Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Institute for Soil Sciences, Centre for
Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary
Melanie Weynants
European Commission Joint Research Centre, via Enrico Fermi 2749,
21027 Ispra, Italy
Tobias K. D. Weber
Institute of Soil Science and Land Evaluation, University of
Hohenheim, Emil-Wolff-Straße 27, 70593 Stuttgart, Germany
Related authors
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Wolfgang Aumer, Morten Möller, Carolyn-Monika Görres, Christian Eckhardt, Tobias Karl David Weber, Carolina Bilibio, Christian Bruns, Andreas Gattinger, Maria Renate Finckh, and Claudia Kammann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2862, https://doi.org/10.5194/egusphere-2025-2862, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arable soils emit or absorb greenhouse gases such as carbon dioxide, nitrous oxide and methane. This study compared two gas analysis techniques for determining greenhouse gas fluxes under field conditions using the closed chamber method. Fluxes were measured simultaneously using the widely applied gas chromatography (GC) and the emerging mid-infrared laser absorption spectroscopy (LAS) technique. Our results showed that LAS is a reliable alternative to GC, particularly for low flux rates.
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Cited articles
Araya, S. N. and Ghezzehei, T. A.: Using Machine Learning for Prediction of
Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural
Perturbations, Water Resour. Res., 55, 5715–5737,
https://doi.org/10.1029/2018WR024357, 2019.
Assouline, S. and Or, D.: Conceptual and Parametric Representation of Soil
Hydraulic Properties: A Review, Vadose Zone J., 12, 1–20,
https://doi.org/10.2136/vzj2013.07.0121, 2013.
Børgesen, C. D. and Schaap, M. G.: Point and parameter pedotransfer
functions for water retention predictions for Danish soils, Geoderma,
127, 154–167, https://doi.org/10.1016/j.geoderma.2004.11.025, 2005.
Botula, Y.-D., Nemes, A., Mafuka, P., Van Ranst, E., and Cornelis, W. M.:
Prediction of Water Retention of Soils from the Humid Tropics by the
Nonparametric -Nearest Neighbor Approach, Vadose Zone J., 12, 1–17,
https://doi.org/10.2136/vzj2012.0123, 2013.
Boulesteix, A. L., Janitza, S., Kruppa, J., and König, I. R.: Overview of
random forest methodology and practical guidance with emphasis on
computational biology and bioinformatics, Wires. Data Min.
Knowl., 2, 493–507, https://doi.org/10.1002/widm.1072, 2012.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Deng, H., Ye, M., Schaap, M. G., and Khaleel, R.: Quantification of
uncertainty in pedotransfer function-based parameter estimation for
unsaturated flow modeling, Water Resour. Res., 45, W04409,
https://doi.org/10.1029/2008WR007477, 2009.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
1980.
Greenwell, B.: Partial Dependence Plots, 15, available at:
https://cran.r-project.org/web/packages/pdp/pdp.pdf (last access: 4 January 2021),
2017a.
Greenwell, B. M.: pdp: An R Package for Constructing Partial Dependence
Plots, R J., 9, 421–436, available at:
https://journal.r-project.org/archive/2017/RJ-2017-016/RJ-2017-016.pdf (last access: 4 January 2021),
2017b.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, Data Mining, Inference, and Prediction, 2nd Edn., Springer,
available at: https://web.stanford.edu/~hastie/ElemStatLearn//printings/ESLII_print10.pdf (last access:
19 November 2018), 2009.
Hengl, T., Nussbaum, M., Wright, M. N., and Heuvelink, B. M.: Random Forest
as a Generic Framework for Predictive Modeling of Spatial and
Spatio-temporal Variables, PeerJ Prepr., 6, e5518,
https://doi.org/10.7287/peerj.preprints.26693v3, 2018.
Hodnett, M. G. and Tomasella, J.: Marked differences between van Genuchten
soil water-retention parameters for temperate and tropical soils: a new
water-retention pedo-transfer functions developed for tropical soils,
Geoderma, 108, 155–180, https://doi.org/10.1016/S0016-7061(02)00105-2, 2002.
Khodaverdiloo, H., Homaee, M., van Genuchten, M. T., and Dashtaki, S. G.:
Deriving and validating pedotransfer functions for some calcareous soils, J.
Hydrol., 399, 93–99, https://doi.org/10.1016/j.jhydrol.2010.12.040, 2011.
Kotlar, A. M., Jong van Lier, Q., Barros, A. H. C., Iversen, B. V., and
Vereecken, H.: Development and Uncertainty Assessment of Pedotransfer
Functions for Predicting Water Contents at Specific Pressure Heads, Vadose
Zo.ne J., 18, 190063, https://doi.org/10.2136/vzj2019.06.0063, 2019.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A.,
Cooper, T., Mayer, Z., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L.,
Tang, Y., Candan, C., and Hunt, T.: Package “caret” Classification and
Regression Training Description Misc functions for training and plotting
classification and regression models, available at:
https://cran.r-project.org/web/packages/caret/caret.pdf (last access: 4 January 2021), 2017.
Kuhn, M., Wing, J., Weston, S., Keefer, C., Engelhardt, A., Cooper, T.,
Mayer, Z., Kenkel, B., Team, R. C., Benesty, M., Lescarbeau, R., Ziem, A.,
Scrucca, L., Tang, Y., Candan, C., and Hunt, T.: caret: Classification and
Regression Training. R package version 6.0-79, available at:
https://github.com/topepo/caret/ (last access: 4 January 2021), 2018.
Lal, R. and Shukla, M. K.: Principles of soil physics, Marcel Dekker, Inc.,
New York, 2004.
Li, D., Gao, G., and Fu, B.: Predicting available water of soil from
particle-size distribution and bulk density in an oasis – desert transect
in northwestern China, J. Hydrol., 538, 539–550,
https://doi.org/10.1016/j.jhydrol.2016.04.046, 2016.
Lilly, A., Nemes, A., Rawls, W. J., and Pachepsky, Y. A.: Probabilistic
approach to the identification of input variables to estimate hydraulic
conductivity, Soil Sci. Soc. Am. J., 72, 16–24,
https://doi.org/10.2136/sssaj2006.0391, 2008.
Lin, H.: Earth's Critical Zone and hydropedology: concepts, characteristics, and advances, Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, 2010.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G.,
Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J.,
Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.:
Pedotransfer Functions in Earth System Science: Challenges and Perspectives,
Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Malone, B. P., McBratney, A. B., Minasny, B., and Laslett, G. M.: Mapping
continuous depth functions of soil carbon storage and available water
capacity, Geoderma, 154, 138–152, https://doi.org/10.1016/j.geoderma.2009.10.007,
2009.
McNeill, S. J., Lilburne, L. R., Carrick, S., Webb, T. H., and Cuthill, T.:
Pedotransfer functions for the soil water characteristics of New Zealand
soils using S-map information, Geoderma, 326, 96–110,
https://doi.org/10.1016/j.geoderma.2018.04.011, 2018.
Meinshausen, N.: Quantile Regression Forests, J. Mach. Learn. Res., 7,
983–999, 2006.
De Mendiburu, F.: agricolae: Statistical Procedures for Agricultural
Research, R package version 1.2-8, available at:
https://cran.r-project.org/package=agricolae (last access: 4 January 2021), 2017.
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522, 1976.
Nemes, A., Schaap, M., and Wösten, J.: Functional evaluation of
pedotransfer functions derived from different scales of data collection,
Soil Sci. Soc. Am., 67, 1093–1102, 2003.
Nguyen, P. M., Haghverdi, A., Pue, J. De, Botula, Y., Le, K. V, Waegeman, W.,
and Cornelis, W. M.: Comparison of statistical regression and data-mining
techniques in estimating soil water retention of tropical delta soils,
Biosyst. Eng., 153, 12–27, https://doi.org/10.1016/j.biosystemseng.2016.10.013, 2017.
Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of digital soil mapping approaches with large sets of environmental covariates, SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, 2018.
Odgers, N. P., McBratney, A. B., and Minasny, B.: Digital soil property
mapping and uncertainty estimation using soil class probability rasters,
Geoderma, 237, 190–198, https://doi.org/10.1016/j.geoderma.2014.09.009, 2014.
Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., and Moore, J. H.:
Data-driven advice for applying machine learning to bioinformatics problems,
in Biocomputing 2018, edited by: Altman, R. B., Dunker, A. K., Hunter, L.,
Ritchie, M. D., Murray, T. A., and Klein, T. E., World Scientific, 192–203,
2018.
Pachepsky, Y. A. and Rawls, W. J.: Accuracy and Reliability of Pedotransfer
Functions as Affected by Grouping Soils, Soil Sci. Soc. Am. J., 63,
1748–1757, https://doi.org/10.2136/sssaj1999.6361748x, 1999.
R Core Team: R: A language and environment for statistical computing,
available at: https://www.r-project.org (last access: 4 January 2021), 2019.
Rawls, W., Pachepsky, Y., and Ritchie, J.: Effect of soil organic carbon on
soil water retention, Geoderma, 116, 61–76,
https://doi.org/10.1016/S0016-7061(03)00094-6, 2003.
Ridgeway, G.: gbm: Generalized Boosted Regression Models, R package version
2.1.3., 2017.
Román Dobarco, M., Cousin, I., Le Bas, C., and Martin, M. P.:
Pedotransfer functions for predicting available water capacity in French
soils, their applicability domain and associated uncertainty, Geoderma,
336, 81–95, https://doi.org/10.1016/J.GEODERMA.2018.08.022, 2019.
Schaap, M. G.: Models for Indirect Estimation of Soil Hydraulic Properties,
in Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G. and
McDonnell, J. J., John Wiley & Sons, Ltd, Chichester, UK, 2006.
Streck, T. and Weber, T. K. D.: Analytical expressions for noncapillary soil
water retention based on popular capillary retention models, Vadose Zone J.,
19, e20042, https://doi.org/10.1002/vzj2.20042, 2020.
Szabó, B., Szatmári, G., Takács, K., Laborczi, A., Makó, A., Rajkai, K., and Pásztor, L.: Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics, Hydrol. Earth Syst. Sci., 23, 2615–2635, https://doi.org/10.5194/hess-23-2615-2019, 2019a.
Szabó, B., Gyurkó, D., Weynants, M., and Weber, T. K. D.: Web
interface for European hydraulic pedotransfer functions (euptfv2), Agártudományi Kutatóközpont, Talajtani Intézet,
https://doi.org/10.34977/euptfv2.01, 2019b.
Szabó, B., Weynants, M., and Weber, T. K.: Scripts of updated European
hydraulic pedotransfer functions (euptfv2), Zenodo, https://doi.org/10.5281/ZENODO.3759442,
2020.
Szatmári, G. and Pásztor, L.: Comparison of various uncertainty
modelling approaches based on geostatistics and machine learning algorithms,
Geoderma, 337, 1329–1340, https://doi.org/10.1016/j.geoderma.2018.09.008, 2019.
Tomasella, J., Crestana, S. and Rawls, W. J.: Comparison of Two Techniques
to Develop Pedotransfer Functions for Water Retention, Soil Sci. Soc. Am.
J., 67, 1085–1092, 2003.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., and Tóth,
G.: New generation of hydraulic pedotransfer functions for Europe, Eur. J.
Soil Sci., 66, 226–238, https://doi.org/10.1111/ejss.12192, 2015.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic
database of Europe at 250 m resolution, Hydrol. Process., 31,
2662–2666, https://doi.org/10.1002/hyp.11203, 2017.
Tranter, G., Minasny, B., and McBratney, A. B.: Estimating Pedotransfer
Function Prediction Limits Using Fuzzy -Means with Extragrades, Soil Sci.
Soc. Am. J., 74, 1967–1975, https://doi.org/10.2136/sssaj2009.0106, 2010.
Vaysse, K. and Lagacherie, P.: Using quantile regression forest to estimate
uncertainty of digital soil mapping products, Geoderma, 291, 55–64,
https://doi.org/10.1016/j.geoderma.2016.12.017, 2017.
Vereecken, H., Maes, J., Feyen, J., and Darius, P.: Estimating the Soil
Moisture Retention Characteristic From Texture, Bulk Density, and Carbon
Content, Soil Sci., 148, 389–403, https://doi.org/10.1097/00010694-198912000-00001,
1989.
Vereecken, H., Huisman, J. A., Franssen Hendricks, H. J., Brüggemann,
N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk, J., and
Vanderborght, J.: Soil hydrology: Recent methodological advances,
challenges, and perspectives, Water Resour. Res., 51, 1–18,
https://doi.org/10.1002/2014WR016852.Received, 2015.
Weber, T. K. D., Durner, W., Streck, T., and Diamantopoulos, E.: A Modular
Framework for Modeling Unsaturated Soil Hydraulic Properties Over the Full
Moisture Range, Water Resour. Res., 55, 4994–5011, https://doi.org/10.1029/2018WR024584,
2019.
Weber, T. K. D., Finkel, M., Conceição Gonçalves, M., Vereecken,
H., and Diamantopoulos, E.: Pedotransfer function for the Brunswick soil
hydraulic property model and comparison to the van Genuchten-Mualem model,
Water Resour. Res., 56, e2019WR026820, https://doi.org/10.1029/2019WR026820, 2020a.
Weber, T. K. D., Weynants, M., and Szabó, B.: R package of updated
European hydraulic pedotransfer functions (euptf2), Zenodo,
https://doi.org/10.5281/zenodo.4281045, 2020b.
Weynants, M. and Tóth, B.: The euptf package, Eur. Soil Portal, 5,
available at: https://esdac.jrc.ec.europa.eu (last access: 19 May
2019), 2014.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken
Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model, Vadose
Zone J., 8, 86, https://doi.org/10.2136/vzj2008.0062, 2009.
Weynants, M., Montanarella, L., Tóth, G., Arnoldussen, A., Anaya Romero,
M., Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonçalves, M.
D. C., Haugen, L.-E., Hennings, V., Houskova, B., Iovino, M., Javaux, M.,
Keay, C. A., Kätterer, T., Kvaerno, S., Laktinova, T., Lamorski, K.,
Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V.,
Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tóth,
B., and Woesten, H.: European HYdropedological Data Inventory (EU-HYDI), Scientific and Technical Research series, ISSN 1831-9424, Luxembourg,
2013.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco,
N., Wollschläger, U., Vogel, H. J. and Kögel-Knabner, I.: Soil
organic carbon storage as a key function of soils - A review of drivers and
indicators at various scales, Geoderma, 333, 149–162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.:
Development and use of a database of hydraulic properties of European soils,
Geoderma, 90, 169–185, 1999.
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random
Forests for High Dimensional Data in C and R, J. Stat. Softw., 77, 1–17,
https://doi.org/10.18637/jss.v077.i01, 2017.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53, https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y. and Schaap, M. G.: Estimation of saturated hydraulic conductivity
with pedotransfer functions: A review, J. Hydrol., 575, 1011–1030,
https://doi.org/10.1016/j.jhydrol.2019.05.058, 2019.
Zhao, H., Zeng, Y., Lv, S., and Su, Z.: Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau, Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, 2018.
Ziegler, A. and König, I. R.: Mining data with random forests: Current
options for real-world applications, Wires Data Min.
Knowl., 4, 55–63, https://doi.org/10.1002/widm.1114, 2014.
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic...