Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-151-2021
https://doi.org/10.5194/gmd-14-151-2021
Development and technical paper
 | 
12 Jan 2021
Development and technical paper |  | 12 Jan 2021

Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)

Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber

Related authors

Addressing soil data needs and data gaps in catchment-scale environmental modelling: the European perspective
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024,https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Hydro-pedotransfer functions: a roadmap for future development
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024,https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023,https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics
Brigitta Szabó, Gábor Szatmári, Katalin Takács, Annamária Laborczi, András Makó, Kálmán Rajkai, and László Pásztor
Hydrol. Earth Syst. Sci., 23, 2615–2635, https://doi.org/10.5194/hess-23-2615-2019,https://doi.org/10.5194/hess-23-2615-2019, 2019
Short summary
Development and analysis of the Soil Water Infiltration Global database
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018,https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024,https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024,https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024,https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024,https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary

Cited articles

Araya, S. N. and Ghezzehei, T. A.: Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations, Water Resour. Res., 55, 5715–5737, https://doi.org/10.1029/2018WR024357, 2019. 
Assouline, S. and Or, D.: Conceptual and Parametric Representation of Soil Hydraulic Properties: A Review, Vadose Zone J., 12, 1–20, https://doi.org/10.2136/vzj2013.07.0121, 2013. 
Børgesen, C. D. and Schaap, M. G.: Point and parameter pedotransfer functions for water retention predictions for Danish soils, Geoderma, 127, 154–167, https://doi.org/10.1016/j.geoderma.2004.11.025, 2005. 
Botula, Y.-D., Nemes, A., Mafuka, P., Van Ranst, E., and Cornelis, W. M.: Prediction of Water Retention of Soils from the Humid Tropics by the Nonparametric -Nearest Neighbor Approach, Vadose Zone J., 12, 1–17, https://doi.org/10.2136/vzj2012.0123, 2013. 
Boulesteix, A. L., Janitza, S., Kruppa, J., and König, I. R.: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics, Wires. Data Min. Knowl., 2, 493–507, https://doi.org/10.1002/widm.1072, 2012. 
Download
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.