Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-2057-2021
https://doi.org/10.5194/gmd-14-2057-2021
Model description paper
 | 
21 Apr 2021
Model description paper |  | 21 Apr 2021

HIDRA 1.0: deep-learning-based ensemble sea level forecasting in the northern Adriatic

Lojze Žust, Anja Fettich, Matej Kristan, and Matjaž Ličer

Related authors

CRITER 1.0: a coarse reconstruction with iterative refinement network for sparse spatio-temporal satellite data
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 5549–5573, https://doi.org/10.5194/gmd-18-5549-2025,https://doi.org/10.5194/gmd-18-5549-2025, 2025
Short summary
Application of the HIDRA2 deep-learning model for sea level forecasting along the Estonian coast of the Baltic Sea
Amirhossein Barzandeh, Matjaž Ličer, Marko Rus, Matej Kristan, Ilja Maljutenko, Jüri Elken, Priidik Lagemaa, and Rivo Uiboupin
Ocean Sci., 21, 1315–1327, https://doi.org/10.5194/os-21-1315-2025,https://doi.org/10.5194/os-21-1315-2025, 2025
Short summary
HIDRA-D: deep-learning model for dense sea level forecasting using sparse altimetry and tide gauge data
Marko Rus, Matjaž Ličer, and Matej Kristan
EGUsphere, https://doi.org/10.5194/egusphere-2025-3187,https://doi.org/10.5194/egusphere-2025-3187, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
DELWAVE 1.0: deep learning surrogate model of surface wave climate in the Adriatic Basin
Peter Mlakar, Antonio Ricchi, Sandro Carniel, Davide Bonaldo, and Matjaž Ličer
Geosci. Model Dev., 17, 4705–4725, https://doi.org/10.5194/gmd-17-4705-2024,https://doi.org/10.5194/gmd-17-4705-2024, 2024
Short summary

Cited articles

Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, arXiv preprint arXiv:1803.01271, http://arxiv.org/abs/1803.01271 (last access: 14 April 2021), 2018. a
Bajo, M. and Umgiesser, G.: Storm surge forecast through a combination of dynamic and neural network models, Ocean Model., 33, 1–9, https://doi.org/10.1016/j.ocemod.2009.12.007, 2010. a
Bernier, N. B. and Thompson, K. R.: Deterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten days, Ocean Model., 86, 114–127, https://doi.org/10.1016/j.ocemod.2014.12.002, 2015. a
Bertotti, L., Bidlot, J.-R., Buizza, R., Cavaleri, L., and Janousek, M.: Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to “acqua alta” in Venice, Q. J. Roy. Meteor. Soc., 137, 1446–1466, https://doi.org/10.1002/qj.861, 2011.  a
Download
Short summary
Adriatic basin sea level modelling is a challenging problem due to the interplay between terrain, weather, tides and seiches. Current state-of-the-art numerical models (e.g. NEMO) require large computational resources to produce reliable forecasts. In this study we propose HIDRA, a novel deep learning approach for sea level modeling, which drastically reduces the numerical cost while demonstrating predictive capabilities comparable to that of the NEMO model, outperforming it in many instances.
Share