Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1801-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1801-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology & Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
Guangdong Key Laboratory of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Dimitris Menemenlis
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Huijie Xue
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology & Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
Hong Zhang
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Dustin Carroll
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Moss Landing Marine Laboratories, San José State University, Moss Landing, California, USA
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology & Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Science, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
College of Marine Science, University of Chinese Academy of Sciences, Guangzhou, China
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
Related authors
No articles found.
Hinne Florian van der Zant, Olivier Sulpis, Jack J. Middelburg, Matthew P. Humphreys, Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Kay Sušelj, and Vincent Le Fouest
EGUsphere, https://doi.org/10.5194/egusphere-2025-2244, https://doi.org/10.5194/egusphere-2025-2244, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a model to simulate seafloor biogeochemical processes across a wide range of marine environments, from shallow coastal zones to deep-sea sediments. From this model, we derived a set of simple equations that predict how carbon, oxygen, and alkalinity are exchanged between sediments and overlying waters. These equations provide an efficient way to improve how ocean models represent seafloor interactions, which are often missing or overly simplified.
Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Jonathan Lauderdale, Clément Bertin, Stephanie Dutkiewicz, Manfredi Manizza, Anthony Bloom, Karel Castro-Morales, Charles E. Miller, Marc Simard, Kevin W. Bowman, and Hong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1707, https://doi.org/10.5194/egusphere-2025-1707, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Accounting for carbon and nutrients in rivers is essential for resolving carbon dioxide (CO2) exchanges between the ocean and the atmosphere. In this study, we add the effect of present-day rivers to a pioneering global-ocean biogeochemistry model. This study highlights the challenge for global ocean numerical models to cover the complexity of the flow of water and carbon across the Land-to-Ocean Aquatic Continuum.
Clement Bertin, Vincent Le Fouest, Dustin Carroll, Stephanie Dutkiewicz, Dimitris Menemenlis, Atsushi Matsuoka, Manfredi Manizza, and Charles E. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-973, https://doi.org/10.5194/egusphere-2025-973, 2025
Short summary
Short summary
We adjusted a model of the Mackenzie River region to account for the riverine export of organic matter that affects light in the water. We show that such export causes a delay in the phytoplankton growth by two weeks and raises the water surface temperature by 1.7 °C. We found that temperature increase turns this coastal region from a sink of carbon dioxide to an emitter. Our findings suggest that rising exports of organic matter can significantly affect the carbon cycle in Arctic coastal areas.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024, https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Short summary
Global- and basin-scale ocean reanalyses are becoming easily accessible. However, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluation. We conduct intercomparison analyses of Massachusetts Institute of Technology General Circulation Model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open-ocean temporal variability and Antarctic continental shelves require improvements.
Katharina Gallmeier, J. Xavier Prochaska, Peter Cornillon, Dimitris Menemenlis, and Madolyn Kelm
Geosci. Model Dev., 16, 7143–7170, https://doi.org/10.5194/gmd-16-7143-2023, https://doi.org/10.5194/gmd-16-7143-2023, 2023
Short summary
Short summary
This paper introduces an approach to evaluate numerical models of ocean circulation. We compare the structure of satellite-derived sea surface temperature anomaly (SSTa) instances determined by a machine learning algorithm at 10–80 km scales to those output by a high-resolution MITgcm run. The simulation over much of the ocean reproduces the observed distribution of SSTa patterns well. This general agreement, alongside a few notable exceptions, highlights the potential of this approach.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Marion Kersalé, Denis L. Volkov, Kandaga Pujiana, and Hong Zhang
Ocean Sci., 18, 193–212, https://doi.org/10.5194/os-18-193-2022, https://doi.org/10.5194/os-18-193-2022, 2022
Short summary
Short summary
The southern Indian Ocean is one of the major basins for regional heat accumulation and sea level rise. The year-to-year changes of regional sea level are influenced by water exchange with the Pacific Ocean via the Indonesian Throughflow. Using a general circulation model, we show that the spatiotemporal pattern of these changes is primarily set by local wind forcing modulated by El Niño–Southern Oscillation, while oceanic signals originating in the Pacific can amplify locally forced signals.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Yoshihiro Nakayama, Dimitris Menemenlis, Ou Wang, Hong Zhang, Ian Fenty, and An T. Nguyen
Geosci. Model Dev., 14, 4909–4924, https://doi.org/10.5194/gmd-14-4909-2021, https://doi.org/10.5194/gmd-14-4909-2021, 2021
Short summary
Short summary
High ice shelf melting in the Amundsen Sea has attracted many observational campaigns in the past decade. One method to combine observations with numerical models is the adjoint method. After 20 iterations, the cost function, defined as a sum of the weighted model–data difference, is reduced by 65 % by adjusting initial conditions, atmospheric forcing, and vertical diffusivity. This study demonstrates adjoint-method optimization with explicit representation of ice shelf cavity circulation.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Jianrong Zhu, Xinyue Cheng, Linjiang Li, Hui Wu, Jinghua Gu, and Hanghang Lyu
Hydrol. Earth Syst. Sci., 24, 5043–5056, https://doi.org/10.5194/hess-24-5043-2020, https://doi.org/10.5194/hess-24-5043-2020, 2020
Short summary
Short summary
An extremely severe saltwater intrusion event occurred in February 2014 in the Changjiang estuary and seriously influenced the water intake of the reservoir. For the event cause and for freshwater safety, the dynamic mechanism was studied with observed data and a numerical model. The results indicated that this event was caused by a persistent and strong northerly wind, which formed a horizontal estuarine circulation, surpassed seaward runoff and drove highly saline water into the estuary.
Cited articles
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate
representation of free-surface flows in ocean circulation models, Ocean
Model., 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.
Adcroft, A., Campin, J.-M. Hill, C., and Marshall, J.: Implementation of an
Atmosphere–Ocean General Circulation Model on the Expanded Spherical Cube,
Mon. Weather Rev., 132, 2845–2863, https://doi.org/10.1175/MWR2823.1, 2004.
Banas, N. S., MacCready, P., and Hickey, B. M.: The Columbia River plume as
cross-shelf exporter and along-coast barrier, Cont. Shelf Res.,
2, 292–301, https://doi.org/10.1016/j.csr.2008.03.011, 2009.
Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart,
J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon
flooding extremes driven by strengthened Walker circulation, Sci.
Adv., 4, eaat8785, https://doi.org/10.1126/sciadv.aat8785, 2018.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bourgeois, T., Orr, J. C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen, M., and Bopp, L.: Coastal-ocean uptake of anthropogenic carbon, Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016, 2016.
Campin, J.-M., Marshall, J., and Ferreira, D.: Sea ice–ocean coupling using
a rescaled vertical coordinate z∗, Ocean Model., 24, 1–14,
https://doi.org/10.1016/j.ocemod.2008.05.005, 2008.
Carroll, D., Menemenlis, Adkins, J. F., Bowman, K. W., Brix, H., Dutkiewicz, S., Gierach, M. M., Hill, C., Jahn, O., Landschützer, P., Lauderdale, J. Liu, J. M., Naviaux, J. D., Manizza, M., Rödenbeck, C., Schimel, D. S., Van der Stocken, T., and Zhang, H.: The ECCO‐Darwin data‐assimilative global ocean biogeochemistry model: Estimates of seasonal to multidecadal surface ocean pCO2 and air‐sea CO2 flux, J. Adv. Model. Earth Sy., 12, e2019MS001888, https://doi.org/10.1029/2019MS001888, 2020.
Chao, S.-Y.: River-forced estuarine plumes, J. Phys.
Oceanogr., 18, 72–88, https://doi.org/10.1175/1520-0485(1988)018<0072:RFEP>2.0.CO;2,
1988a.
Chao, S.-Y.: Wind-driven motion of estuarine plumes, J. Phys.
Oceanogr., 18, 1144–1166, https://doi.org/10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2; 1988b.
Cione, J. J. and Uhlhorn, E. W.: Sea surface temperature variability in
hurricanes: Implications with respect to intensity change, Mon. Weather
Rev., 131, 1783–1796, https://doi.org/10.1175//2562.1, 2003.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Ludicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys. Res.-Oceans, 109, C12003,
https://doi.org/10.1029/2004jc002378, 2004.
Denamiel, C., Budgell, W. P., and Toumi, R.: The Congo River plume: Impact of
the forcing on the far-field and near-field dynamics, J. Geophys.
Res.-Oceans, 118, 964–989, https://doi.org/10.1002/jgrc.20062, 2013.
Du, Y. and Zhang, Y.: Satellite and Argo Observed Surface Salinity
Variations in the Tropical Indian Ocean and Their Association with the
Indian Ocean Dipole Mode, J. Climate, 28, 695–713,
https://doi.org/10.1175/JCLI-D-14-00435.1, 2015.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances, Global Biogeochem. Cy., 16, 15-11–15-10, https://doi.org/10.1029/1999gb001254, 2002.
Feng, Y.: Improved representation of river runoff in ECCOv4 simulations: implementation, evaluation and impacts to coastal plume regions, Zenodo, https://doi.org/10.5281/zenodo.4106405, 2020.
Feng, Y., DiMarco, S. F., Balaguru, K., and Xue, H.: Seasonal and interannual
variability of areal extent of the Gulf of Mexico hypoxia from a coupled
physical-biogeochemical model: A new implication for management practice,
J. Geophys. Res.-Biogeo., 124, 1939–1960,
https://doi.org/10.1029/2018JG004745, 2019.
Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, R.:
Sensitivity of hypoxia predictions for the northern Gulf of Mexico to
sediment oxygen consumption and model nesting, J. Geophys.
Res.-Oceans, 118, 990–1002, https://doi.org/10.1002/jgrc.20077, 2013.
Fennel, K., Alin, S., Barbero, L., Evans, W., Bourgeois, T., Cooley, S., Dunne, J., Feely, R. A., Hernandez-Ayon, J. M., Hu, X., Lohrenz, S., Muller-Karger, F., Najjar, R., Robbins, L., Shadwick, E., Siedlecki, S., Steiner, N., Sutton, A., Turk, D., Vlahos, P., and Wang, Z. A.: Carbon cycling in the North American coastal ocean: a synthesis, Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, 2019.
Fong, D. A. and Geyer, W. R.: Response of a river plume during an upwelling
favorable wind event, J. Geophys. Res.-Oceans, 106,
1067–1084, https://doi.org/10.1029/2000jc900134, 2001.
Fong, D. A. and Geyer, W. R.: The Alongshore Transport of Freshwater in a
Surface-Trapped River Plume, J. Phys. Oceanogr., 32,
957–972, https://doi.org/10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2, 2002.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Fournier, S., Reager, J. T., Lee, T., Vazquez-Cuervo, J., David, C. H., and
Gierach, M. M.: SMAP observes flooding from land to sea: The Texas event of
2015, Geophys. Res. Lett. 43, L070821, https://doi.org/10.1002/2016GL070821,
2016a.
Fournier, S., Vialard, J., Lengaigne, M., Lee, T., Gierach, M. M., and
Chaitanya, A. V. S.: Modulation of the Ganges-Brahmaputra river plume by the
Indian Ocean dipole and eddies inferred from satellite observations, J.
Geophys. Res.-Oceans, 122, 9591–9604, https://doi.org/10.1002/2017JC013333,
2017a.
Fournier, S., Vandemark, D., Gaultier, L., Lee, T., Jonsson, B., and
Gierach, M. M.: Interannual variation in offshore advection of Amazon-Orinoco
plume waters: Observations, forcing mechanisms, and impacts, J.
Geophys. Res.-Oceans, 122, 8966–8982, https://doi.org/10.1002/2017JC013103,
2017b.
Fournier, S., Reager, J. T., Dzwonkowski, B., and Vazquez-Cuervo, J.:
Statistical mapping of freshwater origin and fate signatures as land/ocean
“regions of influence” in the Gulf of Mexico, J. Geophys.
Res.-Oceans, 124, 4954–4973, https://doi.org/10.1029/2018JC014784, 2019.
García Berdeal, I., Hickey, B. M., and Kawase, M.: Influence of wind
stress and ambient flow on a high discharge river plume, J. Geophys. Res.-Oceans, 107,
13-11–13-24, https://doi.org/10.1029/2001jc000932, 2002.
Garvine, R. W.: Penetration of buoyant coastal discharge onto the continental
shelf: a numerical model experiment, J. Phys. Oceanogr., 29,
1892–1909, https://doi.org/10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2, 1999.
Garvine, R. W.: The impact of model configuration in studies of buoyant
coastal discharge, J. Marine Resh., 59, 193–225,
https://doi.org/10.1357/002224001762882637, 2001.
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic
energy model for simulations of the oceanic vertical mixing: Tests at
station Papa and long-term upper ocean study site, J. Geophys. Res.-Oceans, 95, 16179–16193,
https://doi.org/10.1029/JC095iC09p16179, 1990.
Gierach, M. M., Vazquez-Cuervo, J., Lee, T., and Tsontos, V. M.: Aquarius
and SMOS detect effects of an extreme Mississippi River flooding event in
the Gulf of Mexico, Geophys. Res. Lett., 40, L50995,
https://doi.org/10.1002/grl.50995, 2013.
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005.
Halliwell, G. R.: Evaluation of vertical coordinate and vertical mixing
algorithms in the HYbrid-Coordinate Ocean Model (HYCOM), Ocean Model.,
7, 285–322, https://doi.org/10.1016/j.ocemod.2003.10.002, 2004.
Herzfeld, M.: Methods for freshwater riverine input into regional ocean
models, Ocean Model., 90, 1–15, https://doi.org/10.1016/j.ocemod.2015.04.001, 2015.
Huang, R. X.: Real Freshwater Flux as a Natural Boundary Condition for the
Salinity Balance and Thermohaline Circulation Forced by Evaporation and
Precipitation, J. Phys. Oceanogr., 23, 2428–2446,
https://doi.org/10.1175/1520-0485(1993)023<2428:RFFAAN>2.0.CO;2,
1993.
IPCC: Summary for Policymakers, in: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., in press,
2021.
Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M.,
Helber, R., and Arnone, R. A.: Summary diagrams for coupled
hydrodynamic-ecosystem model skill assessment, J. Marine Syst.,
76, 64–82, https://doi.org/10.1016/j.jmarsys.2008.05.014, 2009.
Kourafalou, V. H., Oey, L.-Y., Wang, J. D., and Lee, T. N.: The fate of
river discharge on the continental shelf: 1. Modeling the river plume and
the inner shelf coastal current, J. Geophys. Res., 101, 3415–3434,
https://doi.org/10.1029/95JC03024, 1996.
Lacroix, F., Ilyina, T., and Hartmann, J.: Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach, Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, 2020.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020.
Lentz, S. J.: The Amazon River plume during AMASSEDS: subtidal current
variability and the importance of wind forcing, J. Geophys.
Res.-Oceans, 100, 2377–2390, https://doi.org/10.1029/94JC00343, 1995a.
Lentz, S. J.: Seasonal variations in the horizontal structure of the Amazon
plume inferred from historical hydrographic data, J. Geophys.
Res.-Oceans, 100, 2391–2400, https://doi.org/10.1029/94JC01847, 1995b.
Liang, L., Xue, H., and Shu, Y.: The Indonesian throughflow and the
circulation in the Banda Sea: A modeling study, J. Geophys.
Res.-Oceans, 124, 3089–3106, https://doi.org/10.1029/2018JC014926, 2019.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean
on parallel computers, J. Geophys. Res.-Oceans, 102, 5753–5766, https://doi.org/10.1029/96jc02775, 1997.
Mecklenburg, S., Drusch, M., Kerr, Y. H., Font, J., Martin-Neira, M.,
Delwart, S., and Crapolicchio, R.: ESA's soil moisture and ocean salinity
mission: Mission performance and operations, IEEE T. Geosci.
Remote, 50, 1354–1366, https://doi.org/10.1109/TGRS.2012.2187666, 2012.
Menemenlis, D.: ECCOv4 setup, available at: http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires/ (last access: 29 March 2021), 2020a.
Menemenlis, D.: SMAP observations, available at: http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=2928 (last access: 29 March 2021), 2020b.
Menemenlis, D., Hill, C. N., Adcroft, A. J., Campin, J.-M., Cheng, B.,
Ciotti, R. B., and Zhang, J.: NASA Supercomputer Improves Prospects for
Ocean Climate Research, EOS Transactions AGU, 86, 89–96,
https://doi.org/10.1029/2005EO090002, 2005.
Menemenlis, D., Campin, J.-M., Heimbach, P., Hill, C. N., Lee, T., Nguyen,
A. T., and Zhang, H.: ECCO2: High Resolution Global Ocean and Sea Ice Data
Synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21, 2008.
Meng, Z., Ning, L. Yuping G., and Yang, F.: Exchanges of surface plastic
particles in the South China Sea through straits using Lagrangian method,
J. Tropical Oceanogr., 39, 109–116, available at: http://journal15.magtechjournal.com/Jwk3_rdhyxb/article/2020/1009-5470/1009-5470-39-5-109.shtml (last access: 29 March 2021), 2020 (in
Chinese with English abstract).
Molleri, G. S. F., Novo, E. M. L. M., and Kampel, M.: Space-time variability of
the Amazon River plume based on satellite ocean color, Cont. Shelf
Res., 30, 342–352, https://doi.org/10.1016/j.csr.2009.11.015, 2010.
Neetu, S., Lengaigne, M., Vincent, E. M., Vialard, J., Madec, G., Samson,
G., and Durand, F.: Influence of upper-ocean stratification on tropical
cyclones-induced surface cooling in the Bay of Bengal, J.
Geophys. Res.-Oceans, 117, C12020, https://doi.org/10.1029/2012JC008433, 2012.
Palma, E. D. and Matano, R. P.: An idealized study of near equatorial
river plumes, J. Geophys. Res.-Oceans, 122, 3599–3620,
https://doi.org/10.1002/2016JC012554, 2017.
Piecuch, C. G. and Wadehra, R.: Dynamic sea level variability due to
seasonal river discharge: A preliminary global ocean model study.
Geophys. Res. Lett., 47, e2020GL086984,
https://doi.org/10.1029/2020GL086984, 2020.
Rao, R. R. and Sivakumar, R.: Seasonal variability of the salt budget of the
mixed layer and near-surface layer salinity structure of the tropical Indian
Ocean from a new global ocean salinity climatology, J. Geophys.
Res.-Oceans, 108, 3009, https://doi.org/10.1029/2001JC000907, 2003.
Resplandy, L., Keeling, R. F., Rödenbeck, C., Stephens, B. B., Khatiwala,
S., Rodgers, K. B., Long, M. C., Bopp, L., and Tans, P. P.: Revision of global
carbon fluxes based on a reassessment of oceanic and riverine carbon
transport, Nat. Geosci., 11, 504–509, https://doi.org/10.1038/s41561-018-0151-3, 2018.
Roobaert, A., Laruelle, G. G. Landschützer, P., Gruber, N., Chou, L., and
Regnier, P.: The Spatiotemporal Dynamics of the Sources and Sinks of CO2 in
the Global Coastal Ocean, Global Biogeochem. Cy., 33, 1693–1714,
https://doi.org/10.1029/2019GB006239, 2019.
Roullet, G. and Madec, G.: Salt conservation, free surface, and varying
levels: A new formulation for ocean general circulation models, J. Geophys. Res.-Oceans, 105,
23927–23942, https://doi.org/10.1029/2000jc900089, 2000.
Santini, M. and Caporaso, L.: Evaluation of freshwater flow from rivers to
the sea in CMIP5 simulations: Insights from the Congo River basin, J.
Geophys. Res.-Atmos., 123, 10278–10300,
https://doi.org/10.1029/2017JD027422, 2018.
Schiller, R. V. and Kourafalou, V. H.: Modeling river plume dynamics with
the HYbrid Coordinate Ocean Model, Ocean Model., 33, 101–117,
https://doi.org/10.1016/j.ocemod.2009.12.005, 2011.
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and
Bouwman, A. F.: Sources and delivery of carbon, nitrogen, and phosphorus to
the coastal zone: An overview of Global Nutrient Export from Watersheds
(NEWS) models and their application, Global Biogeochem. Cy., 19,
GB4S01, https://doi.org/10.1029/2005GB002606, 2005.
Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H.
W., Billen, G., Drecht, G. V., Dumont, E., Fekete, B. M., Garnier, J., and
Harrison, J. A.: Global river nutrient export: A scenario analysis of past
and future trends, Global Biogeochem. Cy., 24, GB0A08,
https://doi.org/10.1029/2009GB003587, 2010.
Sengupta, D., Goddalehundi, B. R., and Anitha, D. S.: Cyclone-induced mixing
does not cool SST in the post-monsoon North Bay of Bengal, Atmos.
Sci. Lett., 9, 1–6, https://doi.org/10.1002/asl.162, 2008.
Stammer, D., Ueyoshi, K., Köhl, A., Large, W. G., Josey, S. A., and
Wunsch, C.: Estimating air-sea fluxes of heat, freshwater, and momentum
through global ocean data assimilation, J. Geophys. Res.-Oceans,
109, C05023, https://doi.org/10.1029/2003jc002082, 2004.
Su, Z., Wang, J., Klein, P., Thompson, A. F., and Menemenlis, D.: Ocean sub
mesoscales as a key component of the global heat budget, Nat.
Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w, 2018.
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa,
S.: A dataset of continental river discharge based on JRA-55 for use in a
global ocean circulation model, J. Oceanogr., 74, 421–429,
https://doi.org/10.1007/s10872-017-0458-5, 2018.
Timmermann, R., Danilov, S., Schröter, J., Böning, C., Sidorenko,
D., and Rollenhagen, K.: Ocean circulation and sea ice distribution in a
finite element global sea ice–ocean model, Ocean Model., 27, 114–129,
https://doi.org/10.1016/j.ocemod.2008.10.009, 2009.
Tseng, Y.-H., Bryan, F. O., and Whitney, M. M.: Impacts of the representation
of riverine freshwater input in the community earth system model, Ocean
Model., 105, 71–86, https://doi.org/10.1016/j.ocemod.2016.08.002, 2016.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Sommer, J. L., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice
models (JRA55-do), Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Vialard, J. and Delecluse, P.: An OGCM study for the TOGA decade. Part I:
Role of salinity in the physics of the western Pacific fresh pool, J.
Phys. Oceanogr., 28, 1071–1088, https://doi.org/10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2,
1998.
Vinaychandran, P., Murty, V. S. N., and Ramesh Babu, V.: Observations of
barrier layer formation in the Bay of Bengal during summer monsoon, J.
Geophys. Res.-Oceans, 107, 8018, https://doi.org/10.1029/2001JC000831, 2002.
Volodin, E. M., Dianskii, N. A., and Gusev, A. V.: Simulating present-day
climate with the INMCM4.0 coupled model of the atmospheric and oceanic
general circulations, Izvestiya, Atmos. Ocean. Phys., 46,
414–431, https://doi.org/10.1134/S000143381004002X, 2010.
Walker, N. D.: Satellite assessment of Mississippi River plume variability:
causes and predictability, Remote Sens. Environ., 58, 21–35,
https://doi.org/10.1016/0034-4257(95)00259-6, 1996.
Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goñi, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., and Windham-Myers, L.: Representing the function
and sensitivity of coastal interfaces in Earth system models, Nat. Commun., 11, 2458, https://doi.org/10.1038/s41467-020-16236-2, 2020.
Willmott, C. J.: On the validation of models, Phys. Geogr., 2, 184–194,
https://doi.org/10.1080/02723646.1981.10642213, 1981.
Yankovsky, A. E. and Chapman D. C.: A Simple Theory for the Fate of Buoyant Coastal Discharges, J. Phys. Oceanogr., 27, 1386–1401, https://doi.org/10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2, 1997.
Yueh, S. H., Tang, W., Fore, A. G., Neumann, G., Hayashi, A., Freedman, A.,
and Lagerloef, G. S. L-band passive and active microwave geophysical model
functions of ocean surface winds and applications to Aquarius retrieval,
IEEE T. Geosci. Remote, 51, 4619–4632,
https://doi.org/10.1109/TGRS.2013.2266915, 2013.
Yueh, S. H., Tang, W., Fore, A., Hayashi, A., Song, Y. T., and Lagerloef, G.:
Aquarius geophysical model function and combined active passive algorithm
for ocean surface salinity and wind retrieval, J. Geophys.
Res.-Oceans, 119, 5360–5379, https://doi.org/10.1002/2014JC009939, 2014.
Zhang, H.: MITgcm model setup and output for “Improved representation of river runoff in ECCO simulations: implementation, evaluation, and impacts to coastal plume regions” [Data set], Zenodo, https://doi.org/10.5281/zenodo.4095613, 2020.
Zhang, H., Menemenlis, D., and Fenty, G.: ECCO LLC270 ocean‐ice state estimate, available at: http://hdl.handle.net/1721.1/119821 (last access: 29 March 2021), 2018.
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity...