
Geosci. Model Dev., 14, 2351–2369, 2021
https://doi.org/10.5194/gmd-14-2351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

pyPI (v1.3): Tropical Cyclone Potential Intensity
Calculations in Python
Daniel M. Gilford1,2

1Institute of Earth, Ocean, and Atmospheric Sciences and Department of Earth and Planetary Sciences, Rutgers University,
71 Dudley Road, Suite 205, New Brunswick, NJ 08901, USA
2Climate Central, Princeton, NJ, USA

Correspondence: Daniel M. Gilford (daniel.gilford@rutgers.edu)

Received: 18 August 2020 – Discussion started: 20 October 2020
Revised: 5 March 2021 – Accepted: 21 March 2021 – Published: 3 May 2021

Abstract. Potential intensity (PI) is the maximum speed limit
of a tropical cyclone found by modeling the storm as a ther-
mal heat engine. Because there are significant correlations
between PI and actual storm wind speeds, PI is a useful di-
agnostic for evaluating or predicting tropical cyclone inten-
sity climatology and variability. Previous studies have calcu-
lated PI given a set of atmospheric and oceanographic con-
ditions, but although a PI algorithm – originally developed
by Kerry Emanuel – is in widespread use, it remains under-
documented. The Tropical Cyclone Potential Intensity Cal-
culations in Python (pyPI, v1.3) package develops the PI al-
gorithm in Python and for the first time details the full back-
ground and algorithm (line by line) used to compute tropical
cyclone potential intensity constrained by thermodynamics.
The pyPI package (1) provides a freely available, flexible,
validated Python PI algorithm, (2) carefully documents the
PI algorithm and its Python implementation, and (3) demon-
strates and encourages the use of PI theory in tropical cy-
clone analyses. Validation shows pyPI output is nearly iden-
tical to the previous potential intensity computation but is
an improvement on the algorithm’s consistency and handling
of missing data. Example calculations with reanalyses data
demonstrate pyPI’s usefulness in climatological and mete-
orological research. Planned future improvements will im-
prove on pyPI’s assumptions, flexibility, and range of appli-
cations and tropical cyclone thermodynamic calculations.

1 Introduction

Tropical cyclones pose significant risks to coastal societies,
being among the costliest and deadliest of global natural haz-
ards (e.g., Pielke et al., 2008; Rappaport, 2014; Hsiang and
Jina, 2014). Damages increase exponentially with tropical
cyclone intensity (∼ 5 % per ms−1; Murnane and Elsner,
2012), so it is crucial to understand and accurately bound
tropical cyclone maximum wind speeds. Theoretical and nu-
merical models (e.g., Emanuel, 1987; Tsuboki et al., 2015;
Sobel et al., 2016; Wehner et al., 2018) along with recent ob-
servations (Kossin et al., 2020) indicate that climate change
has already increased storm intensities – a trend expected to
continue as the Earth system warms. Emanuel (2005) showed
the total destructive potential of tropical cyclones (derived
from time-integrated maximum intensity) has increased since
the 1970s. Elsner et al. (2008) showed that the most intense
observed tropical cyclones are getting stronger, and a more
recent comprehensive study shows that the number of major
(Category 3+) tropical cyclones has increased over the past
40 years (Kossin et al., 2020). Given the links between inten-
sity and tropical cyclone impacts, it is worthwhile to develop
and improve modeling tools for diagnosing and predicting
tropical cyclone intensities.

Potential intensity (PI) is a theoretical model for the up-
per bound (colloquially known as the “speed limit”) on trop-
ical cyclone intensity, given environmental conditions and
energetic constraints (e.g., Emanuel, 1986; Holland, 1997).
PI has several properties which make it a particularly use-
ful model for studying tropical cyclones. First, PI is statisti-
cally linked to the lifetime maximum intensities of observed
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storms (Emanuel, 2000), so it can be used to assess and inter-
pret real-world intensity trends and variability (e.g., Wing et
al., 2007; Gilford et al., 2019; Shields et al., 2019). Second,
PI can be readily calculated from standard atmospheric pro-
files (either modeled or observed), making it flexible across
many applications and spatiotemporal scales. Third, PI may
be decomposed into thermodynamic and parametric contri-
butions that enable budget and sensitivity analyses – with
direct implications for real-world storms. Finally, as a the-
oretical model grounded in meteorological data, it is well-
suited for incorporation into prognostic and diagnostic in-
dices of intensification (e.g., the ventilation index, VI; Tang
and Emanuel, 2012), tropical cyclogenesis (e.g., VI; the gen-
esis potential index, GPI; Camargo et al., 2007; the tropi-
cal cyclone genesis index, TCGI; Tippett et al., 2011), and
destructive potential (e.g., the power dissipation index, PDI;
Emanuel, 2005).

The algorithm to compute PI was originally developed
by Bister and Emanuel (2002) (hereafter BE02), coded as
a FORTRAN subroutine. It was later converted for use as
a MATLAB function by Kerry Emanuel and has been ir-
regularly revised by Kerry Emanuel and other collabora-
tors/colleagues. The BE02 PI function has been extensively
(and nearly universally) used and/or adapted by the tropi-
cal meteorology community to calculate PI for modeling,
observational, and theoretical research applications (e.g.,
McTaggart-Cowan et al., 2008; Gualdi et al., 2008; Camargo
et al., 2009; Sobel and Camargo, 2011; Tippett et al., 2011;
Bryan, 2012; Vecchi et al., 2013; Ramsay, 2013; Camargo,
2013; Chavas and Emanuel, 2014; Strazzo et al., 2016, 2015;
Wing et al., 2015; Sobel et al., 2016; Polvani et al., 2016;
Lin and Emanuel, 2016; Gilford et al., 2017; Xu et al., 2019;
Gilford et al., 2019; Emanuel, 2018; Shields et al., 2019; Ca-
margo and Polvani, 2019, and many others). The BE02 func-
tion is also used to compute daily maps of North Atlantic
PI for meteorological assessment in real time (produced by
the Center for Land–Atmosphere Prediction1; Emanuel et al.,
2004).

Despite widespread use, the BE02 algorithm itself has
never (to my knowledge) been fully documented. Because it
is an important modeling tool for tropical cyclone intensity,
there is a need for a transparent and documented PI algo-
rithm. It is also advantageous to implement a PI algorithm
in Python (which is freely available and has many advan-
tages in scientific research; Millman and Aivazis, 2011), to
complement the existing counterparts in MATLAB (which
is proprietary and therefore less accessible) and FORTRAN
(which is not easily extensible for a broad range of applica-
tions; Rashed and Ahsan, 2018).

I developed Tropical Cyclone Potential Intensity Calcula-
tions in Python (i.e., “pyPI”) to meet these needs. In addition
to adapting the BE02 algorithm in Python and thoroughly

1online at http://wxmaps.org/pix/hurpot (last access:
26 April 2021)

documenting the model, pyPI provides a maintained and reg-
ularly archived repository to support open science in the trop-
ical meteorological community. pyPI is also ideally suited for
ongoing community development and improvement and for
research applications which require flexibility in particular
PI input parameters or components (for example, the com-
putation of the lifting condensation level) or integration with
other Python packages. This article provides context for the
initial package release of pyPI (v1.3) and details its develop-
ment, algorithm, validation, and sample applications.

The proceeding Sect. 2 provides a brief overview of po-
tential intensity theory and introduces its key components in-
cluding thermodynamic efficiency and disequilibrium. Sec-
tion 3 presents the mathematical basis of pyPI’s potential in-
tensity computations. We describe the Python implementa-
tion of the pyPI algorithm in Sect. 4, including its adjustable
input parameters and handling of missing data. Model val-
idation in Sect. 5 demonstrates that pyPI output is nearly
identical to the previously published MATLAB algorithm,
with minor improvements for consistency. Section 6 illus-
trates several climatological applications of pyPI. The study
concludes with a discussion of planned pyPI advancements
in Sect. 7.

2 Potential intensity theory

Tropical cyclones arise as an indirect response to a thermody-
namic gap in the tropical atmosphere’s energy budget (e.g.,
Emanuel, 2006). The tropical surface’s output longwave ra-
diative cooling is outpaced by combined solar and longwave
radiative heating (terrestrially sourced by greenhouse gases
and clouds) received at the surface. In the absence of any bal-
ancing outgoing process, the resulting thermodynamic dise-
quilibrium would lead to a buildup of heat driving substan-
tially higher surface temperatures (e.g., Manabe and Strick-
ler, 1964). Instead, atmospheric convection plays the lead-
ing role in removing this excess heat; tropical cyclones are a
well-known expression of this convection.

Driven by thermodynamic disequilibrium – which is
largest in the summer and autumn seasons – an existing ma-
ture tropical cycle will transfer heat from the surface to the at-
mospheric boundary layer, largely through latent heat release
of evaporation and from the sea surface and dissipative heat-
ing (Bister and Emanuel, 1998). Viewed from this perspec-
tive, it is useful and convenient to model tropical cyclones
as Carnot heat engines (Emanuel, 1987) which convert this
fuel (i.e., thermodynamic disequilibrium) to kinetic energy
in the form of azimuthal winds. Figure 1 shows a diagram of
a Carnot cycle overlaid on a cross section of a mature tropical
cyclone, along with the pyPI algorithm inputs and outputs.

Following the entropy gradient, air at the outer reaches
of the storm spirals inward (branch A) toward the minimum
central pressure in the eye (pmin) and the entropy maximum
near the radius of maximum winds (RMW). Along its mo-
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Figure 1. The cross section (along radius, R, and pressure, p) of an
idealized and mature tropical cyclone and its thermodynamic cycle.
pyPI inputs and outputs are in blue and red text, respectively, and
are defined in Table 1. Bold blue lines and black letters indicate
the four branches of the Carnot cycle, A through D (see text). The
tropical cyclone maximum potential intensity (Vmax) is found at the
radius of maximum winds (RMW) and is directed into the page
in the Northern Hemisphere. The minimum central pressure (pmin)
is found in the storm’s eye. Based on Carnot cycle illustrations in
Emanuel (1987, 2006).

tion this air gathers entropy through isothermal heat absorp-
tion (through the two processes noted above) with the tem-
perature of the sea surface, Ts. When the air reaches an en-
tropy maximum at the RMW it bends upward through adia-
batic expansion (branch B), conserving its entropy as it rises
through the eyewall and then along the outflow at the storm
top. This outflow layer is called the “outflow temperature
level” (OTL), and here the air undergoes isothermal radiative
heat loss (branch C) with temperature T0, transferring the en-
tropy generated by the storm to its surroundings. Finally, the
Carnot cycle closes as the air undergoes adiabatic compres-
sion with lower entropy back towards the sea surface (branch
D) while its temperature rises once again.

An advantage of this theoretical model of a tropical cy-
clone is that it permits a formulation of the storm’s theoretical
maximum intensity – i.e., its PI – in terms of the heat engine
efficiency, defined by the temperatures at each extent (reser-
voir) of the engine ( (Ts−T0)

T0
), and in terms of the heat source

itself (i.e., thermodynamic disequilibrium). These quantities
may be estimated with atmospheric and oceanic observations
(Sect. 5.1).

As derived in Bister and Emanuel (1998) and Emanuel
(2003), the maximum (near-surface) potential intensity of a
tropical cyclone, Vmax, may be approximated by

(Vmax)
2
=
Ck

CD

(Ts− T0)

T0
(h∗o−h

∗), (1)

where Ck and CD are the enthalpy and momentum surface
exchange coefficients, respectively, h∗o is the saturation moist
static energy at the sea surface, and h∗ is the saturation moist
static energy of the air above the boundary layer (often eval-
uated at ∼ 500–600 hPa; cf. Wing et al., 2015). Tropical cy-

clone thermodynamic disequilibrium and efficiency are rep-
resented by the terms (h∗o−h

∗) and (Ts−T0)
T0

, respectively; the

ratio Ck
CD

is a defined constant that may be estimated from
theory or observations (Sect. 4.1).

In physically based axisymmetric models, mature tropical
cyclone wind speeds tend to reach their PI (e.g., Rotunno
and Emanuel, 1987). In contrast, observed storms rarely at-
tain their thermodynamically constrained potential intensi-
ties (see limitations discussed in Sect. 7). However, Emanuel
(2000) combined climatologically derived PI with observed
tracks and intensities of real-world storms to show that any
observed storm statistically has an equal likelihood of attain-
ing any lifetime maximum speed between some lower bound
and the PI along its track. This is a powerful statistical prop-
erty, because it implies that any shift in the PI distribution
– either on short timescales such as during an anomalously
cold summer or on long timescales such as a response to
a warming climate – will be accompanied by similar shifts
in the observed intensity distribution (cf. Wing et al., 2007).
Gilford et al. (2019) showed that randomly sampled observed
intensity distributions which have at least 25 tropical cy-
clones (of hurricane strength or greater) will robustly follow
their associated along-track potential intensity distributions.

Links between observed and potential intensities have
been shown on seasonal (Tonkin et al., 2000; Gilford et al.,
2019), interannual (Wing et al., 2007; Shields et al., 2019),
and climatological (e.g., Emanuel, 2000) timescales. The re-
lationship is more robust when PI is evaluated along the track
of a storm rather than as a basin-wide average (Wing et al.,
2007; Gilford et al., 2019; Shields et al., 2019). Other studies
have examined the roles of volcanic eruptions/lower strato-
spheric variability (e.g., Emanuel et al., 2013), the Montreal
Protocol (Polvani et al., 2016), or climate change on potential
intensity (Emanuel, 2005; Vecchi et al., 2014; Sobel et al.,
2016). Any oceanic or atmospheric variability or trend which
alters the thermodynamic environments of tropical cyclones
could have some effect on PI (though the relative importance
and/or statistical significance of these effects will vary). The
connection between tropical cyclone PI and climate change
will likely remain a critical topic to understand: the tropo-
sphere continues to warm and moisten in response to anthro-
pogenic emissions of greenhouse gases while simultaneously
the lower stratosphere is cooling (e.g., IPCC, 2013; Santer et
al., 2013).

3 The pyPI algorithm

3.1 BE02 PI formulation

This section provides a detailed description and record (in-
cluding relevant citations) of the PI algorithm with its ther-
modynamic/meteorological origins, assumptions, and com-
putations.
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Potential intensity may be derived following Bister and
Emanuel (2002) (which is largely based on the formulation
of Emanuel, 1995) idealizing a tropical cyclone as a Carnot
heat engine (e.g., Emanuel, 1987) and assuming the follow-
ing: (1) the work done against friction by the outflow is ig-
nored, (2) when the storm intensity reaches its maximum,
the anticyclone at the top of the storm is fully developed, and
(3) the gradient wind may be approximated by cyclostrophic
wind at the RMW. Under these conditions, the Carnot cycle
formulation yields an expression for the maximum potential
intensity (which roughly scales with the approximated PI ex-
pression, Eq. 1; Wing et al., 2015):

(Vmax)
2
=
Ts

T0

Ck

CD
(CAPE∗−CAPEenv)|RMW, (2)

where CAPE∗ is the convective available potential energy of
saturated air lifted from sea level to the outflow level refer-
encing the environmental profile, and CAPEenv is the convec-
tive available potential energy of the environment. Because
the final term is evaluated at the RMW and CAPE∗ is pres-
sure dependant, an expression for the surface pressure at the
RMW is needed. Following Bister and Emanuel (2002) (cf.
also Garner, 2015, their Eq. 6), the minimum pressure of the
tropical cyclone at the RMW, pm, is found with2

RdTυ log
(
pmsl

pm

)
=

1
2
(Vmax)

2
+CAPE|RMW, (3)

where Tυ is the surface environmental virtual temperature,
and CAPE|RMW is the environmental convective available
potential energy evaluated at the RMW. Because the bound-
ary layer water vapor mixing ratio is higher in the tropical
cyclone eyewall than the storm’s outer region (assuming a
constant relative humidity in the boundary layer across the
storm’s radius), CAPE|RMW is slightly larger than CAPEenv
(discussed more below).

The pressure dependence of CAPE requires solving
Eqs. (2) and (3) with numerical iteration, which pyPI per-
forms with individual PI and CAPE modules. Algorithm 1

2Equation (4) in Bister and Emanuel (2002) mistakenly replaces
Rd with cp . pyPI includes the correct factor of Rd.

summarizes how pyPI computes maximum potential inten-
sity by modeling a tropical cyclone as a Carnot heat engine.
Algorithm inputs and outputs are provided in Table 1 and de-
scribed in Sect. 4; meteorological constants are provided in
the Appendix (Table A1). We begin by describing the CAPE
calculation, which is used throughout the pyPI algorithm.

3.2 CAPE module

CAPE is defined as the sum of positive and negative areas
of buoyancy energy of a lifted parcel on a sounding (e.g.,
Emanuel, 1994, their Eq. 6.3.6, discussed more below) and
is calculated by pyPI with the procedure in Algorithm 2.

Given an initial surface parcel temperature, pressure, and
mixing ratio, the procedure begins by finding the parcel’s
reversible entropy, which is conserved as it is lifted on the
sounding. The parcel’s water vapor pressure is found via the
ideal gas law (e.g., Bolton, 1980, their Eq. 16):

e =
r ×p

ε+ r
. (4)

Saturation vapor pressure (in hPa) is given empirically as
a function of T in degrees Celsius by Bolton (1980), their
Eq. (10), following the Clausius–Clapeyron relation:

es(T )= 6.112× exp
(

17.67× T
T + 243.5

)
. (5)

Then fractional relative humidity is defined as RH≡ e
es
≤

1.0. Assuming the temperature dependence of specific heats
is negligible over the range of temperatures in the tropi-
cal atmosphere and integrating Kirchhoff’s equation (e.g.,
Emanuel, 1994, Eqs. 4.4.3–4.4.4), the temperature depen-
dence of the latent heat of vaporization is

Lv = Lv0+ (cpv − c`)× T , (6)
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Table 1. Input and output variables and adjustable algorithm parameters for the PI module. Default parameter values are specified in the
“pyPI variable” column. Parameters adjusted by the user should never be set outside the “Values” column prescriptions without physical
justification and/or appropriate module modification.

Symbol Name pyPI variable Units Values

Inputs

Ts Sea-surface temperature SSTC ◦C –
pmsl Mean sea-level pressure MSL hPa –
T (p) Temperature profile T ◦C –
r(p) Mixing ratio profile R g kg−1 –
Ck
CD

Ratio of exchange coefficients CKCD=0.9 unitless 0.17–1.05
– Ascent process proportion ascent_flag=0 fraction 0.0–1.0
– Dissipative heating flag diss_flag=1 – 0 or 1
– Reduction of gradient winds V_reduc=0.8 fraction 0.0–1.0
– Upper level pressure bound ptop=50 hPa < 100
– Missing data flag miss_handle=1 – 0 or 1

Outputs

Vmax Potential intensity VMAX ms−1 –
pmin Minimum central pressure PMIN hPa –
– Algorithm status flag IFL – 0, 1, 2, or 3
T0 Outflow temperature TO K –
OTL Outflow temperature level OTL hPa –

with T in degrees Celsius. Finally, we are equipped to cal-
culate the parcel’s reversible total specific entropy (per unit
mass of dry air), s, which is conserved as the parcel is lifted
along the sounding (Emanuel, 1994, their Eq. 4.5.9):

s = (cpd + rT c`) log(T )−Rd log(p)+
Lvr

T
− rRv log(RH),

(7)

where rT is the total water content mixing ratio, which is
identical to the parcel mixing ratio at the surface.

Having determined the parcel’s initial moisture properties,
we next find the lifting condensation level (LCL) of the par-
cel, in order to partition the upcoming buoyancy calculation
between saturated and unsaturated regions of the profile. The
pressure of the LCL, pLCL, is found empirically with3

pLCL = p×RH∧
(

T

A−B ×RH− T

)
, (8)

where A= 1669 and B = 122. Note that the LCL of a lifted
parcel that is already saturated is identical to its original pres-
sure level, i.e., pLCL ≡ p. Likewise, parcels at levels below
the LCL are (by definition) not saturated. After finding pLCL
the CAPE algorithm begins an “updraft loop”, where the pos-
itive and negative buoyancy of the parcel is calculated at ev-

3This is likely derived empirically from Bolton (1980) and was
developed for Emanuel (1994) (Kerry Emanuel, personal commu-
nication, 2020). Modern calculations of pLCL are made following
exact expressions from Romps (2017); cf. Sect. 4.3.

ery j th pressure level below the upper boundary on pressure
(ptop, Sect. 4.1).

Starting with calculations at levels below the LCL (pj >
pLCL), at each j th level the algorithm calculates the unsatu-
rated parcel temperature by following a dry adiabat with the
same temperature as the surface parcel. Applying Poisson’s
equation,

Tj = T ×

(
pj

p

) Rd
cpd

. (9)

Because CAPE is proportional to the positive and negative
areas enclosed by the environmental and lifted parcel density
temperatures (Tρ,env and Tρ , respectively), we calculate the
density temperature as (Emanuel, 1994, their Eq. 4.3.6)

Tρ = T ×

(
1+ r/ε
1+ rT

)
, (10)

where the net water mixing ratio (rT ) is the same as the
parcel water mixing ratio at the surface and in the environ-
ment below the LCL before condensation has occurred (i.e.,
rT≡rj = 0 and rT ,j = rj<LCL).

Next the algorithm finds the density temperature differ-
ences for all levels above the LCL (pj < pLCL). Because the
parcel is saturated above the LCL, its moisture characteris-
tics and temperature must be found iteratively at each j th
level. First the algorithm solves for r by rearranging Eq. (4);
then until the numerical iteration converges (with objective
for the parcel temperature: 1T < 0.001 K) it solves for par-
cel moisture characteristics which conserve the parcel’s spe-
cific entropy s (Eq. 7) following a moist adiabat; finding
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these permits an estimation of the density temperature dif-
ferences at each level. At the beginning of the loop, T and
r are set equal to the previous iteration’s findings; then the
loop steps forward updating the parcel’s temperature (and the
dependant Lv and water vapor mixing ratios) assuming s is
conserved following saturated reversible adiabatic displace-
ment. Following Newton’s method (Tn+1 = Tn+

s(Tn)
ds(Tn)/dT

;
Wallis, 1685), when the difference between s and this iter-
ation’s entropy, sk , scaled by the rate of change of entropy
with temperature, s`, is small (i.e., s−sk

s`
< AP× 0.001), the

algorithm will converge to estimate the parcel temperature at
this level, Tj . Here AP is a numerical step size employed to
speed convergence, which changes dynamically depending
upon the number of iterations that have taken place. If at any
given level the total number of iterations exceeds 500 (an ex-
cessive number of iterations), or if the water vapor pressure
becomes unrealistically close to the level pressure, then the
algorithm fails to converge and returns zero CAPE.

When the algorithm converges for a level, the final par-
cel mixing ratio is set depending on the ascent type cho-
sen by the user (Sect. 4.1). For pseudoadiabatic ascent
(ascent_flag= 1), liquid water condensed in the parcel
during its ascent is assumed to drop out of the parcel, such
that the heat capacity of liquid water is neglected and the
mixing ratio is a function of the final level temperature (i.e.,
rj = r(Tj )). For reversible ascent (ascent_flag= 0) the
total water (and its heat capacity) is retained following the
parcel (i.e., rj = rj=0 =≡ rT ). For intermediate fractions of
ascent_flag, the mixing ratio scales over r(Tj )→ rT .

Note that the density temperature difference (and hence a
parcel’s buoyancy) with height is not strictly higher under ei-
ther ascent assumption. Parcels lifted reversibly are always
warmer than those lifted psuedoadiabatically, but the weight
of the carried condensate also means these parcels are more
dense until they reach the upper troposphere (Emanuel, 1994,
their Table 4.2). Accordingly, Gilford et al. (2017) found
that psuedoadiabatic (typically more buoyant) PI calculations
generally have higher altitude OTLs than reversible (typi-
cally less buoyant) PI calculations on monthly timescales.

Having determined rj , the algorithm computes the den-
sity temperature for the parcel and the environment (Eq. 10)
and calculates each level’s density temperature differences,
Tρ − Tρ,env. We are now equipped to calculate the lifted par-
cel’s convective available potential energy. CAPE is given
by the vertically integrated buoyant energy between the level
from which the parcel is initially lifted (j = 0) and the level
of neutral buoyancy (LNB; j = LNB). Following Emanuel
(1994), their Eq. (6.3.6),

CAPE= PA−NA, (11)

where

NA≡−

pj=0∫
pj=LFC

Rd(Tρ − Tρ,env)dlog(p) (12)

PA≡+

pj=LFC∫
pj=LNB

Rd(Tρ − Tρ,env)dlog(p). (13)

Negative areas (NA) are vertical regions of negative buoy-
ancy which inhibit spontaneous convection in the profile;
positive areas (PA) are vertical regions of positive buoyancy
which cause the parcel to rise assuming an initial upward dis-
placement. Note that CAPE is not defined for parcels with-
out positive areas. By definition, the level of free convec-
tion (LFC) separates regions that are negatively buoyant (be-
low) from regions that are positively buoyant (above). When
(j = LFC) > (j = LCL), the regions of the profile above the
LCL and below the LFC may still be negatively buoyant.

The CAPE algorithm numerically solves Eqs. (11)–(13) in
five steps.

First, we find the maximum level of positive buoyancy
(INB), i.e., the highest altitude j th level where Tρ−Tρ,env >

0. If this highest level remains at j = 0, then there are no pos-
itively buoyant levels and the function returns zero CAPE.

Second, noting that dp/(pmean,j :j+1)≈ dlog(p)j :j+1 at
each layer over the levels j and j + 1 – where the aver-
age pressure of each layer is pmean,j :j+1 =

1
2 (pj +pj+1) –

we find the positive and negative areas between the second-
highest altitude level (i.e., j = 1) and the the maximum level
of positive buoyancy.

Third, we find the residual negative area (if j = LFC> 0)
or positive area (if j = LFC= 0) of the mean layer com-
posed of the surface and the lowest level.

Fourth, we find the LNB and the temperature at the LNB,
TLNB, along with the residual positive area of the mean layer
between the maximum level of positive buoyancy and the
LNB. If the INB is found at the highest valid level (con-
strained by ptop, Sect. 4.1), then the LNB and TLNB are
set at that level.

Finally, the negative and positive areas are added together
with the residuals following Eq. (11). After this last step, the
algorithm flag is set to indicate the algorithm has successfully
computed CAPE. Then the values of CAPE, TLNB, the LNB,
and the flag are returned to the PI module.

A caveat of this approach is that different thermodynamic
profile analysis routines – and especially CAPE calculations
– can produce results which vary substantially from one an-
other (e.g., Blumberg et al., 2017). The routine presented
here contrasts with those of other Python modules such as
MetPy (May and Bruick, 2019) and SHARPpy (Blumberg et
al., 2017), particularly in the pLCL estimate, the feature to
scale between psuedoadiabatic and reversible ascent, and the
vertical integration of density temperature differences when
evaluating CAPE (compared to the traditionally used temper-
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ature or virtual temperature vertically integrated differences;
e.g., Doswell and Rasmussen, 1994). More work is needed to
determine the sensitivity of pyPI to thermodynamic assump-
tions and functional forms (Appendix B); in the context of
potential intensity it is the CAPE difference that is most im-
portant (Eq. 2), which may limit the PI sensitivity (as long
as the routines used remain internally consistent). While be-
yond the scope of this study, pyPI’s framework could enable
further investigation into this and related model sensitivities.

3.3 PI module

The PI module begins by checking to ensure that the in-
put atmospheric profile is appropriate for the PI calculation.
If not, missing values are returned by the algorithm (see
Sect. 4.2). Water vapor mixing ratios above the boundary
layer do not influence the PI calculation (they are redundant
in CAPE∗−CAPEenv), so any missing r values above the
surface are replaced with 0 gkg−1.

Following Algorithm 2 described above, pyPI computes
CAPEenv, assuming the environmental air parcel is lifted
from the lowermost input level in p.

Next, pyPI iteratively solves Eqs. (2) and (3) (with objec-
tive4 for the minimum pressure at the RMW: 1i,i−1pm <

0.5 hPa). The algorithm begins by calculating the convec-
tive available potential energy (computing Algorithm 2 at
each ith iteration) iterating from the initial lowest-level en-
vironment inward toward the radius of maximum winds,
CAPE|RMW. At each iteration the mixing ratio is updated
to account for pressure dependence (r increases slightly as
p→ pm approaching the RMW; Bister and Emanuel, 2002).

Next, we calculate the saturation convective available po-
tential energy at the radius of maximum winds, CAPE∗. This
calculation assumes the parcel is lifted directly from the sea
surface, such that T = Ts and r = rs(Ts) (where rs is found
given Ts via Eqs. 5 and 4). pyPI defines the outflow temper-
ature level (OTL) and T0 as the LNB and TLNB found during
the final iteration of CAPE∗ computation, respectively. Note
that the OTL and T0 could instead be found during the fi-
nal iteration of the CAPEenv computation. Flexibility in the
outflow definition is a planned improvement for pyPI. The
choice to use CAPE∗ follows from defining the outflow level
with a fully saturated parcel lifted directly from the sea sur-
face (see Sect. 6.2).

The ratio of sea-surface and outflow temperatures in
Eq. (2) represents the scaling of PI by dissipative heating,
which increases PI when Ts

T0
> 1 (Bister and Emanuel, 1998).

At each iteration this ratio is set with the fixed input Ts
and the current T0 ≈ TLNB. The relevance of this ratio for
the PI calculation is set by the user with the adjustable pa-
rameter diss_flag (Sect. 4.1). If dissipative heating is
permitted to impact the tropical cyclone potential intensity

4When reduced by an order of magnitude to 0.05 hPa, Vmax val-
ues increase by < 0.3 ms−1, while computation times increase by
> 25 %.

(diss_flag= 1), then the ratio remains as defined above.
If dissipative heating is not considered (diss_flag= 0),
then the algorithm assumes in the following calcula-
tions.

Next, pm is estimated in each iteration following Eq. (3).
The surface environmental virtual temperature, Tυ , is found
as the average of virtual temperatures over the mean layer
composed of the parcel (with temperature, Ts) and the lowest
level, i.e., Tυ = 1

2 (Tυ,s+ Tυ,j=0). The virtual temperature is
identical to the density temperature (Eq. 10) at the surface
(as rT = r(Ts)) and may be approximated at the lowest level
with rT ≈ rj=0. Combining Eqs. (2) and (3) to solve for pm,
the algorithm iterates towards a new pressure estimate. If the
number of iterations exceeds 200 (an excessive number of
iterations), or if the estimated pressure drops below an un-
physical 400 hPa, then the PI algorithm fails to converge and
returns missing outputs.

When the algorithm has successfully converged on a sta-
ble value of pm, the final central minimum pressure, pmin, is
set. Assuming cyclostrophic balance and that the azimuthal
velocity in the eye is given by V = Vmax(

R
RMW )

b, we follow a
power law scaling with exponent b (see also Emanuel, 1995,
their Eqs. 25–26):

pmin = pmsl× exp

−CAPE|RMW+
1
2

(
1+ 1

b

)
V 2

max

RdTυ

 ,
(14)

where pyPI assumes following Bister and Emanuel (2002)
that b = 2.

Note that the difference, (CAPE|RMW−CAPEenv), is typ-
ically small. Historically, when CAPEenv was used to com-
pute PI in the final term of Eq. (2), it was found to add
noise to the PI algorithm output (Kerry Emanuel, personal
communication, 2020). Therefore, pyPI instead replaces this
term with (CAPE∗−CAPE|RMW) in the PI computation
for tractability. PI calculations with the original Bister and
Emanuel (2002) formulation have identical OTLs and out-
flow temperatures but tend to have higher Vmax values by
between 0 and 32 ms−1 (not shown). Global and tropical
(20◦ S–20◦ N) mean biases from this approximation are ∼ 3
and ∼ 2.5 ms−1, respectively.

Finally, we may find tropical cyclone potential intensity.
Assuming that the raw computed maximum gradient wind
speeds are scaled to 10 m winds with some fraction, we mul-
tiply the result from Eq. (2) by V_reduc (Sect. 4.1). This
step completes the PI computation. The module sets the flag
to indicate the successful computation of pyPI’s algorithm
and then outputs Vmax, pmin, the flag, T0, and the OTL.
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4 Python implementation

pyPI (v1.3) is written in Python v3.7 and its calculations are
optimized with Numba (Lam et al., 2015). An average model
elapsed run time (on a laptop) is ∼ 10 s per 100 000 input
profiles. This is ∼ 18 % slower than the mean run time of
the BE02 MATLAB algorithm (on the same machine); how-
ever, pyPI is now appropriately handling missing input data
(Sect. 4.2) which increases its run time relative to the MAT-
LAB algorithm. We stress that run times will ultimately de-
pend a user’s particular implementation and computing re-
sources.

Modeling the maximum intensity of a tropical cyclone
with pyPI requires input environmental state variables: tem-
perature (T ) and mixing ratio (r) profiles on pressure levels
(p), as well as concurrent Ts and mean sea-level pressures
(pmsl). Algorithm variables and parameters are shown in Ta-
ble 1.

4.1 Adjustable parameters

pyPI includes six adjustable parameters that may be set in
the module call, with the caveat that each should be chosen
within the defined “Values” column of Table 1. Parameters
set outside these values could result in syntax errors or log-
ical errors in the output or may give rise to unphysical PI
estimates.

4.1.1 CKCD (default = 0.9)

The ratio Ck
CD

is an uncertain constant which depends on the
sea state and linearly scales potential intensity; its value is
an ongoing area of field and theoretical research (Emanuel,
2003). Table 1 includes the 1σ range of the ratio found with
energy and momentum budget methods by the 2003 Coupled
Boundary Layers Air–Sea Transfer (CBLAST) field program
(Bell et al., 2012); numerical studies have also probed the
sensitivity of simulated tropical cyclones to these exchange
coefficients (Bryan, 2012; Green and Zhang, 2014). Studies
exploring PI variability typically use a default value of Ck

CD
=

0.9 when calculating PI (e.g., Wang et al., 2014; Wing et al.,
2015).

4.1.2 ascent_flag (default = 0)

The ascent process proportion determines whether the air
parcels displaced in each CAPE calculation (cf. Sect. 3.2)
follow reversible adiabatic ascent (ascent_flag= 0) or
pseudoadiabatic ascent (ascent_flag= 1). In the case of
reversible ascent, the full moist entropy of the buoyant par-
cel is conserved along its displacement following a moist
adiabat. In pseudoadiabatic ascent the heat capacity of liq-
uid water is neglected. Liquid water is assumed to fall out of
the parcel as it condenses, while the parcel ascends follow-
ing the pseudoadiabatic moist adiabat; for more details see
Emanuel (1994), their Sect. 4.7. For practical applications of

pyPI, ascent_flag may be set to any value between 0.0
and 1.0, such that the proportion of ascent is any fraction
intermediate to fully reversible and fully pseudoadiabatic as-
cent.

4.1.3 diss_flag (default = 1)

The dissipative heating flag determines whether dissipa-
tive heating is accounted for (diss_flag= 1) or ignored
(diss_flag= 0) in potential intensity theory (see Bister
and Emanuel, 1998, their Eq. 22). When dissipative heat-
ing is included in the PI calculation, the leading factor in the
BE02 algorithm (Eq. 2) is ( Ck

CD
×
Ts
T0
), where Ts

T0
> 1. In the ab-

sence of dissipative heating, the leading factor is ( Ck
CD
×1) fol-

lowing the original findings of Emanuel (1986, 1995). Scal-
ing arguments and empirical estimates suggest that dissipa-
tive heating increases PI by about 20 %–30 % (not shown).

4.1.4 V_reduc (default = 0.8)

Raw potential intensities are maximum gradient wind
speeds (Emanuel, 2000). Therefore, gradient winds calcu-
lated with the BE02 algorithm are not directly compara-
ble with observed intensities at the near-surface without ap-
plying an approximate scaling between gradient and 10 m
winds. Following Powell (1980), a crude reduction of 20 %
(V_reduc= 0.8) is typically applied to scale PI for com-
parison with near-surface winds. The percent reduction in the
gradient wind in terms of V_reduc is Preduc = 100%×(1−
V_reduc). Note that for some applications of PI, such as
using it as a thermodynamic parameter in climate science –
e.g., incorporation into the genesis potential index, Camargo
et al. (2007) – V_reduc should be set to 1.0 (no reduction).

4.1.5 ptop (default = 50)

The upper level pressure bound is the minimum pressure be-
low which the input profile is ignored during PI computation.
Theoretically modeled tropical cyclone outflow can often ex-
ceed the tropical tropopause on climatological timescales
(Gilford et al., 2017), so setting ptop> 100 hPa it is not
advisable. Reducing the number of considered levels by in-
creasing ptop may potentially increase the speed of calcu-
lations, at the risk of finding an unrealistically low-altitude
OTL and too warm a T0. Before altering ptop, users should
consider their particular application and the outflow levels
they anticipate given the stability of their input profiles.

4.1.6 miss_handle (default = 1)

The missing data flag prescribes how missing values are han-
dled in the CAPE calculation (discussed below). Following
the BE02 MATLAB code (miss_handle= 0), if missing
values are found in the input temperature profile, then the al-
gorithm will attempt to calculate PI for all available levels
above the missing values. However, the user may also con-
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servatively choose that any missing values in the input profile
will immediately set the entire PI calculation output to miss-
ing (miss_handle= 1).

4.2 Handling missing data

Mirroring the output flag convention of the BE02 MATLAB
code, IFL= 1 when the PI algorithm successfully returns
valid potential intensity outputs, IFL= 0 when the algorithm
fails because the input data are improper for a PI calculation
(e.g., if Ts < 5 ◦C), and IFL= 2 when the algorithm fails to
converge.

One major difference between pyPI and the BE02 MAT-
LAB algorithm is the handling of missing data and the (re-
lated) flag provided in the output. By convention, missing in-
put variables in pyPI are assigned Python’s “Not a Number”,
NaN, to avoid errors. The BE02 MATLAB code default is
that profiles may contain missing values (specifically tem-
peratures on pressure levels), and the algorithm computes PI
over the remaining valid levels.

Because missing values may sometimes be found at the
surface – and the primary CAPE calculation (Sect. 3.2) re-
lies heavily on the assumption of lifting the parcel within
the storm and environment from that level – errors could
arise from estimating PI when ignoring near-surface buoy-
ancy. In principle, PI should be calculated only over data
points with existent sea-surface temperatures and lowest pro-
file level temperatures. In practice, missing data may arise at
the lowest profile level, which would lead to errant PI cal-
culations if these profiles are input to the BE02 MATLAB
code.

pyPI addresses this challenge in three ways. First, an ad-
justable parameter (miss_handle) is implemented to al-
low the user to specify how pyPI handles the missing values.
If miss_handle= 0, the code attempts to handle missing
values akin to the way that the BE02 MATLAB code did, al-
though there still remain some differences in the outputs be-
tween pyPI and the MATLAB algorithm. Specifically, pyPI’s
CAPE calculation proceeds as normal only as long as there
are no missing values between the lowest valid (non-missing)
level and the OTL; otherwise, CAPE module outputs (and
hence PI module outputs) are returned as missing. Second, if
miss_handle= 1, then the CAPE function will automat-
ically interpret temperature profiles with missing data as in-
valid and return missing values to the PI algorithm, resulting
in the PI outputs being set to missing in the return. Third, a
new output flag value (IFL= 3) is introduced in pyPI which
is returned when missing values in the temperature profile
results in a missing output return from the PI module (i.e., in
either of the two cases described above), which aids in inter-
preting pyPI output.

Figure 2 shows an example of the output algorithm sta-
tus flags from pyPI calculations with a single month’s
mean environment (September 2004) from MERRA2 data
(Sect. 5.1), and with the default miss_handle= 1. The

Figure 2. pyPI status flags from September 2004 potential intensity
calculations when miss_handle= 1. Blue grid cells indicate the
PI algorithm converged, gray grid cells indicate the PI algorithm
failed to pass a check, yellow grid cells indicate the PI algorithm
did not converge, and red grid cells indicate the PI algorithm failed
due to missing profile data.

figure illustrates the few global points which had at least
some missing data, resulting in a missing PI return from pyPI
(IFL= 3; red grid points). In contrast, these locations have
an output (but likely errant) PI from the BE02 MATLAB
code. The majority of locations where missing input data re-
sults in missing output PI are near land (e.g., the Caribbean
and Indo-Pacific), where missing values arise as an artifact
of the differences between the sample data and the land–
sea mask applied (Sect. 5.1). Missing values in the sample
data (which has lowest data pressure level of 1000 hPa) could
also be in locations where the monthly average pmsl is below
1000 hPa, resulting in T (1000hPa)= NaN.

In the example pyPI calculation (Fig. 2) there are no in-
puts for which the algorithm does not converge (cf. Bister
and Emanuel, 2002). One final complication is that BE02
MATLAB code occasionally returns Vmax = 0 as an output.
In these cases, pyPI instead returns Vmax = NaN.

pyPI outputs valid (non-missing) potential intensities over
∼ 65.6 % of the ocean grid points in the global 2004 sam-
ple dataset – compared with ∼ 64.41 % returned by the
BE02 MATLAB code. In addition to how missing data
are handled, output differences may also arise from slight
variations in numerical computation between Python and
MATLAB. pyPI validation tests (Sect. 5) are computed
over all spatiotemporal locations for which both algorithms
have non-missing/non-zero potential intensities (and with
miss_handle= 1).

4.3 Opportunities for scientific improvement

In addition to updating the original BE02 algorithm, pyPI
is designed with the intention to undergo further scientific
developments as requested or created by the community. In
addition to including alternative intensity indices (e.g., Lin
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et al., 2013; Rousseau-Rizzi and Emanuel, 2019), potential
pyPI improvements generally fall into two broad categories.

Increased model flexibility. Such improvements would al-
ter the code to provide users more parameter choices when
the PI module is called, through either input flags or addi-
tional variables. For instance, users may want to select be-
tween the CAPE definition used to estimate pmin in Eq. (14)
(i.e., CAPE|RMW or CAPEenv) or explore alternative outflow
temperature definitions (e.g., setting TLNB during the compu-
tation of CAPEenv compared with the default CAPE∗ calcu-
lation).

Incorporation and/or development of fundamental or in-
cremental scientific advances. As the scientific understand-
ing of tropical cyclone intensity and potential intensity in-
creases, such knowledge could be brought into pyPI. For in-
stance, Kieu and Wang (2017) showed that the assumption
of moist neutrality in calculating PI may not be appropri-
ate, even when a cyclone is mature. Multiplying Eq. (2) by a
factor of (1−α0 ×0) in the pyPI codebase, where 0 is the
environmental lapse rate and α0 is an empirical parameter,
would enable further exploration of how stratification affects
PI.

A specific goal for future pyPI development is to replace
the current empirical estimate of pLCL with a modern formu-
lation (e.g., Romps, 2017). Other opportunities for improve-
ment might be more involved, requiring significantly more
research to implement. For example, the magnitude of Ck

CD
is

nonlinearly related to wind speed (Nystrom et al., 2020); a
mathematical relationship between wind speed and this ra-
tio could in principle be incorporated into potential intensity
theory, but this would require revisiting PI theory and further
theoretical advancements before inclusion within pyPI.

These examples are not exhaustive but show the range of
possibilities for future pyPI development and the potential
future value of this model in the tropical meteorology com-
munity.

5 Validation

5.1 Sample reanalysis data

The pyPI sample data are monthly means of state variables
from the second Modern-Era Retrospective Analysis for Re-
search and Applications (MERRA2, Gelaro et al., 2017) in
2004, interpolated onto a 2.5◦× 2.5◦ global grid. Note that
for these example pyPI calculations the water vapor mixing
ratio, r , is approximated by substituting in the reanalysis spe-
cific humidity, q (as q ≡ r

1+r ≈ r , because r � 1).
Potential intensity calculations are generally linear (i.e.,

mean potential intensities may be estimated as a function of
mean environmental variables):

Figure 3. September 2004 mean potential intensities (ms−1) calcu-
lated with pyPI (a) and the BE02 MATLAB code (b).

Figure 4. September 2004 mean potential intensity differences
(ms−1) between those calculated with pyPI minus those calculated
with the BE02 MATLAB code.

E[Vmax(Ts,pmsl,p,T ,r)]

≈ Vmax(E[Ts],E[pmsl],E[p],E[T ],E[r]), (15)

where E[ · ] is the expected value of a function or variable.
Using monthly mean environmental conditions – instead of
6-hourly observations – to compute climatological monthly
means of potential intensity (and the algorithm’s other out-
put variables) generates a small bias of < 1 ms−1 globally
and < 0.5 ms−1 in the tropics. PI’s linearity property is con-
venient, because it reduces the scale of data needed to com-
pute PI: daily or hourly data are not needed for monthly or
longer (climatological) applications. Applications on shorter
(e.g., operational or daily) timescales, however, should use
appropriately shorter frequency inputs to the pyPI algorithm.
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Figure 5. 2004 mean potential intensities (ms−1, blue dots) cal-
culated with pyPI (horizontal axis) and the BE02 MATLAB code
(vertical axis). The black curve is the 1 : 1 line.

The sample data uses the land–sea mask from the Euro-
pean Centre for Medium-Range Weather Forecasts Interim
(ERA-Interim, Dee et al., 2011) on a 2.5

◦

×2.5◦ global grid.
By definition, Vmax ≡ 0 where Ts = NaN (i.e., over land); in
some cases (e.g., if skin temperatures valid over land are used
in lieu of sea-surface temperatures) PI may be mistakenly
calculated over land with the PI module. In these cases, users
should assign all PI algorithm outputs over land to the miss-
ing value in post-processing. As an alternative, in this pyPI
example input variables over land are set to missing in a pre-
processing step. Note that the mismatch between using the
ERA-I land–sea mask and MERRA2 data in this example
results in a set of minor output artifacts caused by missing
(MERRA2 land grid points) input data over ERA-I defined
ocean grid points. This artifact provides a useful demonstra-
tion of the missing data flag employed in pyPI (Sect. 4.2).

5.2 Validating against the BE02 implementation

Accompanying the environmental conditions in the sample
data are outputs from the BE02 MATLAB code written by
Kerry Emanuel (Bister and Emanuel, 2002). Potential inten-
sities calculated over September 2004 with pyPI and the ex-
tensively used BE02 MATLAB code are compared in Fig. 3
over the globe; their difference is computed and plotted in
Fig. 4. There is excellent agreement between the two al-
gorithms; 98.5 % of output potential intensities have abso-
lute differences< 0.01 ms−1. Potential intensities calculated
with the Python algorithm exhibit a slightly negative bias rel-
ative to the MATLAB calculations, but these differences are
negligible compared with other uncertainties in the PI cal-
culation, such as the ratio of surface exchange coefficients
(Table 1).

Figure 5 shows the scatter between all potential intensity
values calculated with the two algorithms over the sample

data, plotted against a 1 : 1 line (values lying on this line
exhibit perfect agreement). The R2 of this comparison is
R2
≈ 1.0 to seven significant digits, such that the calcula-

tions are nearly identical. All other output variables (cf. Ta-
ble 1) from the two algorithms have similarly strong levels
of agreement.

A minor PI difference between pyPI and the BE02 MAT-
LAB algorithm arises when the pyPI-found outflow level
has a higher pressure and warmer temperature than found
by the BE02 code. The outflow property differences result
from pyPI’s correction of a minor error that was present in
the BE02 algorithm, where ε was defined as 0.622 rather
than directly calculated as Rd

Rv
. The small rounding error re-

sults in a handful of profiles with lower altitude outflow and
lower PI values calculated by pyPI. In the absence of correct-
ing this error, the correlation between the two calculations is
R2
≈ 1.0 to 13 significant digits, and the absolute maximum

difference anywhere is 4.1× 10−5 ms−1.
I conclude that the PI calculations made with the pyPI al-

gorithm are adequately validated against the BE02 MATLAB
code, and that pyPI is sufficiently accurate for use in research
applications.

6 Example analyses

6.1 Annual mean PI

Figure 6 shows 2004 annual mean sea-surface temperatures,
as well as pyPI-calculated potential intensities, outflow tem-
peratures, and outflow temperature levels. The familiar pat-
tern of warm SSTs in the tropics corresponds with high
Vmax values, suggesting that on an annual timescale PI is
strongly influenced by Ts. These warm and high-PI regions
are accompanied by outflow temperature levels with annual
pressures below 100 hPa, deep in the tropical tropopause
region (e.g., Fueglistaler et al., 2009). Near the tropical
tropopause, annual mean outflow temperatures are remark-
ably cold, around 200 K. On average, the coldest outflow
temperatures are found in the western North Pacific basin,
where consistent deep convection and stratospheric circula-
tion act to keep tropopause temperatures very cold and highly
variable (e.g., Randel and Jensen, 2013).

6.2 PI seasonal cycles

A slightly more sophisticated application of pyPI is the cal-
culation of potential intensity seasonal cycles. Reproducing
the methodology of Gilford et al. (2017) with pyPI calcu-
lations over 2004, Fig. 7 shows the seasonal cycles of sea-
surface temperatures, as well as outflow temperatures, out-
flow temperature levels, and potential intensities in 2004 av-
eraged over tropical cyclone main development regions (de-
fined in Gilford et al., 2017, their Table 1).

The seasonal cycles of PI are known to be quite robust
year over year and exhibit clear differences between regions.
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Figure 6. 2004 annual mean potential intensities in (a), sea-surface temperatures in K (b), outflow temperatures in K (c), and outflow
temperature levels in hPa (d) calculated with pyPI.

Figure 7. 2004 seasonal cycles of potential intensity in meters per second (a), sea-surface temperature in K (b), outflow temperature in K (c),
and outflow temperature level in hPa (d) calculated with pyPI and averaged over the main development regions: the North Atlantic (red),
eastern North Pacific (green), western North Pacific (blue), North Indian (yellow), and Southern Hemisphere (black).

The western North Pacific has a nearly flat seasonal cycle of
PI, while the other basins are more intraseasonally variable.
While the muted sea-surface temperatures certainly play an
important role in this damped cycle, the outflow temperature
pattern is typical of the cold-point tropopause seasonal cycle
(e.g., Yulaeva et al., 1994; Randel and Wu, 2014) – which the
OTLs are reaching – which acts to damp the seasonal cycle
further by decreasing PI in the boreal summer and increas-
ing PI in the boreal winter. As a result, tropical cyclones in

the western North Pacific have higher speed limits during the
boreal winter months. Consistent with this finding, histori-
cal observed typhoons show intense wind speeds during the
winter and spring months (Gilford et al., 2019). For exam-
ple, in early April 2004 Typhoon Sudal reached Category 4
strength, ∼ 67 ms−1, when the co-located monthly average
PI was about 75 ms−1.

The seasonal cycles of each basin illustrate the complex
relationship between sea-surface temperatures, OTLs, and
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Figure 8. Skew-T log-P thermodynamic diagram with isotherms
(thin black curves), dry adiabats (green curves), and moist adiabats
(blue curves). The bold black line is a mean environmental temper-
ature profile from the North Atlantic main development region, the
magenta curve is the moist adiabat associated with a mean North At-
lantic sea-surface temperature (SST), and the red curve is the moist
adiabat associated with a sea-surface temperature 3 ◦C warmer than
the mean.

outflow temperatures. Figure 8 diagrams this relationship in
more detail, showing how one assumption in the pyPI algo-
rithm impacts the output PI values. pyPI assumes that the
outflow temperature and its level are derived by finding the
LNB assuming a saturated parcel lifted from the sea-surface
with temperature, Ts. This implies that, following a moist
adiabat, the level of the neutral buoyancy is a function of
only Ts and the environmental temperature profile, T . Given
a fixed temperature profile, a 3 ◦C increase in Ts (e.g., from
SST1 → SST2 in Fig. 8) requires that the associated OTL
will be found at a higher altitude (OTL1→OTL2 in Fig. 8),
and the associated outflow temperature will likewise change.
As the atmosphere’s stratification increases into the lower
stratosphere, increases in Ts become less effective at chang-
ing the OTL and its temperature, with the effect nearly sat-
urating when the outflow reaches the cold-point tropopause
(e.g., 100 hPa in Fig. 8). At this point, T0 variability is al-
most completely decoupled from Ts variability. Instead these
T0 values become influenced by tropopause region variability
(e.g., Emanuel et al., 2013; Ramsay, 2013; Wang et al., 2014;
Wing et al., 2015; Gilford et al., 2017) which is controlled by
radiation, dynamics, and deep convection (e.g., Fueglistaler
et al., 2009; Randel and Wu, 2014).

These properties are borne out in the example 2004 sea-
sonal cycles computed in Fig. 7. In the North Atlantic basin
sea-surface temperature and OTL seasonal cycles are in-
versely proportional: colder sea-surface temperatures have

Figure 9. Seasonal amplitudes of each PI decomposition term
(Eq. 16) in 2004 and each main development region, calculated with
pyPI. Compare with Gilford et al. (2017), their Table 2. By con-
vention, negative amplitudes indicate the associated seasonal cycle
peaks in the boreal winter. For reference, the dashed black line in-
dicates the magnitude and sign of the seasonally invariant log( Ck

CD
).

higher-pressure OTLs and warmer outflow temperatures
found in the upper troposphere (where dT

dz < 0) in all months
except August–September. In these late summer months the
OTL reaches near the cold-point tropopause, and the out-
flow temperature slightly increases, following the seasonal
cycle of warmer tropopause temperatures (e.g., Yulaeva et
al., 1994). A contrasting pattern is observed in the western
North Pacific, where OTLs have almost no seasonal cycle: in
this basin the calculated outflow always reaches the lower-
most stratosphere (OTL ≤ 90 hPa). Accordingly, the outflow
temperature seasonal cycle perennially follows the seasonal-
ity of lowermost stratospheric temperatures, which minimize
in the boreal winter and maximize in the boreal summer (Yu-
laeva et al., 1994). Comparing with Eq. (1), this T0 seasonal-
ity leads to relatively increased PI values in the boreal win-
ter and relatively decreased PI values in the boreal summer.
Overall, the PI seasonal cycle in the western North Pacific is
damped over the year, a pattern that is observed in real-world
tropical cyclone intensities (cf. Gilford et al., 2019).

6.3 Decomposition analysis

The relative contributions to potential intensity may be math-
ematically derived by decomposing Eq. (1). Taking the natu-
ral logarithm of both sides,

2× log(Vmax)= log
(
Ck

CD

)
+ log

(
Ts− T0

T0

)
+ log(h∗o−h

∗). (16)

Then PI variability is related to variability in either tropical
cyclone efficiency (Ts−T0

T0
) or thermodynamic disequilibrium

(h∗o−h
∗); recall that Ck

CD
is taken as a constant. As an ex-

ample, Eq. (16) is applied to pyPI-calculated 2004 seasonal
cycles of potential intensity (from Fig. 7). pyPI calculates PI
directly, and efficiency may be directly computed from input
Ts and output T0; following Wing et al. (2015) the disequi-
librium term is taken as a residual from Eq. (16).
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After finding each term in Eq. (16) over each basin and
seasonal cycle, the amplitude (defined as the annual range
evaluated with monthly observations) of each seasonal cycle
is plotted in Fig. 9. By convention, a negative amplitude in-
dicates the approximately sinusoidal seasonal cycle reached
its maximum in the boreal winter and minimum in the boreal
summer.

In all basins, the disequilibrium term drives the largest por-
tion of the seasonal amplitude. This is consistent with sea-
surface temperature seasonal cycles which dominate the dis-
equilibrium variance (Fig. 7). The efficiency term is smaller,
and in each basin it follows the same cycle as thermodynamic
disequilibrium, with the exception of the western North Pa-
cific (where the efficiency seasonal cycle maximizes in the
boreal winter and minimizes in the boreal summer). This
opposite-signed seasonality between disequilibrium and ef-
ficiency in the western North Pacific is directly related to the
influential seasonality of the near-tropopause outflow tem-
peratures found with the pyPI calculations (Sect. 6.2; see full
discussions in Gilford et al., 2017, 2019). Notably, the South-
ern Hemisphere shares this outflow temperature seasonal-
ity, which actually amplifies the efficiency seasonal cycle
through both sea-surface temperatures and outflow tempera-
ture intraseasonal variability. In all other basins, outflow tem-
perature seasonality is offset by the sea-surface temperature
seasonality, which acts to mute the efficiency term and fur-
ther contribute to disequilibrium dominating their seasonal
cycles. The decomposition in Fig. 9 illustrates how the roles
of environmental conditions in PI seasonality are basin de-
pendant.

These simple examples show how pyPI may be used to
study tropical cyclone intensities and likewise demonstrate
pyPI’s ability to produce findings similar to those previously
computed with the BE02 MATLAB code.

7 Summary, limitations, and future development

pyPI is a Python package that models the maximum potential
intensity (PI) of a tropical cyclone given its environmental
conditions. pyPI(v1.3) is the first fully documented PI algo-
rithm, advancing on a previous MATLAB code (Bister and
Emanuel, 2002), which has been extensively used, but under-
documented, in the literature. In addition to documenting PI
computation, allowing dynamic parameter selection, and cor-
recting minor errors in the previous algorithm, pyPI is also an
open-source, maintained, and archived project which permits
reproducibility, continual updates and improvements, and ac-
countability for future PI calculations in the tropical meteo-
rology community.

pyPI calculations exactly reproduce outputs from the Bis-
ter and Emanuel (2002) algorithm, except in rare cases where
the original algorithm’s implementation was errant. Sample
analyses show the flexibility and usefulness of PI calcula-
tions for understanding variability and thermodynamic con-
tributions to climatological tropical cyclone maximum inten-
sities.

Because of its statistical ties with observed storms
(Emanuel, 2000; Wing et al., 2007; Gilford et al., 2019;
Shields et al., 2019) PI is powerful tool for exploring past
and future changes in real-world maximum intensities. pyPI
computations have a broad range of possible applications,
which could include operational meteorology (e.g., the PI
maps produced by the Center for Land–Atmosphere Predic-
tion, Emanuel et al., 2004) and climate change research (So-
bel et al., 2016).

Potential intensity is a theoretical model with several no-
table limitations. Real-world tropical cyclones rarely are in
quasi-steady state or meet the idealized conditions required
for the Carnot cycle model. This makes PI less suitable for
operational purposes, though it may still be incorporated into
real-time genesis or intensification indices (see below). Fur-
thermore, PI theory does not directly account for complicat-
ing factors such as vertical wind shear or large-scale sub-
sidence, which are known to have important influences on
tropical cyclone intensity. The ratio of surface exchange co-
efficients, Ck

CD
, is also highly uncertain but important for PI

magnitude. Previous studies have adapted PI to make it more
suitable for various applications (e.g., Lin et al., 2013; Kieu
and Zhang, 2018); pyPI users should carefully consider PI as-
sumptions and applicability in their research problems (Gil-
ford, 2018), adapting pyPI or suggesting package enhance-
ments as appropriate.

Future planned software improvements of pyPI include an
expansion of the codebase to compute other tropical cyclone
thermodynamic and statistical indices, including the genesis
potential index (Camargo et al., 2007; Zhang et al., 2016) and
ventilation index (Tang and Emanuel, 2012). A direct dise-
quilibrium calculation (e.g., Wing et al., 2015) module would
permit comparisons with the residual approach currently em-
ployed in pyPI (Sect. 6.3). Finally, further improvements in
the algorithm’s handling of missing data are warranted to re-
duce the algorithm run time and improve pyPI’s applicability
for a wider range of input profiles.
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Appendix A: pyPI constants

Table A1. Meteorological constants used in the potential intensity algorithm.

Symbol Constant name pyPI variable Value/units

cpd Specific heat of dry air CPD 1005.7 Jkg−1 K
cpv Specific heat of water vapor CPV 1870 Jkg−1 K
c` Specific heat of liquid water CL 2500 Jkg−1 K
Rv Gas constant of water vapor RV 461.5 Jkg−1 K
Rd Gas constant of dry air RD 287.04 Jkg−1 K
ε Ratio of gas constants EPS Rd

Rv
= 0.6219. . .

Lv0 Latent heat of vaporization at 0 ◦C ALV0 2.501× 106 Jkg−1

Constants used in to model potential intensity in the BE02
algorithm have been directly used in pyPI and are recorded
in Table A1.

Appendix B: pyPI functions

Table B1. Python functions to compute or analyze the potential intensity algorithm.

Name Eq. number(s) Python function name

Potential intensity (2)–(3), (14) pi
Parcel vapor pressure (4) ev
Parcel mixing ratio Invert (4) rv
Clausius–Clapeyron (5) es_cc
Latent heat of vaporization (6) Lv
Total specific entropy (7) entropy_S
Lifting condensation level (8) e_pLCL
Density temperature (10) Trho
Convective available potential energy (11)–(13) cape
Tropical cyclone efficiency Term of (1) pi_efficiency
Potential intensity decomposition (16) decompose_pi

pyPI performs the calculations of Algorithms 1 and 2
through a set of functions included in the primary module
or loaded from a utility file; these ensure consistency and
enable modular changes to the codebase. Interested read-
ers are encouraged to review the function list in Table B1
when considering a change to the pyPI codebase. Note that
the CAPE and potential intensity modules include assump-
tions and internal calculations supporting Algorithms 1 and
2, which do not have their own Python functions. These are
commented where they appear in the code and may be cross-
referenced with the fully documented algorithm descriptions
in Sects. 3.2 and 3.3.
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Code and data availability. pyPI version 1.3 and accompanying
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//github.com/dgilford/pyPI/releases/tag/v1.3 (last access: 26 April
2021) and archived at https://doi.org/10.5281/zenodo.3985975 (Gil-
ford, 2020). pyPI is provided under the MIT license.
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