Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-2205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2205-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new Lagrangian in-time particle simulation module (Itpas v1) for atmospheric particle dispersion
Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
Ralf Wolke
Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
Steffen Münch
Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
Roger Funk
Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
Kerstin Schepanski
Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318 Leipzig, Germany
Related authors
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Julian Hofer, Moritz Haarig, Ulla Wandinger, Bernd Heinold, Ina Tegen, Matthias Faust, Holger Baars, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3159, https://doi.org/10.5194/egusphere-2024-3159, 2024
Short summary
Short summary
This study investigates how hematite (an iron oxide mineral) in the Saharan Desert dust affects how dust particles interact with radiation. Using lidar data from Cabo Verde (2021–2022) and hematite content from atmospheric model simulations, the results show that higher hematite fraction leads to stronger particle backscattering at specific wavelengths. These findings can improve the representaiton of mineral dust in climate models, particularly regarding their radiative effect.
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Matthias Faust, Holger Baars, Bernd Heinold, Julian Hofer, Ina Tegen, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
Geosci. Model Dev., 17, 1271–1295, https://doi.org/10.5194/gmd-17-1271-2024, https://doi.org/10.5194/gmd-17-1271-2024, 2024
Short summary
Short summary
Mineral dust aerosol particles vary greatly in their composition depending on source region, which leads to different physicochemical properties. Most atmosphere–aerosol models consider mineral dust aerosols to be compositionally homogeneous, which ultimately increases model uncertainty. Here, we present an approach to explicitly consider the heterogeneity of the mineralogical composition for simulations of the Saharan atmospheric dust cycle with regard to dust transport towards the Atlantic.
Hanna Wiedenhaus, Roland Schrödner, Ralf Wolke, Marie L. Luttkus, Shubhi Arora, Laurent Poulain, Radek Lhotka, Petr Vodička, Jaroslav Schwarz, Petra Pokorna, Jakub Ondráček, Vladimir Ždímal, Hartmut Herrmann, and Ina Tegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1225, https://doi.org/10.5194/egusphere-2025-1225, 2025
Short summary
Short summary
This study examines winter air quality in Central Europe, focusing on the impact of domestic heating. Using a chemical transport model and measurements, it was found that the model underestimated organic particle concentrations. This was due to an underestimation of gases from domestic heating that form secondary organic particles. Improving the model by increasing these emissions and the particle formation led to better results, demonstrating the important role of heating emissions in winter.
Agnesh Panta, Konrad Kandler, Kerstin Schepanski, Andres Alastuey, Pavla Dagsson Waldhauserova, Sylvain Dupont, Melanie Eknayan, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Mara Montag, Xavier Querol, Jesús Yus-Díez, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2025-494, https://doi.org/10.5194/egusphere-2025-494, 2025
Short summary
Short summary
Iceland is among the most active dust source areas in the world. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual aerosol particles of Icelandic dust using electron microscopy. Our study provides insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Julian Hofer, Moritz Haarig, Ulla Wandinger, Bernd Heinold, Ina Tegen, Matthias Faust, Holger Baars, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3159, https://doi.org/10.5194/egusphere-2024-3159, 2024
Short summary
Short summary
This study investigates how hematite (an iron oxide mineral) in the Saharan Desert dust affects how dust particles interact with radiation. Using lidar data from Cabo Verde (2021–2022) and hematite content from atmospheric model simulations, the results show that higher hematite fraction leads to stronger particle backscattering at specific wavelengths. These findings can improve the representaiton of mineral dust in climate models, particularly regarding their radiative effect.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Matthias Faust, Holger Baars, Bernd Heinold, Julian Hofer, Ina Tegen, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
Geosci. Model Dev., 17, 1271–1295, https://doi.org/10.5194/gmd-17-1271-2024, https://doi.org/10.5194/gmd-17-1271-2024, 2024
Short summary
Short summary
Mineral dust aerosol particles vary greatly in their composition depending on source region, which leads to different physicochemical properties. Most atmosphere–aerosol models consider mineral dust aerosols to be compositionally homogeneous, which ultimately increases model uncertainty. Here, we present an approach to explicitly consider the heterogeneity of the mineralogical composition for simulations of the Saharan atmospheric dust cycle with regard to dust transport towards the Atlantic.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Mark Hennen, Adrian Chappell, Nicholas Webb, Kerstin Schepanski, Matthew Baddock, Frank Eckardt, Tarek Kandakji, Jeff Lee, Mohamad Nobakht, and Johanna von Holdt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-423, https://doi.org/10.5194/gmd-2021-423, 2022
Revised manuscript not accepted
Short summary
Short summary
We use 90,000 dust point source observations (DPS), identified in satellite imagery across 9 global dryland environments to develop a novel dust emission model performance assessment. We evaluate the albedo-based dust emission model (AEM), which agrees with dust emission observations, or lack of emission 71 % of the time. Modelled dust occurs 27 % of the time with no observation, caused mostly by the incorrect assumption of infinite sediment supply and lack of dynamic dust entrainment thresholds.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Sophie Vandenbussche, Sieglinde Callewaert, Kerstin Schepanski, and Martine De Mazière
Atmos. Chem. Phys., 20, 15127–15146, https://doi.org/10.5194/acp-20-15127-2020, https://doi.org/10.5194/acp-20-15127-2020, 2020
Short summary
Short summary
Mineral dust aerosols blown mostly from desert areas are a key player in the climate system. We use a new desert dust aerosol low-altitude concentration data set as well as additional information on the surface state and low-altitude winds to infer desert dust emission and source maps over North Africa. With 9 years of data, we observe a full seasonal cycle of dust emissions, differentiating morning and afternoon/evening emissions and providing a first glance at long-term changes.
Isabelle Steinke, Naruki Hiranuma, Roger Funk, Kristina Höhler, Nadine Tüllmann, Nsikanabasi Silas Umo, Peter G. Weidler, Ottmar Möhler, and Thomas Leisner
Atmos. Chem. Phys., 20, 11387–11397, https://doi.org/10.5194/acp-20-11387-2020, https://doi.org/10.5194/acp-20-11387-2020, 2020
Short summary
Short summary
In this study, we highlight the potential impact of particles from certain terrestrial sources on the formation of ice crystals in clouds. In particular, we focus on biogenic particles consisting of various organic compounds, which makes it very difficult to predict the ice nucleation properties of complex ambient particles. We find that these ambient particles are often more ice active than individual components.
Ahmad Jhony Rusumdar, Andreas Tilgner, Ralf Wolke, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 10351–10377, https://doi.org/10.5194/acp-20-10351-2020, https://doi.org/10.5194/acp-20-10351-2020, 2020
Short summary
Short summary
In the present study, simulations with the SPACCIM-SpactMod multiphase chemistry model are performed. The investigations aim at assessing the impact of a detailed treatment of non-ideality in multiphase models dealing with aqueous aerosol chemistry. The model studies demonstrate that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions, oxidants, and related chemical subsystems such as organic chemistry in aqueous aerosols.
Cited articles
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M.,
and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction
with the COSMO Model: Description and Sensitivities, Mon. Weather
Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Borrelli, P., Lugato, E., Montanarella, L., and Panagos, P.: A New Assessment
of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a
Quantitative Spatially Distributed Modelling Approach, Land Degrad.
Dev., 28, 335–344, https://doi.org/10.1002/ldr.2588, 2016. a
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1, Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013. a
Cassiani, M., Stohl, A., and Brioude, J.: Lagrangian Stochastic Modelling of
Dispersion in the Convective Boundary Layer with Skewed Turbulence Conditions
and a Vertical Density Gradient: Formulation and Implementation in the
FLEXPART Model, Bound.-Lay. Meteorol., 154, 367–390,
https://doi.org/10.1007/s10546-014-9976-5, 2015. a
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D.,
Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P.,
and Vogel, G.: A Description of the Nonhydrostatic Regional COSMO Model, Part
II : Physical Parameterization, Tech. rep., Consortium for Small-Scale
Modelling, Deutscher Wetterdienst,
https://doi.org/10.5676/dwd_pub/nwv/cosmo-doc_5.00_II, 2011. a
Draxler, R. and Hess, G.: An overview of the HYSPLIT_4 modeling system for
trajectories, dispersion, and deposition, Aust. Meteorol. Mag.,
47, 295–308, 1998. a
Faust, M.: In-time particle simulation (Itpas) module in the framework of the
COSMO-Model, Zenodo, https://doi.org/10.5281/zenodo.3932248, 2020a. a
Faust, M.: mttfst/dust-bubble: randomised test input, Zenodo,
https://doi.org/10.5281/zenodo.3975563, 2020b. a
Faust, M.: mttfst/trajectory-plot: Trajectory-Plot – Paper Version, Zenodo,
https://doi.org/10.5281/zenodo.4062148, 2020c. a
Faust, M.: mttfst/trajectory-cross-section: paper version, prep for sample
data, Zenodo, https://doi.org/10.5281/zenodo.4061940, 2020d. a
Faust, M.: In-time particle simulation (Itpas) – sample data, Zenodo,
https://doi.org/10.5281/zenodo.3965682, 2020e. a
Funk, R. and Reuter, H. I.: Wind Erosion, in: Soil Erosion in Europe, John Wiley & Sons, Ltd,
563–582, https://doi.org/10.1002/0470859202.ch41, 2006. a
Funk, R., Reuter, H. I., Hoffmann, C., Engel, W., and Öttl, D.: Effect of
moisture on fine dust emission from tillage operations on agricultural soils,
Earth Surf. Proc. Landf., 33, 1851–1863,
https://doi.org/10.1002/esp.1737, 2008. a, b
Goudie, A. S.: Desert dust and human health disorders, Environ.
Int., 63, 101–113, https://doi.org/10.1016/j.envint.2013.10.011, 2014. a
Hall, C. D.: The simulation of particle motion in the atmosphere by a numerical random-walk model, Q. J. Roy. Meteor. Soc.,
101, 235–244, https://doi.org/10.1002/qj.49710142807, 1975. a, b, c
Hanna, S. R.: Applications in Air Pollution Modeling, in: Atmospheric
Turbulence and Air Pollution Modelling: A Course held in The Hague, chap. 7, Springer Netherlands,
275–310, https://doi.org/10.1007/978-94-010-9112-1_7, 1982. a
Holmén, B. A., James, T. A., Ashbaugh, L. L., and Flocchini, R. G.:
Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley – Part I: lidar,
Atmos. Environ., 35, 3251–3264, https://doi.org/10.1016/s1352-2310(00)00518-5,
2001. a
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781–7816, https://doi.org/10.5194/acp-11-7781-2011, 2011. a
Joussaume, S.: Three-dimensional simulations of the atmospheric cycle of desert
dust particles using a general circulation model, J. Geophys.
Res., 95, 1909, https://doi.org/10.1029/jd095id02p01909, 1990. a
Kim, K.-H., Kabir, E., and Kabir, S.: A review on the human health impact of
airborne particulate matter, Environ. Int., 74, 136–143,
https://doi.org/10.1016/j.envint.2014.10.005, 2015. a
Kjelgaard, J., Sharratt, B., Sundram, I., Lamb, B., Claiborn, C., Saxton, K.,
and Chandler, D.: PM10 emission from agricultural soils on the Columbia
Plateau: comparison of dynamic and time-integrated field-scale measurements
and entrainment mechanisms, Agr. Forest Meteorol., 125,
259–277, https://doi.org/10.1016/j.agrformet.2004.04.004, 2004. a, b
Legg, B. J. and Raupach, M. R.: Markov-chain simulation of particle dispersion in inhomogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance, Bound.-Lay. Meteorol., 24, 3–13,
https://doi.org/10.1007/BF00121796, 1982. a
Lemons, D. and Langevin, P.: An Introduction to Stochastic Processes in
Physics, Johns Hopkins Paperback, Johns Hopkins University Press, Baltimore, USA, 128 pp., 2002. a
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 ∘C, Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, 2018. a
Münch, S., Papke, N., Thiel, N., Nübel, U., Siller, P., Roesler, U.,
Biniasch, O., Funk, R., and Amon, T.: Effects of farmyard manure application
on dust emissions from arable soils, Atmos. Pollut. Res., 11,
1610–1624, https://doi.org/10.1016/j.apr.2020.06.007, 2020. a, b, c
Ngan, F., Stein, A., and Draxler, R.: Inline Coupling of
WRF –HYSPLIT: Model Development and Evaluation Using Tracer
Experiments, J. Appl. Meteorol. Clim., 54, 1162–1176,
https://doi.org/10.1175/jamc-d-14-0247.1, 2015. a, b
Ngan, F., Stein, A., Finn, D., and Eckman, R.: Dispersion simulations using
HYSPLIT for the Sagebrush Tracer Experiment, Atmos. Environ., 186,
18–31, https://doi.org/10.1016/j.atmosenv.2018.05.012, 2018. a
Panitz, H., Vogel, B., and Vogel, H.: The Lagrangian particle model traveling
version 92/3. Model description and users' guide, KITopen, https://doi.org/10.5445/ir/270035362, 1994. a, b
Pant, P. and Harrison, R. M.: Estimation of the contribution of road traffic
emissions to particulate matter concentrations from field measurements: A
review, Atmos. Environ., 77, 78–97,
https://doi.org/10.1016/j.atmosenv.2013.04.028, 2013. a
Petterssen, S.: Weather Analysis and Forecasting. Vol. 2 Weather Weather
Systems, McGraw-Hill, New York, USA, 1956. a
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019. a
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink,
M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8,
421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018. a
Seibert, P.: Convergence and Accuracy of Numerical Methods for Trajectory
Calculations, J. Appl. Meteorol., 32, 558–566,
https://doi.org/10.1175/1520-0450(1993)032<0558:caaonm>2.0.co;2, 1993. a
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion
Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/bams-d-14-00110.1, 2015. a
Stohl, A.: Computation, accuracy and applications of trajectories – A
review and bibliography, Atmos. Environ., 32, 947–966,
https://doi.org/10.1016/s1352-2310(97)00457-3, 1998. a
Stohl, A. and Thomson, D. J.: A Density Correction for Lagrangian Particle
Dispersion Models, Bound.-Lay. Meteorol., 90, 155–167,
https://doi.org/10.1023/A:1001741110696, 1999. a
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005. a, b
Stull, R.: An Introduction to Boundary Layer Meteorology, in: Atmospheric and
Oceanographic Sciences Library, Springer Netherlands, Dordrecht, the Netherlands, 2012. a
Taiwo, A. M., Harrison, R. M., and Shi, Z.: A review of receptor modelling of
industrially emitted particulate matter, Atmos. Environ., 97,
109–120, https://doi.org/10.1016/j.atmosenv.2014.07.051, 2014. a
Taylor, G. I.: Diffusion by continuous movements, Proc. London Math. Soc, 20,
196–212, 1922. a
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann,
M.: Impact of vegetation and preferential source areas on global dust
aerosol: Results from a model study, J. Geophys. Res.-Atmos., 107, AAC 14-1–AAC 14-27, https://doi.org/10.1029/2001jd000963, 2002. a
Thiel, N., Münch, S., Behrens, W., Junker, V., Faust, M., Biniasch, O.,
Kabelitz, T., Siller, P., Boedeker, C., Schumann, P., Roesler, U., Amon, T.,
Schepanski, K., Funk, R., and Nübel, U.: Airborne bacterial emission fluxes
from manure-fertilized agricultural soil, Microbial Biotechnology, 13, 1631–1647,
https://doi.org/10.1111/1751-7915.13632, 2020. a, b
Thomson, D. J.: Criteria for the selection of stochastic models of particle
trajectories in turbulent flows, J. Fluid Mech., 180, 529,
https://doi.org/10.1017/s0022112087001940, 1987.
a
Unidata: Network Common Data Form (netCDF) version 4.7.4, Boulder, CO: UCAR/Unidata [software], https://doi.org/10.5065/D6H70CW6, 2020. a
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ.,
35, 549–560, https://doi.org/10.1016/s1352-2310(00)00326-5, 2001. a
Short summary
Trajectory dispersion models are powerful and intuitive tools for tracing air pollution through the atmosphere. But the turbulent nature of the atmospheric boundary layer makes it challenging to provide accurate predictions near the surface. To overcome this, we propose an approach using wind and turbulence information at high temporal resolution. Finally, we demonstrate the strength of our approach in a case study on dust emissions from agriculture.
Trajectory dispersion models are powerful and intuitive tools for tracing air pollution through...