Articles | Volume 14, issue 5
Model description paper
03 May 2021
Model description paper |  | 03 May 2021

pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python

Daniel M. Gilford

Related authors

A multi-method framework for global real-time climate attribution
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154,,, 2022
Short summary

Related subject area

Atmospheric sciences
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536,,, 2023
Short summary
Deep learning models for generation of precipitation maps based on numerical weather prediction
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480,,, 2023
Short summary
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466,,, 2023
Short summary
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394,,, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377,,, 2023
Short summary

Cited articles

Bell, M. M., Montgomery, M. T., and Emanuel, K. A.: Air–Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST, J. Atmos. Sci., 69, 3197–3222,, 2012. a
Bister, M. and Emanuel, K. A.: Dissipative heating and hurricane intensity, Meteorol. Atmos. Phys., 65, 233–240,, 1998. a, b, c, d
Bister, M. and Emanuel, K. A.: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability, J. Geophys. Res.-Atmos., 107, 4801,, 2002. a, b, c, d, e, f, g, h, i, j, k
Blumberg, W. G., Halbert, K. T., Supinie, T. A., Marsh, P. T., Thompson, R. L., and Hart, J. A.: Sharppy: An open-source sounding analysis toolkit for the atmospheric sciences, B. Am. Meteorol. Soc., 98, 1625–1636,, 2017. a, b
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053,<1046:TCOEPT>2.0.CO;2, 1980. a, b, c
Short summary
Potential intensity (PI) is a tropical cyclone's maximum speed limit given by modeling the storm as a thermal heat engine. pyPI is the first software package fully documenting the PI algorithm and translating it to Python. This study details/validates the underlying PI model and demonstrates its use in tropical cyclone intensity research. pyPI supports open science and transparency in the tropical meteorological community and is ideally suited for ongoing community development and improvement.