Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1821-2021
https://doi.org/10.5194/gmd-14-1821-2021
Development and technical paper
 | 
01 Apr 2021
Development and technical paper |  | 01 Apr 2021

Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0

Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams

Related authors

Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023,https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary

Related subject area

Atmospheric sciences
ClimKern v1.2: a new Python package and kernel repository for calculating radiative feedbacks
Tyler P. Janoski, Ivan Mitevski, Ryan J. Kramer, Michael Previdi, and Lorenzo M. Polvani
Geosci. Model Dev., 18, 3065–3079, https://doi.org/10.5194/gmd-18-3065-2025,https://doi.org/10.5194/gmd-18-3065-2025, 2025
Short summary
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Matti Niskanen, Aku Seppänen, Henri Oikarinen, Miska Olin, Panu Karjalainen, Santtu Mikkonen, and Kari Lehtinen
Geosci. Model Dev., 18, 2983–3001, https://doi.org/10.5194/gmd-18-2983-2025,https://doi.org/10.5194/gmd-18-2983-2025, 2025
Short summary
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary

Cited articles

Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J. M., Hoell, C., O'dowd, C. D., Hansson, H.-C., Väkevä, M., Koponen, I. K., Buzorius, G., and Kulmala, M.: Physical characterization of aerosol particles during nucleation events, Tellus B, 53, 344–358, https://doi.org/10.3402/tellusb.v53i4.17127, 2001. 
Aalto, P. and Kulmala, M.: Finland – Hyytiälä (FI0050R) – dmps – particle_number_size_distribution – aerosol [data set], available at: http://ebas.nilu.no/DataSets.aspx?stations=FI0050R&InstrumentTypes=dmps&components=particle_number_size_distribution&fromDate=1970-01-01&toDate=2021-12-31 (last access: 24 March 2021), 2012. 
Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res.-Atmos., 107, AAC 4-1–AAC 4-23, https://doi.org/10.1029/2001JD001010, 2002. 
Adams, P. J., Donahue, N. M., and Pandis, S. N.: Atmospheric nanoparticles and climate change, AIChE J., 59, 4006–4019, https://doi.org/10.1002/aic.14242, 2013. 
Download
Short summary
Atmospheric particle formation, emissions, and growth process rates are significant sources of uncertainty in predicting climate change. We aim to reduce that uncertainty by using measurements from several ground-based sites across Europe. We developed an estimation technique to adapt the governing process rates so model–measurement bias decays. The estimation framework developed has potential to improve model predictions while providing insight into the underlying atmospheric particle physics.
Share