/10.5194/gmd-14-4019-2021,https://doi.org/10.5194/gmd-14-4019-2021, 2021
Short summary
A climatology of tropical wind shear produced by clustering wind profiles from the Met Office Unified Model (GA7.0)
Mark R. Muetzelfeldt, Robert S. Plant, Peter A. Clark, Alison J. Stirling, and Steven J. Woolnough
Geosci. Model Dev., 14, 4035–4049, https://doi.org/10.5194/gmd-14-4035-2021,https://doi.org/10.5194/gmd-14-4035-2021, 2021
Short summary
Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)
Carlos Román-Cascón, Marie Lothon, Fabienne Lohou, Oscar Hartogensis, Jordi Vila-Guerau de Arellano, David Pino, Carlos Yagüe, and Eric R. Pardyjak
Geosci. Model Dev., 14, 3939–3967, https://doi.org/10.5194/gmd-14-3939-2021,https://doi.org/10.5194/gmd-14-3939-2021, 2021
Short summary
Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0
Phuc T. M. Ha, Ryoki Matsuda, Yugo Kanaya, Fumikazu Taketani, and Kengo Sudo
Geosci. Model Dev., 14, 3813–3841, https://doi.org/10.5194/gmd-14-3813-2021,https://doi.org/10.5194/gmd-14-3813-2021, 2021
Short summary

Cited articles

Bell, M. M., Montgomery, M. T., and Emanuel, K. A.: Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST, J. Atmos. Sci., 69, 3197–3222, https://doi.org/10.1175/JAS-D-11-0276.1, 2012. a
Bister, M. and Emanuel, K. A.: Dissipative heating and hurricane intensity, Meteorol. Atmos. Phys., 65, 233–240, https://doi.org/10.1007/BF01030791, 1998. a, b, c, d
Bister, M. and Emanuel, K. A.: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability, J. Geophys. Res.-Atmos., 107, 4801, https://doi.org/10.1029/2001JD000776, 2002. a, b, c, d, e, f, g, h, i, j, k
Blumberg, W. G., Halbert, K. T., Supinie, T. A., Marsh, P. T., Thompson, R. L., and Hart, J. A.: Sharppy: An open-source sounding analysis toolkit for the atmospheric sciences, B. Am. Meteorol. Soc., 98, 1625–1636, https://doi.org/10.1175/BAMS-D-15-00309.1, 2017. a, b
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a, b, c
Download
Short summary
Potential intensity (PI) is a tropical cyclone's maximum speed limit given by modeling the storm as a thermal heat engine. pyPI is the first software package fully documenting the PI algorithm and translating it to Python. This study details/validates the underlying PI model and demonstrates its use in tropical cyclone intensity research. pyPI supports open science and transparency in the tropical meteorological community and is ideally suited for ongoing community development and improvement.