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Abstract. Atmospheric aerosol microphysical processes are
a significant source of uncertainty in predicting climate
change. Specifically, aerosol nucleation, emissions, and
growth rates, which are simulated in chemical transport mod-
els to predict the particle size distribution, are not under-
stood well. However, long-term size distribution measure-
ments made at several ground-based sites across Europe im-
plicitly contain information about the processes that created
those size distributions. This work aims to extract that infor-
mation by developing and applying an inverse technique to
constrain aerosol emissions as well as nucleation and growth
rates based on hourly size distribution measurements. We de-
veloped an inverse method based upon process control theory
into an online estimation technique to scale aerosol nucle-
ation, emissions, and growth so that the model–measurement
bias in three measured aerosol properties exponentially de-
cays. The properties, which are calculated from the measured
and predicted size distributions, used to constrain aerosol nu-
cleation, emission, and growth rates are the number of par-
ticles with a diameter between 3 and 6 nm, the number with
a diameter greater than 10 nm, and the total dry volume of
aerosol (N3–6, N10, Vdry), respectively. In this paper, we fo-
cus on developing and applying the estimation methodology
in a zero-dimensional “box” model as a proof of concept be-
fore applying it to a three-dimensional simulation in subse-
quent work. The methodology is first tested on a dataset of
synthetic and perfect measurements that span diverse envi-
ronments in which the true particle emissions, growth, and

nucleation rates are known. The inverse technique accurately
estimates the aerosol microphysical process rates with an
average and maximum error of 2 % and 13 %, respectively.
Next, we investigate the effect that measurement noise has
on the estimated rates. The method is robust to typical in-
strument noise in the aerosol properties as there is a neg-
ligible increase in the bias of the estimated process rates.
Finally, the methodology is applied to long-term datasets
of in situ size distribution measurements in western Europe
from May 2006 through June 2007. At Melpitz, Germany,
and Hyytiälä, Finland, the average diurnal profiles of esti-
mated 3 nm particle formation rates are reasonable, having
peaks near noon local time with average peak values of 1
and 0.15 cm−3 s−1, respectively. The normalized absolute er-
ror in estimated N3–6, N10, and Vdry at three European mea-
surement sites is less than 15 %, showing that the estimation
framework developed here has potential to decrease model–
measurement bias while constraining uncertain aerosol mi-
crophysical processes.

1 Introduction

Atmospheric aerosols scatter and absorb incoming solar ra-
diation (Cubasch et al., 2013). They also provide sites for
cloud droplet formation, known as cloud condensation nu-
clei (CCN) (Twomey, 1974). Through the latter process, they
contribute to the aerosol indirect effect in which aerosols per-
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turb the CCN concentrations, affecting the Earth’s energy
balance by altering cloud properties such as cloud coverage,
reflectivity, and lifetime (Lohmann and Feichter, 2005). The
indirect effect is the most uncertain mechanism of global
radiative forcing (Stocker et al., 2013). Given the impor-
tance of aerosol indirect radiative forcing, considerable effort
has been devoted to developing chemical transport models
(CTMs) that predict CCN concentration fields (Adams and
Seinfeld, 2002; Easter, 2004; Kajino and Kondo, 2011; von
Salzen et al., 2000; Spracklen et al., 2005, 2010; Wilson et
al., 2001; Yu and Luo, 2009; Zhang et al., 2004). CTMs sim-
ulate atmospheric processes and aerosol microphysics driven
by meteorological fields.

The major sources of uncertainty in using a CTM to
predict CCN include uncertainties in the rates of the fol-
lowing processes: particle formation, emissions, and growth
(Carslaw et al., 2013; Pierce and Adams, 2009b; Spracklen
et al., 2008, 2011; Westervelt et al., 2014). New particle
formation, or nucleation, is the formation of thermodynam-
ically stable clusters near 1 nm in diameter from condens-
able vapors. The general understanding of nucleation is still
an open challenge (Adams et al., 2013). Particle emissions
can be estimated from data such as emission factors and ac-
tivity levels of each emission source for different classes of
sources. However, these data are less commonly tabulated
for number concentration emitted as opposed to mass emit-
ted, and measurements of the emitted particle size distribu-
tions are sparse. Particles grow partially due to the conden-
sation of sulfuric acid and oxidized volatile organic com-
pounds (VOCs). An uncertain quantity of VOCs is emitted
from biomass burning, anthropogenic sources, and the bio-
sphere (Folberth et al., 2006). After their emission, sulfuric
acid and VOCs form secondary organic aerosol (SOA) (e.g.,
Kerminen et al., 2018; Kulmala et al., 2014; Shrivastava et
al., 2017), and the SOA yield from VOCs is also uncertain.

Predicted CCN concentrations can be improved either by
nudging the concentration fields themselves or by estimat-
ing the particle formation, emissions, and growth rates that
largely control CCN concentrations. Estimating the key un-
certain aerosol processes is preferred to directly estimating
CCN concentrations because it provides insight into the un-
derlying model biases (Benedetti et al., 2018). A systematic
way to estimate uncertain atmospheric processes is to use
data assimilation or inverse modeling techniques that employ
a combination of CTMs and field measurements.

Long-term observations of particle size distributions are
available from large measurement networks such as the
European Supersites for Atmospheric Aerosol Research
(EUSAAR) (Asmi et al., 2011), the German Aerosol Ul-
trafine Network (GUAN) (Birmili et al., 2015), and the
Global Atmosphere Watch World Data Centre for Aerosols
(GAW-WDCA) (https://www.gaw-wdca.org/, last access:
24 March 2021). Observed size distributions contain intrin-
sic information about the aerosol processes that created those
size distributions. Previous work focuses on extracting parti-

cle formation and growth rates from size distributions ob-
served at a measurement site (Kerminen et al., 2018). These
studies utilize methods developed by Kulmala et al. (2012,
and references therein) to determine aerosol process rates
during new particle formation (NPF) events. However, there
are several limiting assumptions in the proposed methodol-
ogy, including the fact that the coagulation sink and growth
rate are assumed to be constant across particle sizes as is the
nucleation rate during the NPF event; moreover, no sources
of particles between 3 and 25 nm are considered besides NPF.
A method that uses an aerosol microphysics model or a CTM
with aerosol microphysics could account for the limiting as-
sumptions to enable the estimation of aerosol processes out-
side of and during NPF events. The goal of this paper is to
propose a computationally efficient method that assimilates
size distribution measurements with an atmospheric aerosol
model that improves model accuracy by inferring aerosol
process rates.

Previous studies used size distribution measurements from
smog chamber experiments with 0D (“box”) models simu-
lating the aerosol general dynamic equation (GDE) to esti-
mate uncertain terms in the GDE (Pierce et al., 2008; Ver-
heggen and Mozurkewich, 2006). These inverse models esti-
mate processes such as nucleation, growth, and chamber wall
loss by minimizing the model–measurement bias. The min-
imization procedure involves iteratively fitting the model to
the measurements and requires knowledge of the sensitivity
of the size distribution to the uncertain processes for each it-
eration. However, this method does not guarantee that the op-
timal process rates will be discovered within a low number
of iterations, making the inverse model potentially compu-
tationally expensive when applied in the context of a three-
dimensional model.

Furthermore, previous inverse modeling studies with 3D
CTMs have focused on estimating emission rates of gases,
such as methane, ammonia, sulfur oxides, and nitrogen ox-
ides (Bergamaschi et al., 2010; Gilliland et al., 2003; Hein
et al., 1997; Henze et al., 2009; Houweling et al., 1999)
from in situ measurements. Other investigations have esti-
mated aerosol emissions from remote aerosol optical depth
measurements (Chen et al., 2019; Dubovik et al., 2008; Es-
cribano et al., 2016, 2017; Huneeus et al., 2012, 2013; Wang
et al., 2012; Xu et al., 2013; Zhang et al., 2015, 2005) or
from in situ observations (Viskari et al., 2012b, a). These pre-
vious researchers used various inverse modeling techniques
to solve their proposed problem, including a Kalman filter
and a four-dimensional variational (4D-Var) method with an
adjoint model. These techniques are not ideal to estimate
aerosol microphysical processes for three reasons: (1) com-
plexity in the relationship between ambient size distribution
and the emissions as well as aerosol formation and growth,
(2) significant computational cost in optimizing multiple (po-
tentially spatially distributed) parameters, and (3) the adjoint
model used with 4D-Var becoming obsolete when the 3D
CTM is updated.
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In this study, we utilize estimation techniques from the
field of nonlinear process control to address disadvantages
in the current inverse modeling techniques. Understanding a
complex process is vital when controlling it to a set point or
goal, so adaptive controllers utilize online estimation algo-
rithms to improve the controller’s internal model with data.
We apply ideas from inventory control and passive systems
theory (Farschman et al., 1998; Ydstie, 2002) to formulate
an estimation algorithm for aerosol microphysics. Inventory
control uses a set of variables, called inventories, to define
the overall performance of the inverse model. These ideas
have been used to control the float-glass process (Ydstie and
Jiao, 2006), a pressure tank (Li et al., 2010), and production
of solar-grade silicon (Balaji et al., 2010). The same theories
have been used to estimate chemical kinetics and the heat of
reaction (Zhao and Ydstie, 2018). An estimation technique
based on inventory control is attractive because it is devel-
oped for complex and nonlinear systems, does not require
significant computational cost, and is flexible to model up-
dates because of the algorithm’s high-level perspective. By
this, we mean that the algorithm needs to know the net rates
of certain processes but is insensitive to the details of how
those rates are calculated. In coding terms, the process rates
can be estimated by looking at changes before and after the
corresponding subroutine is called and is robust to changes
in the subroutine itself, setting it apart from adjoint methods.

In this work, we aim to design an inverse modeling tech-
nique from nonlinear process control theory that can incor-
porate size distribution measurements with a 3D CTM; how-
ever, as a first development step, we limit the estimation algo-
rithm to a box model. Our objective is to input size distribu-
tion measurements to the inverse model in order to estimate
uncertain aerosol processes simulated in a box model: parti-
cle formation, emissions, and SOA production rates. We will
first describe the inverse model and how it is designed to es-
timate particle formation, emissions, and growth. Then, we
will validate the method on sets of synthetic measurements
relevant to conditions in a 3D CTM. Next, we will assess
the effect of instrument noise on the estimates by corrupting
the synthetic measurements with a realistic noise signal. Fi-
nally, we will test the inverse model on realistic field data by
estimating time-varying particle formation, emissions, and
growth at three measurement sites: San Pietro Capofiume,
Italy; Melpitz, Germany; and Hyytiälä, Finland. While the
ultimate goal of this work is to deploy the inverse method
in a 3D CTM, all of the steps presented here are proof-of-
concept work in a zero-dimensional atmospheric box model.

2 Inverse modeling methods

Inverse models use the observed model output to estimate
a set of control variables such that the predicted model out-
put matches the observations as closely as possible. Common
control variables estimated in the atmospheric inverse mod-

eling and data assimilation fields include emission fluxes and
mixing ratios. A disadvantage of using mixing ratios as con-
trol variables is that it does not address underlying errors in
processes that are responsible for the mismatch between the
model and observations. While model-predicted mixing ra-
tios are improved, little insight is gathered into the causes of
the errors. In this work, we consider control variables that
are scaling factors applied to three highly uncertain but im-
portant aerosol processes: particle nucleation, emissions, and
growth. Since these processes significantly affect the evolu-
tion of the measured properties, we anticipate greater under-
standing in these uncertain process rates over mixing ratio
control variables.

2.1 TOMAS model

The TwO-Moment Aerosol Sectional (TOMAS) algorithm
simulates both discretized mass and number size distribu-
tions. In this work, we utilize a zero-dimensional version
of TOMAS as our box model. The algorithm was originally
described by Adams and Seinfeld (2002) based on numeri-
cal methods for simulating cloud droplet microphysics orig-
inally proposed by Tzivion et al. (1987, 1989). The code has
been updated several times since the original release (Pierce
and Adams, 2009a; Trivitayanurak et al., 2008; Westervelt
et al., 2013). The TOMAS box model used here simulates
sulfuric acid, ammonia, and sulfur dioxide vapors as well
as five particle species: sulfate, ammonium, sea salt, organic
carbon, and water. The discretized size distribution includes
43 size sections, defined by particle mass, that are logarith-
mically spaced by a factor of 2. The smallest particle is
1.22× 10−25 kg of dry aerosol mass per particle, resulting
in a size distribution that spans particle dry diameters from
roughly 0.5 nm to 10 µm based on a typical particle density
of 1.8 g cm−3. TOMAS calculates the density online based
on the current composition of a given size bin. Although
TOMAS tracks the concentration of particles as small as
0.5 nm, the minimum predicted size is 3 nm here due to the
implemented nucleation routine described below.

In this work we utilize a simplified version of TOMAS
v1.0.0 (McGuffin, 2020) that was described by Westervelt et
al. (2013). The simulated microphysics include nucleation,
coagulation, condensation, wet deposition, size-resolved dry
deposition, and emissions. The model incorporates a combi-
nation of binary and ternary nucleation mechanisms (Napari
et al., 2002; Vehkamäki et al., 2002) in which the ternary pa-
rameterization allows calculation of the rate of formation of
new particles 3 nm in diameter if the concentration of am-
monia gas exceeds 0.1 ppt. Condensation of sulfuric acid va-
por and VOCs follow a kinetic scheme in which the vapor
condenses to Fuchs-corrected surface area (Riipinen et al.,
2011). The rate of aerosol mass accumulation due to conden-
sation of VOCs is defined here as the production rate of sec-
ondary organic aerosol (SOA), in which the combined pro-
cesses of VOC emissions, chemistry, and condensation re-
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sult in a total SOA production rate. Sulfuric acid vapor is
assumed to be in pseudo-steady state between aerosol nucle-
ation, growth, and its photochemical production from sulfur
dioxide (Pierce and Adams, 2009a). Organic carbon aerosol,
sulfur dioxide, and ammonia are emitted at a constant flux
in which the primary organic aerosol (POA) emissions are
based on measured size distributions of particles emitted
from heavy- and light-duty vehicles (Ban-Weiss et al., 2010).
Sea spray emissions are not considered here since we are
simulating a continental measurement station. Therefore, sea
salt does not contribute to the simulated aerosol composition.
POA emission, SOA production, and particle nucleation rates
will be adjusted based on the measurements, so the a priori
rates are not significant here.

Particle sinks, such as wet deposition and transport, are
simplified as a single first-order loss of particles with a time
constant of 12 h, which is much faster than a time constant
for depositional losses only. This high loss rate is important
for our application of the box model to simulate field mea-
surements. A weakness of any application of a box model to
ambient data is that advection, convection, and dilution are
not simulated explicitly. The microphysical processes con-
strained here are all aerosol sources, so a large sink will al-
low the box model to match measurements that are rapidly
decreasing, e.g., due to an inflow of cleaner air. Dry deposi-
tion is calculated with a resistance-in-series approach (Zhang
et al., 2001).

2.2 Parameter estimation technique

To perform the inverse modeling technique, we adjust the
TOMAS box model by introducing three time-varying scal-
ing factors as the control variables that we want to estimate.
Then, we estimate the control variables from moments of
the size distribution that are sensitive to the uncertain pro-
cesses. The estimation method used here requires us to de-
fine “inventory variables”, which are measurable quantities
that are additive, positive, and continuously differentiable
(McGuffin et al., 2019b). The observed and predicted size
distributions are projected to the inventory variables (yk) at
time tk , which are used to estimate the set of scaling fac-
tors input to TOMAS, as shown in Fig. 1. Here we choose
to employ the following as inventory variables: (1) the parti-
cle concentration between 3 and 6 nm (N3–6), (2) the num-
ber concentration of particles greater than 10 nm (N10),
(3) and the dry aerosol volume concentration (Vdry) (yk =[
N3–6 N10 Vdry

]T ). These three variables are strongly
sensitive to the uncertain processes of nucleation, emissions,
and growth, respectively. The rates of change of the inven-
tory variables depend on the scaling factors (µk) at time tk
such that

dyk
dt
= f k +Gkµk, (1)

where Gk is an array of the sensitivity of each inventory vari-
able with respect to each uncertain process and f k is the vec-
tor of remaining terms in the inventory dynamics not directly
dependent on the uncertain processes. Conceptually, Eq. (1)
can be understood as a balance equation for the inventory
variable, which is derived from the general dynamic equa-
tion for aerosol microphysics. For example, when yk corre-
sponds to N10, the terms on the right consist of the rates of
all the processes that add or remove particles from this size
range. For N10, this would include the emission rates of any
particles larger than 10 nm and growth of smaller particles to
sizes larger than 10 nm in Gk , as well as formation or loss of
particles in this size range by coagulation (in f k). Theoret-
ically, they could be derived by a suitable integration of the
aerosol general dynamic equation. In practice, in the code,
Gk and dyk

dt are easily calculated online based on a backward
finite-difference scheme since the model equations are solved
using a forward-explicit Euler technique. Then, f k is deter-
mined from Eq. (1) based on the nominal scaling factor µk
used to determine Gk . Because these rates are determined by
finite difference, i.e., by saving model parameters before and
after relevant subroutines are called, this approach is gener-
alizable to various processes, modular, and robust with re-
spect to changes in the aerosol microphysics. Internal details
of subroutines can change so long as the estimator is able
to compare the model state before and after the subroutine
call. Additionally, this method can easily be adapted to other
models with different uncertain processes or available mea-
surements.

The parameter estimation technique was described in de-
tail by McGuffin et al. (2019b); it was previously used to
estimate sea spray emissions in a 3D CTM (McGuffin et al.,
2019a). We will give a brief summary of the parameter es-
timation technique here. Instead of using a least-squares re-
gression or the analytical maximum a posteriori solution, as
other parameter estimates are generated (i.e., variational data
assimilation or Bayesian inference techniques), we update
the parameter estimate so that the model–measurement error
exponentially decays, as shown in Eq. (2). In this case, the
error is defined based on the chosen inventory variables (yk).
The parameter estimate is calculated by solving the system
of linear equations:

f k +Gkµ̂k −
dyobs

k

dt
=−Kc

(
ŷk − y

obs
k

)
, (2)

where ŷk is the model-predicted vector of inventory variables
at time tk , yobs

k is the observed vector of inventory variables,
dyobs
k

dt is the observed derivative of the vector of inventory
variables, µ̂k is the vector of estimated scaling factors, and
Kc is a positive–definite diagonal array that determines the
error exponential decay rate. Kc is analogous to a Kalman
gain that weights the model–measurement bias. The gain has
dimensions of frequency, i.e., inverse time. The gain deter-
mines how quickly the estimator forces the model to match
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Figure 1. Schematic of the TOMAS box model with the online estimation technique. The measured size distribution is projected to the
inventory variables (N3–6, N10, Vdry), which the estimator compares to the current model prediction to calculate scaling factors that adjust
particle formation, SOA production, and POA emission rates in TOMAS to simulate the size distribution with adjusted rates at the next time
step.

the observations. High values of the gain accelerate conver-
gence to observations. In contrast, decreasing the gain tends
to weight the model more heavily than observations, increas-
ing the time required for the model predictions to converge to
observations so that the model does not follow the observa-
tions with high time resolution; the estimator will, however,
reduce systematic biases if given sufficient time. This prop-
erty of Kc allows the user to avoid noisy measurements cor-
rupting the parameter estimates. For the rest of this paper, we
use a matrix with diagonal elements of [4, 4, 1]T h−1 for Kc,
which corresponds to convergence timescales of 15 min and
1 h for the number- and volume-based inventory variables,
respectively. This array was found to have the best perfor-
mance in reducing model–measurement mismatch without
instabilities in the estimated scaling factors.

The left-hand side of Eq. (2) represents the rate of change
of the model–measurement error, which is invertible for the
scaling factors µ̂k . The terms f k and Gk can be easily calcu-
lated online as described above. Because we require instanta-
neous sensitivity and model dynamics (Gk and f k), we must
run the TOMAS algorithm twice for each time step (1) to de-
termine f k and Gk from the nominal µk and (2) to move the
simulation forward in time based on the estimated µ̂k . The
solution to the parameter estimation µ̂k is implemented in
the model in the second step to affect the complete number
and mass size distributions.

There are two main drawbacks to the parameter estima-
tion technique utilized here. First, we require knowledge of
the derivative of the observations, which may include noise
from differentiation. Unlike noise in the observations, noise
in the derivatives cannot be dampened by adjusting the tun-
ing parameter Kc. However, we can smooth dyobs

dt to remove
any differentiation noise with filtering techniques, such as the
Savitzky–Golay filter. Second, Gk must have full rank and it
should be well-conditioned to solve Eq. (2) for the scaling
factors. If the sensitivity array is ill-conditioned, we cannot
accurately solve the system of equations for the scaling fac-

tors to estimate the three process rates. This corresponds to
the situation in which the measured inventory variables do
not unambiguously constrain the process rates; i.e., several
sets of process rates adequately satisfy the measured con-
straints, leaving at least two of the equations nearly linearly
dependent. Physically, this can be thought of as a scenario in
which inventory variables react to an aerosol process in the
same way. For example, the system of equations using in-
ventory variables N10 and N100 to estimate SOA production
and emissions would be ill-conditioned in a scenario with
the model predicting only particles greater than 100 nm and
an emitted size distribution of particles 100 nm and larger.
It follows that the condition number is not informed by any
model–measurement mismatch.

We determine if the system is ill-conditioned based on the
condition number (κ) of the relative sensitivity array (RSA),
which is the element-wise product of the sensitivity array and
the transpose of its inverse.

RSA(tk)=Gk

(
G−1
k

)T
κ (tk)= cond(RSA(tk)) (3)

Here, the condition number is calculated as the ratio between
the maximum and minimum eigenvalues of the square matrix
(Highman, 2008), RSA, at time tk .

Another drawback of this estimation method, which is
shared with most inverse techniques, is the effect of uncer-
tainty in model errors not corrected by the estimator (f k un-
certainty). Model errors outside of particle nucleation, emis-
sions, and growth can lead the estimator to overcompensate
in the scaling factors if the inventory variables are sensitive
to those model errors. For example, the estimation technique
applied to a model that does not correctly simulate particle
deposition will estimate particle emissions incorrectly, while
the estimated nucleation rate will not be affected. Identifying
this scenario with outside model errors negatively impact-
ing the estimated process rates is very difficult, but one sign
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is when the estimated process rates are not physical, e.g., a
higher SOA production rate during nighttime. In future work,
including various types of observations and more inventory
variables can possibly inform the scaling factors and limit
the impact of outside model errors on the estimated process
rates.

Since the scaling factors are allowed to vary temporally,
the estimated scaling factors are specific to the model and its
a priori particle formation, emission, and growth rates. The
scaling factors do not have any inherent physical meaning.
Additionally, the estimated process rates cannot simply be
reconstructed from the a priori rate and the estimated scal-
ing factor since aerosol processes can be dependent on the
state of the atmosphere; e.g., particle formation and growth
depend on aerosol surface area. For all these reasons, instead
of analyzing the estimated scaling factors, we will look at the
estimated aerosol process rates.

2.3 Particle size distribution observations

The particle size distribution was observed from May 2006
through June 2007 at three rural locations: San Pietro Capofi-
ume, Italy (SPC); Melpitz, Germany (MPZ); and the Station
for Measuring Ecosystem–Atmosphere Relations II (Hari
and Kulmala, 2005) site in Hyytiälä, Finland (HYY). All
three measurement sites use twin-differential mobility par-
ticle sizer (DMPS) instruments to observe the ambient size
distribution with particle diameters ranging from 3 nm to var-
ious upper size limits. The largest particle diameter measured
is 0.6, 0.8, and 1 µm at SPC, MPZ, and HYY, respectively.
The experimental setup at SPC and HYY was described by
Aalto et al. (2001), and Birmili et al. (1999) described the
setup at MPZ.

Random noise in the measured inventory variables could
corrupt the estimated scaling factors. Instead of directly in-
putting the observed inventory variables, we smooth the ob-
servations and calculate their derivatives with a Savitzky–
Golay filter (Savitzky and Golay, 1964). The filter fits a poly-
nomial of a predetermined degree to the dataset over a time
horizon that is also predetermined. The filtered value is then
taken as the value of the polynomial at the midpoint of the
time horizon. Additionally, the rate of change of a dataset
is determined by differentiating the fitted polynomial at the
midpoint. The method is computationally efficient since the
there is an analytical solution to the best-fit polynomial coef-
ficients (Savitzky and Golay, 1964).

In this work, we use the Savitzky–Golay filter of degree 1
so that we perform a moving-horizon average over a 3 h win-
dow on the raw measured inventory variables. A small av-
eraging window is used for the field measurements to make
sure the nucleation events are not filtered out. Then, we use
finite differences on the filtered data to calculate the deriva-
tive of the measurements. The measurement derivatives and
hourly filtered measurements are used to linearly interpo-

late the measurements to a frequency of 5 min, which is the
model time step.

3 Validation of inverse modeling technique

To evaluate the inverse modeling technique, we estimate par-
ticle formation, emissions, and growth rates based on simu-
lated inventory variables, or “synthetic measurements”. The
synthetic measurements are from the TOMAS box model
itself with scaling factor inputs (µ∗); the aerosol forma-
tion, emissions, and growth rates simulated are the so-called
“true” rates. Then, TOMAS is run with the initial scaling fac-
tors at their nominal values (µ 6= µ∗), but the inverse model-
ing technique adapts the scaling factors so the online model
prediction matches the synthetic measurements. This config-
uration tests whether the estimation technique can recover
the true process rates starting from a biased a priori model.
This represents a best-case proof of concept because the syn-
thetic measurements have no measurement noise and because
the only errors in the a priori model are in the processes to be
tuned. Nevertheless, it demonstrates the viability and poten-
tial performance of the theoretical approach. There is no out-
side noise included in the synthetic measurements and they
are simulated with time-invariant scaling factors, but we ap-
ply a moving average with a 5 h window before utilizing in
the inverse method to be consistent with the other simulations
performed here.

Figure 2 shows how the inverse modeling approach per-
forms for a week-long simulation in which the original model
underpredicted aerosol mass (via dry aerosol volume Vdry)
and N10, and it overpredicted the nucleation-mode number
concentration (N3–6). Figure 2a, c, and e each show the a pri-
ori prediction if the scaling factors are not adjusted, the syn-
thetic measurements, and the estimated inventory variables
forN3–6,N10, and Vdry, respectively. Figure 2b, d, and f show
the process rates for the a priori, the true values that deter-
mine the synthetic measurements, and the estimated rates of
aerosol nucleation, emission, and SOA production, respec-
tively. The first 12 h of the inverse modeling simulation is
considered model spin-up, so the parameter estimation starts
adjusting the scaling factors at t = 12 h. We then evaluate the
performance of the estimator starting at 24 h until the end of
the simulation. The percent error between the average esti-
mated and true value normalized by the average true value
between days 1 and 7 for the aerosol measurements and rates
is shown in each plot of Fig. 2. The method works very well
in this case since the average bias for each measurement and
aerosol process rate is less than 1 % and 2 %, respectively.

Since the objective is to design an inverse technique that
is robust enough to apply in a global 3D CTM, we re-
peat the above method for a set of 27 scenarios that span
a range of process rates typically encountered in the atmo-
sphere. We explore different particle formation, emissions,
and SOA production rates that span approximately 0.001–
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Figure 2. Estimated, measured, and a priori inventory variables are in the left panels, and estimated, true, and a priori process rates are in the
right panels for scenario no. 26 of the proof-of-concept scenarios. The measurements are (a) N3–6, (c) Vdry, and (e) N10. The process rates
are (b) nucleation rate, (d) SOA production rate, and (f) POA emission rate.

Figure 3. Scatter plots of time-averaged (a) N3–6, (b) Vdry, and (c) N10 comparing the inverse modeling estimate and truth from synthetic
measurements for each scenario. Circle and triangle markers represent well- and ill-conditioned scenarios, respectively. Open triangles
represent scenarios unlikely to be observed with field measurements. The solid line is 1 : 1, and the dashed lines are 1 : 2 and 2 : 1.

300 cm−3 s−1, 580–2200 cm−3 h−1, and 1–38 µg m−3 d−1,
respectively (Dunne et al., 2016; Fountoukis et al., 2012;
Hodzic et al., 2016; Riemer et al., 2009). A weakness of
this estimation method occurs when the sensitivity matrix
(Gk) is ill-conditioned. Out of the 27 scenarios investigated

here, four sets of synthetic measurements are deemed ill-
conditioned as they were generated from a system in which
the condition number, calculated with Eq. (3), is greater than
1.2 on average. In these cases, the condition number is near
or equal to 1 for the majority of the simulation except for a
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Figure 4. Scatter plots of time-averaged nucleation rate (a), SOA production rate (b), and POA emission rate (c) comparing the inverse
modeling estimate and truth for each scenario. See Fig. 3 for details.

small number of time steps in which the condition number
spikes much higher, leading to an average condition num-
ber between 1.2 and 2.3. Common features among these ill-
conditioned scenarios are very high nucleation rates coupled
with low SOA production and low emission rates. Out of
the four ill-conditioned scenarios, three scenarios were phys-
ically unrealistic in that they paired extremely high formation
and extremely low growth rates – unlikely because the photo-
chemistry that leads to nucleation events also tends to lead to
high rates of condensational growth. Figure 3 shows the av-
erage estimate against the average measured inventory vari-
ables for all 27 scenarios. The only synthetic measurements
that were not accurately estimated are ill-conditioned and
unrealistic scenarios, which are denoted by the open trian-
gle markers. The three inventory variables are estimated with
an average error less than 11 % for the 23 well-conditioned
scenarios and the one physically realistic ill-conditioned sce-
nario.

Similarly, Fig. 4 shows that the estimated nucleation, emis-
sions, and growth rates are accurately estimated if the syn-
thetic measurements are well-conditioned. Particle formation
only directly affects N3–6, which is significantly more sensi-
tive to nucleation than emissions or growth, so we see that
the nucleation rate is accurately estimated independent of the
condition number. On the other hand, the accuracy of the
estimated emissions and SOA production rates is strongly
dependent on whether the true system is well-conditioned.
Particle formation, emissions, and SOA production are each
estimated with an average error less than 13 % in the 23 well-
conditioned scenarios. In the worst-case scenario (the ill-
conditioned but realistic scenario), aerosol nucleation, emis-

sions, and SOA production rates are estimated with errors of
4 %, 38 %, and 9 % on average, respectively.

Although the inverse modeling technique in general es-
timates the correct inventory variables and aerosol process
rates, we also wish to investigate whether the estimated size
distribution will match the true size distribution. Accurately
simulating the size distribution is very important to correctly
predict the effect that aerosols have on climate. Figure 5
shows that the average estimated size distribution based on
the inventory variables matches the average size distribution
of the synthetic measurements generated from an intermedi-
ate set of particle formation, emissions, and SOA production
rates. For the 23 well-conditioned scenarios with low bias in
the estimated aerosol process rates, the estimated size distri-
bution similarly closely matches the true size distribution.

Effect of measurement error on estimates

The estimation technique performs very well when utiliz-
ing “perfect measurements” (y∗) that are not corrupted by
any measurement noise or errors, but this is not a realistic
scenario. We add noise to the 23 well-conditioned synthetic
measurements explored in Sect. 3 to understand how mea-
surement uncertainty will affect the estimated process rates.
The noise added to each inventory variable is sampled, as
random numbers, from a Gaussian probability distribution
function with zero mean and a standard deviation of the ap-
proximated uncertainty in the respective inventory variable.
The same set of random numbers is sampled for each sce-
nario so that the noise signals in each of the 23 scenarios only
vary in magnitude but their temporal profiles are the same.
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Figure 5. Average particle size distributions in scenario no. 14
(nucleation, SOA production, POA emission rates: 2.7 cm−3 s−1,
15 µg m−3 d−1, 872 cm−3 h−1) from synthetic measurements,
TOMAS run with a priori rates, and estimated with the inverse
model are shown in the solid red, dotted black, and dashed blue
profiles, respectively.

We calculated the uncertainty in the size distribution from
an instrument model described in Appendix A using the
operating parameters of the DMPS operated at San Pietro
Capofiume. The true size distribution is input to the instru-
ment model to determine the size distribution uncertainty,
which assumes Poisson counting statistics for each size bin
from the counts by the condensation particle counter (Kan-
gasluoma and Kontkanen, 2017). The inventory variables
considered here are observed by combining several size bins
observed by the DMPS. Inventory variable uncertainty is the
uncertainty of the size distribution’s corresponding size bins
added in quadrature, which leads to inventory variables that
are not as noisy as the individually measured particle sizes.
Since the inventory variables are defined as the total concen-
tration across a size range, the method intrinsically dampens
instrument noise as random errors across multiple channels
tend to cancel each other out.

The normalized standard deviation in the noisy N3–6, N10,
and Vdry (with respect to their average value with noise)
across the 27 scenarios is less than 0.08, 0.03, and 0.04, re-
spectively. Then, we filter the synthetic noisy measurements
with an 11 h window and a first-degree polynomial with the
Savitzky–Golay filter to produce measurement values and
derivatives that are smooth. As shown in Fig. 6, the rela-
tive standard deviation of each inventory variable decreases
to less than 0.03, 0.011, and 0.011 for N3–6, N10, and Vdry,
respectively. The filtered noisy synthetic measurements and
their derivatives were used to estimate particle formation,
emissions, and SOA production in the same 27 scenarios that
were investigated in the previous section. Since we observe
poor performance in 4 ill-conditioned scenarios, we focus on
the remaining 23 well-conditioned scenarios in this section.

The same version of TOMAS that was used above is used
here, and the same estimation algorithm is used except for
additional code to handle the scenario when the system of
equations is ill-conditioned. At each time step, we evaluate
the condition number of the system of equations as in Eq. (3)
within the estimation algorithm; if its value is greater than 3,
the equation and unknown scaling factor corresponding to
the row with the largest eigenvalue are removed. This corre-
sponds to solving for just two uncertain process rates instead
of three. When a scaling factor is removed from the system
of equations, it then is assigned its value from the previous
time step.

Figure 7 shows the mean bias and variance in the estimated
process rates for each of the 23 scenarios as blue crosses and
red circles when synthetic measurements without and with
noise are used, respectively. In Fig. 7a, we find that the nor-
malized mean bias across the 23 scenarios does not signif-
icantly change, with median values without and with noise
of 0.03 and 0.03, 0.005 and 0.007, and 0.004 and 0.006 for
nucleation, emissions, and growth, respectively. Figure 7b
shows a statistically significant difference in the normalized
variance of estimated SOA production and POA emission
rates between the cases using measurements with and with-
out noise. The estimated process rates using noisy measure-
ments have a somewhat higher variance compared to the esti-
mates with perfect measurements. The high variance in esti-
mated process rates is due to the estimator tracking synthetic
measurement noise, which is translated to noise in the pro-
cess rates. In the future, the gain should be adjusted to a lower
value so the measurement noise is filtered and the estimated
process rates are smoother.

4 Estimation of ambient aerosol dynamics

This section evaluates the inverse method by utilizing field
measurements of particle size distribution from SPC, MPZ,
and HYY instead of synthetic measurements to estimate par-
ticle formation, emissions, and SOA production. Since we
previously found that an ill-conditioned sensitivity matrix
results in inaccurately estimated process rates when using
synthetic measurements, we avoid solving an ill-conditioned
system by reducing the system of equations. If the condition
number of Gk is greater than a threshold of 5, then we assume
that the scaling factor for SOA production is constant from
the previous time step and estimate the other two scaling fac-
tors based on N3–6 and N10 inventory variables. Here, we
eliminate the equation for Vdry and eliminate the unknown
scaling factor on SOA production as we observed that the
full system of equations is ill-conditioned because N10 and
Vdry are very close to co-linear. Since N10 is more directly
measured than Vdry, we choose to remove Vdry.

The purpose of this section is to test the inverse method
on real data, including size distributions not generated by the
TOMAS model itself (the synthetic measurements above). A
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Figure 6. Box plot showing the standard deviation of “noisy synthetic measurements” relative to their average value in all 27 scenarios for
the inventory variables originally (N3–6, N10, Vdry) and after filtering (N3–6, N10, V dry).

Figure 7. Beeswarm plots showing (a) normalized mean error and (b) normalized variance in estimated nucleation, emissions, and SOA
production rates (Rest) relative to the actual process rates (R∗). The blue crosses show the 23 scenarios with perfect measurements, and the
red circles show the same 23 scenarios with noisy measurements. ∗ The difference between the perfect and noisy measurement scenarios is
statistically significant for α = 0.05.

challenge here arises from the processes that are not well-
captured in a box modeling framework, namely long-range
transport of aerosol to the measurement site, including abrupt
changes in air mass. Recognizing that our long-term goal is
to deploy the estimation framework in a three-dimensional
model that will include an improved and more detailed rep-
resentation of long-range transport, we mitigate them here
with several simple approaches.

First, we filter the measurements to select time periods
when meteorology is relatively stable. We classify whether
a time is stagnant from the three conditions determined by

Garrido-Perez et al. (2018) in addition to a condition on the
sea level pressure. A time period is considered stagnant if
(1) the reanalysis wind speed at 10 m of altitude is less than
3.2 m s−1, (2) the reanalysis wind speed at 500 hPa is less
than 13 m s−1, (3) daily precipitation is less than 1 mm, and
(4) sea level pressure is greater than 1020 hPa. The reanalysis
precipitation fields are retrieved from the European Climate
Assessment & Dataset E-OBS at a resolution of 0.25◦ lat-
itude by 0.25◦ longitude (Cornes et al., 2018), while wind
speed and sea level pressure are from the National Aeronau-
tics and Space Administration’s MERRA-2 at 0.5◦ latitude
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Figure 8. Frequency scatter plots comparing hourly estimates to hourly measurements of N3–6, N10, and Vdry in the first, second, and
third columns, respectively. Measurements from San Pietro Capofiume, Melpitz, and Hyytiälä are shown in the first, second, and third rows,
respectively. The black line shows the 1 : 1 line. Normalized absolute error (NAE) is shown at the top of each panel.

by 0.625◦ longitude. All of the conditions must be met for at
least 24 h before the remaining hours fulfilling the constraints
are considered stable. These conditions leave us with 23, 31,
and 18 d out of the 1 year of measurements at SPC, MPZ,
and HYY, respectively. Out of the filtered measurements at
each site, 24 %, 43 %, and 41 % are from the spring season in
SPC, MPZ, and HYY, respectively.

Second, we choose a first-order removal timescale that is
faster than aerosol removal processes (i.e., deposition) to al-
low the box model to adjust to air mass changes. Finally,
we use this largely as a proof of concept, taking caution
in interpreting the process rates. We expect that, in a box
modeling framework, the N3–6 inventory variable and nu-
cleation rates will be the most realistic of the process vari-
ables since nucleation-mode particles are short-lived, and
long-range transport is a relatively minor factor in determin-
ing their concentrations. In contrast, we do not seek to in-
terpret the emissions or SOA production rates since the in-
verse model will naturally adjust them artificially to compen-
sate for transport processes not represented in the box model.
Therefore, for this work, we further simplify the box model
as described in the next section.

4.1 Simulating ambient aerosol with TOMAS

The inverse modeling method assumes that all simulated pro-
cesses in the box model are correct except for the processes
scaled by the control variables. Thus, the primary emitted
size distribution must have the correct shape in order to es-
timate emissions correctly. The aerosol size distribution we
emit into the TOMAS box model in this section reflects pri-
mary organic aerosol emissions from a 3D CTM (GEOS-
Chem). Here, the particle emissions are from fossil fuel and
biomass burning emission inventories averaged over western
Europe (Bond et al., 2007).

Additionally, we remove condensation of sulfuric acid
from the box model simulation so that we are estimating
overall particle growth while perturbing SOA production
with the growth scaling factor. Using only this box model and
measurements of particle size distribution, we cannot distin-
guish between sulfate and VOC condensation since both sim-
ilarly affect the size distribution in the model. Since we have
removed sulfuric acid from the box model, the default nu-
cleation parameterization will not produce new particles. In-
stead, we replace the nucleation scheme with a constant new
particle formation rate of 0.2 cm−3 s−1. This will only affect
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Figure 9. Average particle size distributions measured, originally predicted with a priori rates in TOMAS, and estimated with the inverse
model are shown in the solid red, dotted black, and dashed blue profiles, respectively. Results are shown using measurements at (a) San
Pietro Capofiume, (b) Melpitz, and (c) Hyytiälä.

the estimated scaling factors and not the estimated nucleation
rates.

4.2 Estimation results

At each measurement site, the estimated inventory variables
are close to the hourly measurement of those same parame-
ters, as shown in Fig. 8. At SPC, MPZ, and HYY the normal-
ized absolute errors across the three inventory variables are
0.10, 0.14, and 0.13, respectively, which is improved with re-
spect to the predictions with a priori process rates, as shown
in Fig. S1 in the Supplement. Each row in Fig. 8 shows
frequency scatter plots of the hourly estimated versus ob-
served inventory variable; the color represents the count of
data points in that respective grid cell.

Figure 9 shows the average estimated, measured, and orig-
inal model-predicted size distributions at each measurement
site. Although the inventory variables are close to the ob-
servations, the estimated size distributions do not match as
well as with the synthetic measurements. We expect that
the estimated size distribution does not match the field mea-
surements because the mass and number of particles larger
than 100 nm indicate long-range species that are influenced
by processes not included in the version of TOMAS used
here, i.e., various primary aerosol emission sources, trans-
port, aerosol aging. Several factors contribute to the bias be-
tween the estimated and observed size distribution between
4 and 20 nm. First, TOMAS nucleates 3 nm particles based
on the N3–6 measurement in order to match the total num-
ber concentration in the 3 to 6 nm range to the observations,
but the shape of the size distribution within that range does
not match since all new particles enter through the 3 nm size
bin. Second, the estimated SOA production rates exhibit sim-
ilar high variability as the estimated nucleation rate in order

to account for changes in air mass and wind direction not
included in the model. Since peaks in the estimated growth
from SOA production do not always coincide with nucleation
events, the model simulation forms the two distinct modes at
3 and 100 nm, as shown in Fig. 9.

We find that the estimated nucleation rates are reasonable
as shown in Fig. 10, which shows the average diurnal profile
estimated for each site. The average estimated nucleation rate
at all of the sites has a realistic magnitude near 1 cm−3 s−1,
which agrees with previous simulation results at HYY (Kul-
mala et al., 2005; Westervelt et al., 2014). MPZ and HYY
have a clear peak in particle formation near noon local time,
correlating with photochemical production of condensable
vapors. At HYY we see an increase in estimated particle for-
mation rate at 18:00 local time, which occurs after sunset on
22 February and before sunset on 28 March. The estimated
diurnal profile of formation at SPC includes significant for-
mation, even during nighttime. To understand the large, fairly
consistent nucleation rate at SPC, we can examine the aver-
age diurnal profile of the measuredN3–6, as shown in Fig. S3.
The fairly constant N3–6 measurement throughout the day
may indicate an instrument bias, which introduces a similar
bias into the estimated nucleation rate at SPC.

5 Conclusions

This work has explored a way to assimilate particle size dis-
tribution data with an aerosol microphysics algorithm used
in 3D CTMs by designing a novel estimation algorithm bor-
rowed from the field of nonlinear process control. The es-
timation framework is robust, computationally inexpensive,
and flexible to model updates. It has been tested with syn-
thetic measurements, noisy synthetic measurements, and Eu-
ropean field measurements. We show that the particle size
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Figure 10. Estimated diurnal nucleation rate during stagnant events for each measurement site: (a) San Pietro Capofiume, (b) Melpitz,
(c) Hyytiälä. Blue solid and grey dashed lines show the estimated rate and a priori rate, respectively; the error bars show the standard
deviation across all days.

distribution inverse modeling technique estimates particle
formation, emissions, and SOA production accurately when
there is no measurement error and all other processes are
known accurately. N3–6, N10, and Vdry are estimated within
11 % error of the synthetic measurements across 24 realistic
scenarios that span global conditions. New particle forma-
tion, emissions, and growth rates were estimated within 13 %
of the true rates in 23 scenarios that are well-conditioned.
Moreover, the estimated size distribution matches the syn-
thetic measurements when the inventory variables are accu-
rately estimated. Introducing realistic instrumental noise into
the synthetic measurements results in a statistically signifi-
cant increase in the variance of the estimated SOA produc-
tion and emission rates. Nonetheless, no significant biases
were introduced in the estimated process rates across the 23
well-conditioned scenarios when adding noise to the syn-
thetic measurements.

We applied the inverse technique to field data from San
Pietro Capofiume, Melpitz, and Hyytiälä between May 2006
and June 2007. Error in the estimated N3–6, N10, and Vdry
is less than 15 % during stagnant measurement days for
which the meteorology is most amenable to a box modeling
framework. Although the estimated emissions and growth
are not necessarily accurate since the box model cannot rep-
resent long-range transport of aerosol resulting from these
processes, we can estimate the nucleation rate. The aver-
age estimated nucleation rates at Melpitz and Hyytiälä have
peaks near noon local time with average values of 1 and
0.15 cm−3 s−1, respectively. This application demonstrates
the ability of our method to derive reasonable process rates
from long-term aerosol size distribution measurements.

Although there is reason to believe that the estimated emis-
sions and SOA production rates are not correct when ap-
plying the box model to field measurements, these rates are
estimated correctly in the synthetic measurement case. The
key differences between field and synthetic measurements
are the model–measurement biases outside of particle for-
mation, emissions, and growth. The zero-dimensional ver-
sion of TOMAS used here does not incorporate sufficient
detail about meteorology or emission sources to give suc-
cessful inverse modeling results. However, a 3D CTM that
includes processes such as transport, photochemistry, and di-
verse emission sources could be more successful in an in-
verse modeling study. If the method applied here is integrated
into a 3D CTM, there is potential to estimate key uncertain
parameters that control aerosol dynamics and thereby im-
prove the predicted size distribution field.
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Appendix A: Uncertainty of particle size distribution

The DMPS takes aerosol samples and reports the particle
count of a specific size bin during a time interval, as rep-
resented by the following equation:

c =M · n, (A1)

where c = (c1,c2, . . .cI )
T represents the counts of particles

in each size bin, n= (n1,n2, . . .nJ )
T is the actual particle

size distribution, and M is the matrix involving all the pro-
cesses inside the DMPS (Pfeifer et al., 2014): the charging
probability, the transfer function, and the counting efficiency
of the detector. The charging probability follows the empir-
ical approximation by Wiedensohler (1988). For a specific
voltage, flow rates, and the geometry of the differential mo-
bility analyzer (DMA), the DMPS system is at steady state,
so the Stolzenburg (1988) transfer function can be used to
approximate the transmission efficiency of particles at the
corresponding conditions. The counting efficiency of the de-
tector is determined by the parameters from Mertes (1995).

We assume that the uncertainty of the measurement only
comes from the counting, which follows Poisson counting
statistics, since the information about the uncertainty of the
working conditions is unknown. Thus, the uncertainty from
measurement is

√
c, which yields the uncertainty of the par-

ticle size distribution, En, as follows.

En =M−1
·
√
c (A2)

The model generates the matrix M, and with the input of the
actual particle size distribution n, it first calculates the counts
c and its element-wise square root (

√
c); then it applies the

totally nonnegative least-squares method (Merritt and Zhang,
2005) to obtain the uncertainty of the particle size distribu-
tion En.
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