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Abstract. Soil hydraulic properties are often derived indi-
rectly, i.e. computed from easily available soil properties
with pedotransfer functions (PTFs), when those are needed
for catchment, regional or continental scale applications.
When predicted soil hydraulic parameters are used for the
modelling of the state and flux of water in soils, uncertainty
of the computed values can provide more detailed informa-
tion when drawing conclusions. The aim of this study was
to update the previously published European PTFs (Tóth et
al., 2015, euptf v1.4.0) by providing prediction uncertainty
calculation built into the transfer functions. The new set of
algorithms was derived for point predictions of soil water
content at saturation (0 cm matric potential head), field ca-
pacity (both−100 and−330 cm matric potential head), wilt-
ing point (−15 000 cm matric potential head), plant available
water, and saturated hydraulic conductivity, as well as the
Mualem–van Genuchten model parameters of the moisture
retention and hydraulic conductivity curve. The minimum set
of input properties for the prediction is soil depth and sand,
silt and clay content. The effect of including additional in-
formation like soil organic carbon content, bulk density, cal-
cium carbonate content, pH and cation exchange capacity
were extensively analysed. The PTFs were derived adopting
the random forest method. The advantage of the new PTFs
is that they (i) provide information about prediction uncer-
tainty, (ii) are significantly more accurate than the euptfv1,
(iii) can be applied for more predictor variable combinations
than the euptfv1, 32 instead of 5, and (iv) are now also de-
rived for the prediction of water content at −100 cm matric
potential head and plant available water content. A practical
guidance on how to use the derived PTFs is provided.

1 Introduction

Quantitative information on state and flux of water in the
critical zone is important for a wide range of environmen-
tal process models and decision support systems related to
land surface processes (Lin, 2010; Zhao et al., 2018). Per-
formance of hydrologic, climate, crop and other models re-
lated to soil hydrological processes depends on the quality
and resolution of soil hydraulic input parameters (Vereecken
et al., 2015). Simulations of flow through variably saturated
soil media either rely on simple modelling approaches which
only require few directly measurable input variables such as
porosity, field capacity, and wilting point, or on the Richards
equation. While the former are simple and straightforward
to obtain, the Richards equation requires knowledge about
the soil hydraulic properties over the full moisture range. In
practice, one of the most common approaches to describe the
water retention and hydraulic conductivity curves required to
solve the Richards equation is arguably (Weber et al., 2019)
the Mualem–van Genuchten model (MVG) (van Genuchten,
1980; Mualem, 1976). Since soil hydraulic measurements in
the laboratory or in the field are often time consuming, ex-
pensive and difficult, indirect methods for estimating soil hy-
draulic properties using widely available surrogate data have
been developed (Schaap, 2006). To date, a large number of
pedotransfer functions have become popular to predict soil
hydraulic properties and MVG model parameters (Van Looy
et al., 2017).

Information on the uncertainty of the predicted soil hy-
draulic properties is important for modelling the state and
flux of water in soil. The source of prediction uncertainty
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can be threefold: it can stem from the (i) predictor (e.g. mea-
surement uncertainty, non-representativeness of a sample),
(ii) predicted variables (e.g. uncertainty in the estimated soil
hydraulic model parameters), and the (iii) algorithm which
describes the relation between the two. Information on the
uncertainty of the predictor variables is commonly not avail-
able in PTFs derived before the 2000s, but has become a
more intensively studied topic in the last decade. For exam-
ple, Weynants et al. (2009) quantified uncertainty of derived
PTFs related to experimental, model and fitting errors with
the one-step inversion method. Deng et al. (2009) differenti-
ated and quantified intrinsic and input uncertainty of PTFs.
Tranter et al. (2010) developed an uncertainty estimation
method using fuzzy k-means with extragrades classification
that can be applied in any PTF prediction. Kotlar et al. (2019)
presented uncertainty assessment of PTFs through deriving
PTFs on tens of resamples for train and test sets. Román Do-
barco et al. (2019) introduced prediction interval coverage
probability to assess prediction uncertainty in PTFs derived
on French soils. McNeill et al. (2018) provided estimation of
the distribution and confidence intervals of the predicted soil
hydraulic property (i.e. water content at 100 and 15 000 cm
matric potential head and total available water). In the field
of soil mapping it is an even more extensively studied topic
where different computational methods have been proposed
to assess uncertainty of the mapped properties. Examples are
estimation of the 90 % prediction intervals based on a tri-
angular distribution (Odgers et al., 2014), quantification of
mapped soil properties uncertainties by quantile regression
forest (Vaysse and Lagacherie, 2017), and a detailed com-
parison of uncertainties in mapped soil organic carbon con-
tent by different geostatistical and machine learning methods
(Szatmári and Pásztor, 2019).

Machine learning methods can be more robust to construct
PTFs in comparison to previous approaches such as linear re-
gression or simple decision trees if the relationship between
the predictors and response is highly non-linear (Araya and
Ghezzehei, 2019). The random forest algorithm (Breiman,
2001) is able to outperform other machine learning methods
(Olson et al., 2018), which was also shown for predicting
soil properties (Hengl et al., 2018; Nussbaum et al., 2018).
Improvements in computing power, statistical methods and
statistical software provide the possibility to apply more eas-
ily even complex models on large datasets. Therefore, com-
plexity of a prediction algorithm is no longer a barrier in se-
lecting a suitable algorithm to develop and apply PTFs. Most
of the recent machine learning algorithms have the built in
possibility to compute the uncertainty in the predicted vari-
able, e.g. by quantile regression forest (Meinshausen, 2006)
or generalized boosted regression (Ridgeway, 2017). If PTFs
are derived with these algorithms, the uncertainty of the pre-
dicted soil property can be directly estimated when applying
the PTF (Szabó et al., 2019a), although this could also be
achieved by applying the above mentioned uncertainty as-

sessment methods without using machine learning methods
(e.g. Kotlar et al., 2019; Tranter et al., 2010).

Despite the above mentioned developments, the euptfv1
(Tóth et al., 2015) and derived soil hydraulic property maps
for Europe on a 1 km and 250 m grid (Tóth et al., 2017) do
not include uncertainties in the prediction. Hence, the aim of
our study was to update the euptfv1 by deriving a new set of
soil hydraulic PTFs (euptfv2) providing uncertainty calcula-
tion built into the PTF model. For this, we rely heavily on the
datasets used in the construction of the euptfv1. Methodolog-
ically, we constructed new soil hydraulic PTFs on the basis
of the random forest method which facilitates quantification
of prediction-uncertainties. The predicted variables of inter-
est included soil water content at saturation, field capacity
and wilting point, plant available water content, saturated hy-
draulic conductivity, MVG parameters of the moisture reten-
tion and hydraulic conductivity curves. The predictions are
based on easily available soil properties. The predictor vari-
ables were similar to those of euptfv1, except the topsoil and
subsoil distinction, which was replaced by mean soil depth
of the sample, since it is typically known, anyway. Addition-
ally, the improved performance of the euptfv2 was assessed
against predictions using the earlier version. Moreover, we
determined the minimum sufficient predictor variables for 32
input variables combinations.

2 Materials and Methods

The construction of a pedotransfer function requires three el-
ements: predictor variables, predicted variables as the prop-
erty of interest, and a transfer method between the former
two. The predicted variables are in this case directly mea-
sured soil hydraulic properties on samples contained in a
large pan-European dataset, ensuring a representativeness of
the PTF for Europe. Additionally, Tóth et al. (2015) had fitted
MVG model parameters for each sample dataset individually
by inverse modelling, the results of which we reused in this
study.

2.1 Dataset

The European Hydropedological Data Inventory (EU-HYDI)
(Weynants et al., 2013) provided the basis for the preparation
of the prediction algorithms. The dataset partitions for train-
ing and testing the prediction algorithms were almost iden-
tical to the ones used in Tóth et al. (2015), except that the
samples had to have information on soil depth as well. De-
pending on the soil hydraulic property of interest, 76 %–99 %
of the originally selected samples were used to derive the new
PTFs. It enabled comparison of the performance between the
EU-PTFs (Tóth et al., 2015) – built in the euptfv1 (Weynants
and Tóth, 2014) – and their improved version (euptfv2). Ta-
ble 1 shows the number of samples in the training and test
sets.
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2.2 Predicted soil hydraulic properties

Prediction algorithms were derived for each of the following
soil hydraulic properties:

– water content at saturation (THS): water content at 0 cm
matric potential head;

– water content at field capacity at

– −100 cm matric potential head (FC_2), and

– −330 cm matric potential head and (FC);

– water content at wilting point (WP): water content at
−15 000 cm matric potential head;

– plant available water content (AWC) based on the fol-
lowing equations:

AWC= FC−WP (1)
AWC_2= FC_2−WP (2)

– saturated hydraulic conductivity (KS): hydraulic con-
ductivity at 0 cm matric potential head;

– Mualem–van Genuchten model parameters (VG; for the
water retention model only, MVG; for the water reten-
tion and hydraulic conductivity model).

Transformation of predicted variables, and explanation on
how (i) the water content at a certain matric potential head
values were harmonized and (ii) the Mualem–van Genuchten
model parameters were fitted is provided in great detail in
(Tóth et al., 2015). Similarly to euptfv1, for the description
of the moisture retention curve (MRC), we predicted the VG
model parameters: the residual water content (θr), the satu-
rated water content (θs), and shape parameters α and n. For
the hydraulic conductivity curve, two additional parameters:
the hydraulic conductivity acting as a matching point at sat-
uration K0 and a shape parameter related to pore tortuosity
(L) are estimated, too.

FC_2 was not predicted in euptfv1 and was determined in
this study as follows. In the EU-HYDI, 8231 samples have
at least one water content observation in the matric poten-
tial head range −110 to −95 cm. 86 % of those have a mea-
sured water retention value exactly at −100 cm matric po-
tential head. In 10 % of the cases, FC_2 was set to the water
content measured at the closest matric potential head in the
range [−110, −95]. In the absence of a measured value at
−100 cm, in 4 % of the cases, FC_2 was computed by linear
interpolation between the two closest matric potential heads
smaller and greater than −100 cm. In the case of AWC and
AWC_2 direct and indirect predictions were analysed, i.e.
AWC was once predicted directly from the predictor vari-
ables and once computed from the PTF predicted variables
WP, and FC and FC_2, respectively.

2.3 Predictor variables

As predictors we used the following easily available soil
properties: the particle size densities (PSD) characterised
by the mass-percentages of clay (< 2 µm), silt (2–50 µm)
and sand (50–2000 µm), organic carbon content (OC; mass
– %) , bulk density (DB; g cm−3), calcium carbonate con-
tent (CACO3; mass – %), pH in water (PH_H2O; –), cation
exchange capacity (CEC; cmol (+) kg−1), and replaced the
former topsoil and subsoil distinction in euptfv1 with mean
soil depth (cm) (DEPTH). At minimum, the predictor vari-
ables, clay, silt and sand content, as well as mean soil depth
were used regardless of predicted variable. In addition to
that, we tested every possible combination of the other above
mentioned soil properties (predictor variables) to determine
which combination significantly improves the performance
of the predictions. A total of 32 different combinations of
predictor variables were studied in their respective ability to
predict the nine different properties of interest; i.e. the set of
soil hydraulic properties and model parameters.

Replacing the topsoil/subsoil distinction with depth for the
new PTFs was supported by the fact that this information is
commonly available, too, or can be based on expert knowl-
edge. Introducing more accurate information on depth might
improve the performance without using machine learning al-
gorithms for the prediction. However, we did not test this hy-
pothesis, because our aim was to provide uncertainty of the
predictions related to predictor variables of the PTFs. Tested
predictor variables are shown in Table 1 with number of sam-
ples used to derive the PTFs and compute their performance.

2.4 The Random Forest algorithm to derive PTFs

We derived the PTFs adopting the random forest method
(Breiman, 2001), implemented in the “ranger” R package
(Wright and Ziegler, 2017). We selected this method, be-
cause (i) it is among the best performing prediction al-
gorithms if there is a complex interaction structure in the
dataset (Boulesteix et al., 2012), (ii) it computes quantiles
of the predicted values, (iii) parallel processing is supported
which saves significant computation time, and (iv) the ini-
tially black-box type algorithm can be interpreted based on
computing variable importance and analysing partial depen-
dence plots implemented in the “pdp” R package (Greenwell,
2017b).

In the case of a continuous response variable, a ran-
dom forest is an ensemble of de-correlated regression trees
(Breiman, 2001). The regression tree approach divides the
predictor space into non-overlapping regions through mini-
mizing the residual sum of squares. The aim of the method
is to subset the data as homogeneously as possible at each
split. The observations can be assigned to the defined regions
in which the mean of the response variable is the predicted
value. Single trees of the forest are noisy and limited in per-
formance, but if many unbiased trees are derived and aver-
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Table 1. Number of samples by predictor variable combinations used to derive the new European PTFs (euptfv2). Rows in italic font indicate
PTFs with the same predictor variables as were tested in euptfv1 (Tóth et al., 2015).

Name Predictor variables1 Number of samples in TRAIN set2

THS FC_2 FC WP KS AWC_2 AWC VG MVG

PTF01 PSD + DEPTH 3354 5109 2196 5264 3157 3528 1863 4669 739
PTF02 PSD + DEPTH + OC 2966 4131 1716 4802 2620 3208 1650 3708 407
PTF03 PSD+DEPTH+BD 3305 5034 2176 5197 3146 3472 1849 4593 726
PTF04 PSD+DEPTH+CACO3 678 1670 1537 1816 639 1548 1531 1671 273
PTF05 PSD+DEPTH+PH_H2O 1203 2062 1278 2039 907 1849 1245 1897 230
PTF06 PSD+DEPTH+CEC 895 1649 1097 1703 567 1550 1092 1488 141
PTF07 PSD + DEPTH + OC + BD 2959 4117 1711 4786 2609 3197 1645 3695 404
PTF08 PSD+DEPTH+OC+CACO3 673 1586 1340 1599 613 1464 1336 1589 250
PTF09 PSD+DEPTH+OC+PH_H2O 1052 1808 1100 1678 862 1615 1074 1663 224
PTF10 PSD+DEPTH+OC+CEC 744 1437 1001 1459 525 1358 998 1293 138
PTF11 PSD+DEPTH+BD+CACO3 678 1666 1526 1806 639 1545 1522 1670 272
PTF12 PSD+DEPTH+BD+PH_H2O 1156 2008 1267 1979 898 1796 1236 1847 229
PTF13 PSD+DEPTH+BD+CEC 848 1596 1093 1648 558 1498 1088 1437 140
PTF14 PSD+DEPTH+CACO3+PH_H2O 678 1314 1235 1375 620 1195 1230 1264 223
PTF15 PSD+DEPTH+CACO3+CEC 373 770 793 831 405 726 791 758 136
PTF16 PSD+DEPTH+PH_H2O+CEC 894 1350 744 1349 567 1255 739 1188 141
PTF17 PSD+DEPTH+OC+BD+CACO3 673 1585 1338 1596 613 1464 1334 1588 249
PTF18 PSD + DEPTH + OC + BD + PH_H2O 1047 1799 1098 1667 853 1607 1072 1655 223
PTF19 PSD+DEPTH+OC+BD+CEC 739 1427 998 1447 516 1349 995 1284 137
PTF20 PSD+DEPTH+OC+CACO3+PH_H2O 673 1249 1062 1183 613 1130 1059 1201 219
PTF21 PSD+DEPTH+OC+CACO3+CEC 369 727 709 743 401 683 707 712 135
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 1142 663 1121 525 1067 660 996 138
PTF23 PSD+DEPTH+BD+CACO3+PH_H2O 678 1310 1224 1365 620 1192 1221 1263 222
PTF24 PSD+DEPTH+BD+CACO3+CEC 373 768 790 827 405 725 788 757 135
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 1298 741 1295 558 1204 736 1138 140
PTF26 PSD+DEPTH+CACO3+PH_H2O+CEC 373 727 734 772 405 684 732 717 136
PTF27 PSD+DEPTH+OC+BD+CACO3

+PH_H2O
673 1248 1060 1180 613 1130 1057 1200 218

PTF28 PSD+DEPTH+OC+BD+CACO3+CEC 369 726 707 740 401 683 705 711 134
PTF29 PSD+DEPTH+OC+BD+PH_H2O+CEC 739 1133 661 1110 516 1059 658 988 137
PTF30 PSD + DEPTH + OC + CACO3 +

PH_H2O + CEC
369 684 655 689 401 641 653 671 135

PTF31 PSD+DEPTH+BD+CACO3+PH_H2O
+CEC

373 725 731 768 405 683 729 716 135

PTF32 PSD+DEPTH+OC+ BD+ CACO3+
PH_H2O + CEC

369 683 653 686 401 641 651 670 134

Number of samples in TEST_BASIC set 1247 1762 801 2088 1117 1372 705 1591 176
Number of samples in TEST_CHEM+set 156 296 280 294 169 274 279 288 57

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk
density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 THS: saturated water content
(pF 0); FC_2: water content at −100 cm matric potential head (pF 2.0); FC: water content at −330 cm matric potential head (pF 2.5); AWC_2: plant available water content
based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van
Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples
with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.

aged with bagging, the variance is reduced and performance
of the prediction improves (Hastie et al., 2009). Building of
de-correlated trees is achieved by randomization at two lev-
els. Firstly, each tree of the forest is grown on a randomly
selected two thirds of the data with replacement, which is
called bootstrap sample or in-bag fraction. Secondly, at each
node of a single tree, randomly selected sets of predictors are

analysed to split the data. This feature of randomization al-
lows correlation between the response variables (Ziegler and
König, 2014), which is an important advantage in the case
of pedotransfer functions where predictors are often highly
correlated.

Parameter tuning of the ranger was performed with the
“caret” R package (Kuhn et al., 2017, 2018). With the im-
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plemented train function, a fivefold cross-validation was re-
peated 10 times to tune the number of randomly selected pre-
dictor variables at each split (mtry) and find the best perform-
ing splitting rule (splitrule) during training. We started the
tuning by setting the number of randomly selected predictor
variables to two, then added one by one until the number of
all available predictors for each input variable combination
was reached. All three built-in splitting rules in the ranger
function were tuned, namely variance, extratrees and max-
stat. The minimum node size was kept to 10. In addition to
the tuning options included in the train function of the caret
package, we optimized the number of trees in the forest. The
above described tuning was performed by discretely altering
the number of trees in the forest in separate tuning steps to
50, 100, 200, 500 and 1000, analysing the results and choos-
ing the best number of trees for the random forest.

We analysed the relevance of predictors and their influence
on the response variable. The relevance of predictors was de-
termined by computing the variable importance based on the
mean decrease in impurity (Hastie et al., 2009) in the ranger
function. The relative importance was assessed by dividing
the variable importance of each predictor by the sum of the
importance of all the predictors after Kotlar et al. (2019). The
marginal effect of some selected predictors on the response –
soil hydraulic parameters – was analysed with partial depen-
dence plots (Greenwell, 2017a, b).

The final prediction algorithm was built on the whole train-
ing set based on the result of the tuning. To quantify the
prediction uncertainties, quantile regression was used (Mein-
shausen, 2006). In random forest, as implemented in ranger,
it is called quantile regression forest. For each node in each
tree, the quantile regression forest not only keeps the mean of
the predicted target variable, but all observations that belong
to that node from which the full conditional distribution of
the predicted variable is estimated. The width of the predic-
tion interval varies with the predictor variables. The smaller
the range of the prediction interval, the more accurate the
prediction is. We analysed the 90 % prediction interval for
all predictions, but the derived algorithms (PTFs) provide the
possibility to compute the individual predictions of each tree.

2.5 Evaluation of derived PTFs

The performance of the PTFs was calculated using the me-
dian values predicted by the random forests. It was described
with the root mean square error (RMSE) (Eq. 3.), and the
coefficient of determination (R2) (Eq. 4.) computed for the
training and test sets.

RMSE=

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2
=
√

MSE (3)

R2
= 1−

N∑
i=1

(
yi − ŷi

)2
N∑
i=1
(yi − y)

2
(4)

where yi is the measured and ŷi the predicted soil water con-
tent or log-transformed saturated or unsaturated hydraulic
conductivity, yi is the average of yi , N is the number of yi
and ŷi data pairs, and MSE is the mean square error. The dif-
ferent data range of the dataset influences the performance of
the PTFs when that is compared to the studies in the litera-
ture. Therefore, normalized RMSE (NRMSE) was computed
(Eq. 5), where ymax and ymin are the maximum and minimum
value of variable.

NRMSE=
RMSE

ymax− ymin
(5)

For each predicted variable, there was an initial set of 32 pre-
dictor combinations (Table 1), whose individual performance
for each of the predicted variables was assessed. Based on the
test results, we derived recommendations which PTF should
be used when certain sets of predictor variables are avail-
able. We compared the performance of PTFs to quantify if
there are significant differences between the predictions as a
consequence of adding certain soil properties to the predictor
variables. We also compared the performance of point and
parameter estimations for those input combinations, which
reflect the most frequently available soil property combina-
tion from a practical point of view. The aim of this compar-
ison was to analyse whether point or parametric prediction
performs better when only THS and/or FC/FC_2 and/or WP
are needed.

Additionally, the performance of the presented random
forest based PTFs was compared to that of the euptfv1 (Tóth
et al., 2015). For comparison, those PTFs from euptfv2 were
selected which corresponded to the analysed input variable
combination of the euptfv1.

The comparison of PTFs was done using a non-parametric
Kruskal-Wallis test at the 5 % significance level applied
on the MSE values – computed on TEST_BASIC and/or
TEST_CHEM+ sets (Table 1) – using the R package agri-
colae (De Mendiburu, 2017). Recommendation of PTFs for
a given set of predictor variables was based on the perfor-
mance of euptfv2 on the test sets. If there was no significant
difference in performance, the PTF derived from the largest
population was selected.

All statistical analysis was performed in R [version 3.6.0]
(R Core Team, 2019).

3 Results and discussion

3.1 General performance

In the process of tuning the random forest parameters, the
number of trees was found to be sufficient when set to 200
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Figure 1. Results of parameter tuning of the random forest: optimization of (a) the number of randomly selected predictors at each split by
number of available predictors and (b) splitting rule applied to build the trees in the random forest.

in all cases. The number of candidate predictors was found
to be higher than the recommended square root of the num-
ber of available predictor variables (p) in most of the cases,
especially when p was greater than 5 (Fig. 1). When optimiz-
ing the splitting rules to build the trees in the forest, overall,
the best performance was achieved by the extratrees rule in
54 %, by the variance rule in 28 %, and by the maxstat rule
in 18 % of the cases (Fig. 1).

The RMSE values were between 0.020 and
0.068 cm3 cm−3 for THS (Table 2), 0.046 and
0.055 cm3 cm−3 for FC (Table 3), 0.040 and 0.060 cm3 cm−3

for FC_2 (Table 4), 0.037 and 0.048 cm3 cm−3 for WP (Ta-
ble 5), 0.043 and 0.053 cm3 cm−3 for AWC (Table S1 in
the Supplement), 0.045 and 0.060 cm3 cm−3 for AWC_2
(Table S2), and 0.09 and 1.18 log10 (cm d−1) for KS (Ta-
ble 6) in the case of including different predictor variables
computed on the test sets. Table S3 shows the NRMSE for
the point predictions computed for the TEST_BASIC and
TEST_CHEM+ sets to provide possibility for comparison
with other PTFs available from the literature. In the case
of VG and MVG, RMSE for the entire matric potential
head range was between 0.041 and 0.068 cm3 cm−3 for
the moisture retention (Table 7) and 0.61 and 0.71 log10
(cm d−1) for the hydraulic conductivity (Table 8). These
RMSE values are within the range of recently published
PTFs (McNeill et al., 2018; Nguyen et al., 2017; Román
Dobarco et al., 2019; Zhang and Schaap, 2017).

In the case of the point estimations, Figs. 2, S1 depict the
scatterplots of measured and predicted soil hydraulic proper-
ties/parameters with 90 % prediction interval computed on
the test sets. Performance of the worst to best PTFs are
shown. The addition of predictors that significantly improve
the predictions also decreases the uncertainty. The largest
reduction in the width of the inner 90 % of the predic-
tion interval is visible for THS. Specifically this value de-
creased from 0.21 to 0.10 cm3 cm−3 for THS, from 0.19
to 0.14 cm3 cm−3 for FC_2, from 0.17 to 0.14 cm3 cm−3

for FC, from 0.15 to 0.14 cm3 cm−3 for WP, from 0.19 to
0.17 cm3 cm−3 for AWC_2, from 4.1 to 3.2 log10 (cm d−1)

for KS. In the case of AWC the mean 90 % mean interval did
not change (0.15 cm3 cm−3).

Figures S2, S4, S6, S8, S10, S12, S14, S16, S19 show
the squared error of the derived PTFs computed on the
TEST_BASIC and TEST_CHEM+ sets. The PTFs are or-
dered based on their performance. Density plots of measured
and predicted soil hydraulic values are included in Figs. S3,
S5, S7, S9, S11, S13, S15, S17, S20. Plots show the PTFs
that use the most frequently available predictors.

This study strengthens the importance of chemical soil
properties in the prediction. CEC was found to be an
important predictor by Pachepsky and Rawls (1999) for
FC and WP, by Botula et al. (2013) for water retention
at several matric potential head values, and by Hodnett
and Tomasella (2002) for the VG parameters. Hodnett and
Tomasella (2002) showed that pH influenced all four VG pa-
rameters. The role of CACO3 was shown to be not signifi-
cant in the study of Khodaverdiloo et al. (2011). They high-
light that a possible influence of CACO3 might already have
been indirectly included by bulk density. The role of PSD,
BD and OC has been studied extensively by various authors,
e.g. Nemes et al. (2003), Rawls et al. (2003), Vereecken
et al. (1989), Weynants et al. (2009), Wösten et al. (1999),
which is in line with the general pattern of variable influence
we see in this study.

Table S3 summarizes the recommended PTF for each
combination of available predictor variables. The importance
and influence of soil properties on the performance of hy-
draulic PTFs and results of partial dependence plots are re-
ported below by predicted soil hydraulic properties.

3.2 Point estimations

The performance of the PTFs was computed for the train-
ing and test sets (Tables 2–8 and S1–2) indicating the pres-
ence of significant differences. For each predictor variable,
the recommended PTF number is indicated and its predictor
variables are highlighted in bold font in the respective ta-
bles. For easier comparison with euptfv1, the corresponding
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Table 2. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at saturation
(THS). N : number of samples, RMSE: root mean square error (cm3 cm−3), and R2: determination coefficient, TEST_BASIC: samples with
measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.
Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 3354 0.067 0.366 1274 0.068 0.344 a a PTF01 –
PTF02 PSD+DEPTH+OC 2966 0.053 0.577 1274 0.056 0.552 b abc PTF02 PTF04
PTF03 PSD+DEPTH+BD 3305 0.029 0.880 1274 0.031 0.862 c d PTF03 –
PTF04 PSD+DEPTH+CACO3 678 0.046 0.187 156 0.057 0.053 – bc PTF04 –
PTF05 PSD+DEPTH+PH_H2O 1203 0.056 0.298 156 0.053 0.193 – bc PTF05 –
PTF06 PSD+DEPTH+CEC 895 0.055 0.401 156 0.057 0.048 – ab PTF01 –
PTF07 PSD+DEPTH+OC+BD 2959 0.027 0.888 1274 0.030 0.869 c d PTF03 PTF05
PTF08 PSD+DEPTH+OC+CACO3 673 0.044 0.209 156 0.055 0.118 – bc PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 1052 0.046 0.457 156 0.050 0.272 – c PTF02 –
PTF10 PSD+DEPTH+OC+CEC 744 0.046 0.519 156 0.051 0.233 – abc PTF02 –
PTF11 PSD+DEPTH+BD+CACO3 678 0.023 0.791 156 0.022 0.863 – d PTF03 –
PTF12 PSD+DEPTH+BD+PH_H2O 1156 0.027 0.826 156 0.021 0.878 – d PTF03 –
PTF13 PSD+DEPTH+BD+CEC 848 0.027 0.848 156 0.021 0.873 – d PTF03 –
PTF14 PSD+DEPTH+CACO3+PH_H2O 678 0.045 0.231 156 0.050 0.265 – bc PTF05 –
PTF15 PSD+DEPTH+CACO3+CEC 373 0.045 0.257 156 0.054 0.164 – abc PTF04 –
PTF16 PSD+DEPTH+PH_H2O+CEC 894 0.052 0.459 156 0.055 0.132 – bc PTF05 –
PTF17 PSD+DEPTH+OC+BD+CACO3 673 0.019 0.856 156 0.021 0.872 – d PTF03 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1047 0.024 0.848 156 0.021 0.871 – d PTF03 PTF06
PTF19 PSD+DEPTH+OC+BD+CEC 739 0.027 0.837 156 0.021 0.874 – d PTF03 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
673 0.043 0.251 156 0.050 0.285 – c PTF02 –

PTF21 PSD+DEPTH+OC+CACO3+CEC 369 0.043 0.309 156 0.051 0.242 – bc PTF02 –
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 744 0.046 0.531 156 0.050 0.280 – bc PTF02 –
PTF23 PSD+DEPTH+BD+CACO3

+PH_H2O
678 0.023 0.796 156 0.021 0.869 – d PTF03 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 373 0.021 0.841 156 0.021 0.869 – d PTF03 –
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 847 0.027 0.850 156 0.020 0.883 – d PTF03 –
PTF26 PSD+DEPTH+CACO3

+PH_H2O+CEC
373 0.044 0.305 156 0.049 0.308 – abc PTF05 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

673 0.019 0.858 156 0.022 0.865 – d PTF03 –

PTF28 PSD+DEPTH+OC+BD+CACO3
+CEC

369 0.021 0.845 156 0.021 0.874 – d PTF03 –

PTF29 PSD+DEPTH+OC+BD
+PH_H2O+CEC

739 0.026 0.843 156 0.020 0.880 – d PTF03 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

369 0.042 0.356 156 0.049 0.319 – bc PTF02 PTF04

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

373 0.021 0.843 156 0.021 0.871 – d PTF03 –

PTF32 PSD+DEPTH+OC+BD
+CACO3+PH_H2O+CEC

369 0.021 0.844 156 0.021 0.876 – d PTF03 PTF06

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.

PTF number used in Tóth et al. (2015) is additionally pro-
vided in each table. In the following, detailed results of the
constructed PTFs for the individual predicted variables are
presented and discussed.

3.2.1 Water content at saturation

Table 2, Figs. S2 and S3 show the performance of the
PTFs predicting THS. The best performing random forest is
PTF03. It is also the one trained on the largest population. It
uses PSD, DEPTH and BD as predictors. For the prediction
of THS, the most important variable by far is BD (Fig. 3).
When BD is not used for the computation of THS, values
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Table 3. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at
−100 cm matric potential head (FC_2). N : number of samples, RMSE: root mean square error (cm3 cm−3), and R2: determination co-
efficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC,
BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold. FC_2 was not analysed in euptfv1.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 5109 0.062 0.651 1762 0.060 0.669 a a PTF01 –
PTF02 PSD+DEPTH+OC 4131 0.057 0.711 1762 0.055 0.718 b ab PTF02 –
PTF03 PSD+DEPTH+BD 5034 0.053 0.750 1762 0.052 0.745 bc bcdef PTF03 –
PTF04 PSD+DEPTH+CACO3 1670 0.052 0.566 296 0.054 0.467 – abcd PTF01 –
PTF05 PSD+DEPTH+PH_H2O 2062 0.056 0.630 296 0.056 0.419 – abc PTF01 –
PTF06 PSD+DEPTH+CEC 1649 0.056 0.658 296 0.054 0.469 – abcde PTF01 –
PTF07 PSD+DEPTH+OC+BD 4117 0.051 0.769 1762 0.050 0.769 c bcdefg PTF03 –
PTF08 PSD+DEPTH+OC+CACO3 1586 0.050 0.589 296 0.049 0.565 – bcdefgh PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 1808 0.050 0.679 296 0.048 0.581 – bcdefg PTF02 –
PTF10 PSD+DEPTH+OC+CEC 1437 0.051 0.688 296 0.049 0.554 – cdefghij PTF06 –
PTF11 PSD+DEPTH+BD+CACO3 1666 0.044 0.701 296 0.046 0.616 – fghijklmn PTF03 –
PTF12 PSD+DEPTH+BD+PH_H2O 2008 0.046 0.746 296 0.043 0.657 – efghijkl PTF03 –
PTF13 PSD+DEPTH+BD+CEC 1596 0.046 0.763 296 0.046 0.614 – hijklmn PTF13 –
PTF14 PSD+DEPTH+CACO3+PH_H2O 1314 0.051 0.600 296 0.051 0.528 – bcdef PTF05 –
PTF15 PSD+DEPTH+CACO3+CEC 770 0.052 0.605 296 0.051 0.520 – cdefghij PTF04 –
PTF16 PSD+DEPTH+PH_H2O+CEC 1350 0.053 0.699 296 0.049 0.556 – cdefghi PTF05 –
PTF17 PSD+DEPTH+OC+BD+CACO3 1585 0.043 0.689 296 0.045 0.634 – ghijklmn PTF07 –
PTF18 PSD+DEPTH+OC+BD

-+PH_H2O
1799 0.044 0.749 296 0.042 0.679 – ghijklmn PTF07 –

PTF19 PSD+DEPTH+OC+BD+CEC 1427 0.045 0.753 296 0.044 0.650 – jklmn PTF13 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
1249 0.049 0.613 296 0.053 0.483 – bcdefgh PTF02 –

PTF21 PSD+DEPTH+OC+CACO3+CEC 727 0.050 0.603 296 0.046 0.620 – fghijklmn PTF08 –
PTF22 PSD+DEPTH+OC+PH_H2O

+CEC
1142 0.051 0.693 296 0.045 0.630 – efghijklm PTF09 –

PTF23 PSD+DEPTH+BD+CACO3
+PH_H2O

1310 0.044 0.701 296 0.045 0.629 – defghijkl PTF03 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 768 0.043 0.722 296 0.043 0.666 – lmn PTF11 –
PTF25 PSD+DEPTH+BD+PH_H2O

+CEC
1298 0.046 0.773 296 0.043 0.668 – jklmn PTF12 –

PTF26 PSD+DEPTH+CACO3+PH_H2O

+CEC

727 0.051 0.633 296 0.048 0.587 – defghijk PTF05 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

1248 0.043 0.693 296 0.044 0.653 – efghijklm PTF07 –

PTF28 PSD+DEPTH+OC+BD+CACO3
+CEC

726 0.044 0.702 296 0.041 0.687 – klmn PTF11 –

PTF29 PSD+DEPTH+OC+BD+PH_H2O

+CEC

1133 0.046 0.757 296 0.042 0.681 – ijklmn PTF12 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

684 0.050 0.617 296 0.051 0.533 – efghijklm PTF09 –

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

725 0.043 0.731 296 0.041 0.698 – mn PTF11 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

683 0.044 0.712 296 0.040 0.709 – n PTF18 –

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.
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Table 4. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at−330 cm
matric potential head, field capacity (FC). N : number of samples, RMSE: root mean square error (cm3 cm−3), and R2: determination
coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC,
BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 2196 0.056 0.639 801 0.054 0.595 a a PTF01 –
PTF02 PSD+DEPTH+OC 1716 0.049 0.707 801 0.050 0.650 b abc PTF02 PTF09
PTF03 PSD+DEPTH+BD 2176 0.048 0.727 801 0.049 0.668 ab abcd PTF01 –
PTF04 PSD+DEPTH+CACO3 1537 0.047 0.650 280 0.055 0.591 – abcde PTF01 –
PTF05 PSD+DEPTH+PH_H2O 1278 0.048 0.653 280 0.055 0.586 – ab PTF01 –
PTF06 PSD+DEPTH+CEC 1097 0.046 0.711 280 0.052 0.630 – bcdefghi PTF06 –
PTF07 PSD+DEPTH+OC+BD 1711 0.046 0.736 801 0.048 0.677 b bcdefg PTF02 PTF09
PTF08 PSD+DEPTH+OC+CACO3 1340 0.043 0.678 280 0.053 0.616 – abcdef PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 1100 0.044 0.687 280 0.052 0.631 – abcde PTF02 –
PTF10 PSD+DEPTH+OC+CEC 1001 0.044 0.720 280 0.052 0.628 – bcdefghi PTF02 –
PTF11 PSD+DEPTH+BD+CACO3 1526 0.044 0.696 280 0.051 0.649 – bcdefgh PTF03 –
PTF12 PSD+DEPTH+BD+PH_H2O 1267 0.045 0.698 280 0.050 0.658 – bcdefgh PTF03 –
PTF13 PSD+DEPTH+BD+CEC 1093 0.044 0.741 280 0.049 0.678 – fghi PTF06 –
PTF14 PSD+DEPTH+CACO3

+PH_H2O
1235 0.048 0.667 280 0.053 0.623 – bcdef PTF04 –

PTF15 PSD+DEPTH+CACO3+CEC 793 0.047 0.720 280 0.052 0.639 – efghi PTF04 –
PTF16 PSD+DEPTH+PH_H2O+CEC 744 0.047 0.726 280 0.051 0.651 – efghi PTF06 –
PTF17 PSD+DEPTH+OC+BD+CACO3 1338 0.042 0.699 280 0.050 0.667 – cdefghi PTF02 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1098 0.043 0.704 280 0.050 0.660 – bcdefgh PTF02 PTF09
PTF19 PSD+DEPTH+OC+BD+CEC 998 0.042 0.739 280 0.048 0.684 – fghi PTF07 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
1062 0.044 0.694 280 0.052 0.634 – abcde PTF02 –

PTF21 PSD+DEPTH+OC+CACO3+CEC 709 0.045 0.709 280 0.051 0.652 – efghi PTF04 –
PTF22 PSD+DEPTH+OC

+PH_H2O+CEC
663 0.046 0.706 280 0.050 0.664 – defghi PTF09 –

PTF23 PSD+DEPTH+BD+CACO3
+PH_H2O

1224 0.045 0.704 280 0.051 0.651 – bcdefgh PTF03 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 790 0.044 0.744 280 0.048 0.688 – hi PTF11 –
PTF25 PSD+DEPTH+BD

+PH_H2O+CEC
741 0.045 0.748 280 0.048 0.682 – hi PTF11 –

PTF26 PSD+DEPTH+CACO3
+PH_H2O+CEC

734 0.046 0.742 280 0.050 0.658 – fghi PTF14 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

1060 0.042 0.712 280 0.049 0.676 – bcdefghi PTF02 –

PTF28 PSD+DEPTH+OC+BD
+CACO3+CEC

707 0.043 0.731 280 0.048 0.693 – ghi PTF07 –

PTF29 PSD+DEPTH+OC+BD
+PH_H2O+CEC

661 0.044 0.725 280 0.046 0.709 – fghi PTF07 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

655 0.044 0.731 280 0.049 0.672 – fghi PTF08 PTF09

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

731 0.043 0.763 280 0.047 0.700 – i PTF06 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

653 0.043 0.743 280 0.047 0.696 – fghi PTF07 PTF09

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.

above 0.60 cm3 cm−3 are not well predicted (Fig. S3). The
addition of OC or CACO3 or PH_H2O to PSD and DEPTH
improves significantly the performance of the PTF. The pic-
ture changes if BD is known: if PSD, DEPTH and BD were
available, further addition of OC or CACO3 or PH_H2O or

CEC does not significantly improve the prediction, neither
do their combinations. Figure 4 shows the dependence of
THS on OC and BD, considering the average effect of the
other predictor variables – i.e. PSD and DEPTH. When BD is
lower than 1.5 g cm−3 changes in OC do not influence THS.
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Table 5. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict water content at wilting
point (WP). N : number of samples, RMSE: root mean square error (cm3 cm−3), and R2: determination coefficient, TEST_BASIC: samples
with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.
Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 5264 0.048 0.736 2088 0.048 0.728 a a PTF01 –
PTF02 PSD+DEPTH+OC 4802 0.047 0.755 2088 0.046 0.745 bc abc PTF02 PTF12
PTF03 PSD+DEPTH+BD 5197 0.046 0.757 2088 0.046 0.754 ab ab PTF01 –
PTF04 PSD+DEPTH+CACO3 1816 0.042 0.693 294 0.042 0.643 – a PTF01 –
PTF05 PSD+DEPTH+PH_H2O 2039 0.046 0.673 294 0.044 0.621 – abc PTF01 –
PTF06 PSD+DEPTH+CEC 1703 0.043 0.725 294 0.041 0.662 – a PTF01 –
PTF07 PSD+DEPTH+OC+BD 4786 0.045 0.769 2088 0.044 0.769 c abc PTF02 PTF12
PTF08 PSD+DEPTH+OC+CACO3 1599 0.041 0.695 294 0.041 0.671 – abcd PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 1678 0.045 0.682 294 0.041 0.661 – abcd PTF02 –
PTF10 PSD+DEPTH+OC+CEC 1459 0.043 0.704 294 0.040 0.674 – abcd PTF02 –
PTF11 PSD+DEPTH+BD+CACO3 1806 0.041 0.706 294 0.040 0.682 – abcd PTF01 –
PTF12 PSD+DEPTH+BD+PH_H2O 1979 0.045 0.691 294 0.041 0.671 – abcd PTF01 –
PTF13 PSD+DEPTH+BD+CEC 1648 0.042 0.729 294 0.040 0.683 – abcd PTF01 –
PTF14 PSD+DEPTH+CACO3+PH_H2O 1375 0.043 0.689 294 0.042 0.649 – abcd PTF01 –
PTF15 PSD+DEPTH+CACO3+CEC 831 0.044 0.657 294 0.039 0.694 – abcd PTF01 –
PTF16 PSD+DEPTH+PH_H2O+CEC 1349 0.043 0.727 294 0.040 0.681 – abc PTF01 –
PTF17 PSD+DEPTH+OC+BD+CACO3 1596 0.041 0.705 294 0.039 0.702 – abcd PTF07 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1667 0.045 0.687 294 0.040 0.674 – abcd PTF07 PTF12
PTF19 PSD+DEPTH+OC+BD+CEC 1447 0.042 0.714 294 0.039 0.691 – abcd PTF07 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
1183 0.042 0.691 294 0.040 0.686 – abcd PTF02 –

PTF21 PSD+DEPTH+OC
+CACO3+CEC

743 0.044 0.638 294 0.037 0.722 – d PTF08 –

PTF22 PSD+DEPTH+OC
+PH_H2O+CEC

1121 0.044 0.697 294 0.039 0.701 – abcd PTF07 –

PTF23 PSD+DEPTH+BD+CACO3
+PH_H2O

1365 0.042 0.701 294 0.040 0.678 – abcd PTF01 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 827 0.043 0.673 294 0.038 0.708 – abcd PTF01 –
PTF25 PSD+DEPTH+BD

+PH_H2O+CEC
1295 0.043 0.726 294 0.039 0.698 – abcd PTF01 –

PTF26 PSD+DEPTH+CACO3
+PH_H2O+CEC

772 0.043 0.680 294 0.039 0.702 – cd PTF05 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

1180 0.042 0.698 294 0.039 0.703 – abcd PTF07 –

PTF28 PSD+DEPTH+OC+BD
+CACO3+CEC

740 0.043 0.648 294 0.037 0.732 – bcd PTF17 –

PTF29 PSD+DEPTH+OC+BD
+PH_H2O+CEC

1110 0.043 0.699 294 0.038 0.712 – abcd PTF07 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

689 0.044 0.645 294 0.038 0.719 – abcd PTF02 PTF12

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

768 0.043 0.678 294 0.037 0.720 – cd PTF05 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

686 0.043 0.656 294 0.037 0.723 – d PTF09 PTF12

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.
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Figure 2. Scatter plot of the measured versus median predicted wa-
ter retention values of the worst and best performing PTF with 90 %
prediction interval on test datasets. THS: saturated water content
(PTF01 vs. PTF03); FC_2: water content at −100 cm matric poten-
tial head (PTF01 vs. PTF18); FC: water content at −330 cm matric
potential head (PTF01 vs. PTF07); WP: water content at wilting
point (PTF01 vs. PTF09); log10KS: saturated hydraulic conductiv-
ity (PTF01 vs. PTF02); PSD: particle size distribution (sand, 50–
2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH_M: mean
soil depth (cm); OC: organic carbon content (mass %); BD: bulk
density (g cm−3); PH_H2O: pH in water (–); Count: the number of
cases in each rectangle.

If BD is larger than 1.5 g cm−3, samples with higher OC have
higher THS.

3.2.2 Water content at field capacity

The performance of the PTFs computed on training and test
set are shown in Table 3, Figs. S4 and S5 for FC_2 and in
Table 4, Figs. S6 and S7 for FC. The best performing PTF
derived from the largest population is the one using (i) PSD,
DEPTH, OC, BD and PH_H2O (PTF18) in the case of FC_2,
and (ii) PSD, DEPTH, OC and BD (PTF07) for FC.

For FC_2, the two most important variables are USSAND
and BD (Fig. 3). When BD and USSAND increase, FC_2
decreases (Fig. 4). Adding OC or BD to PSD and DEPTH
significantly improves the prediction of FC_2. If either of
CACO3, PH_H2O or CEC is added as a further predictor to
PSD and DEPTH, the performance of the PTF does not sig-
nificantly improve. If PSD, DEPTH and BD are available,
adding OC or CACO3 or PH_H2O does not significantly im-
prove the prediction. Including CEC as an additional predic-
tor besides PSD, DEPTH and BD, significantly improves the
estimation of FC_2.

USSAND and USCLAY are the two most important vari-
ables for the prediction of FC (Fig. 3). Instead of analysing
these two soil properties, both characterizing the soil texture,
we include OC next to USSAND in the partial dependence
plot analysis, because the amount of OC can be altered due
to change in climate, land use, soil and water management,
cropping systems, etc. (Wiesmeier et al., 2019). Within the
range of OC in the dataset FC increases with increasing OC
regardless of USSAND content by up to 0.08 cm3 cm−3 even
when USSAND is greater than 60 % (Fig. 4). Adding OC or
CEC to PSD and DEPTH significantly improves the predic-
tion of FC. The effect of CEC on the prediction of FC was
also shown by Pachepsky and Rawls (1999). BD or CaCO3
or PH_H2O do not significantly improve the predictions if
PSD, DEPTH, or PSD, DEPTH and OC are available. Predic-
tions significantly improve when both CaCO3 and PH_H2O
are added as predictors to PSD, DEPTH and OC.

3.2.3 Water content at wilting point

The performance of PTFs derived for WP prediction is
shown in Table 5, Figs. S8 and S9. Among the best per-
forming PTFs, PTF09 is derived on the largest training set.
It uses PSD, DEPTH, OC and PH_H2O as predictors. Even
though the most important variables for WP prediction were
USCLAY and USSAND (Fig. 3), we included OC on the
partial dependence plot (Fig. 4) as in the FC analysis. US-
CLAY had the strongest influence on WP. The influence of
OC on WP can be detected for soils with OC less than 4 %
and USCLAY less than 50 %. Below 10 % USCLAY, the WP
slightly increases with increasing OC. When USCLAY is be-
tween 10 % and 50 % and OC is less than 4 %, increasing OC
generally decreases WP.

https://doi.org/10.5194/gmd-14-151-2021 Geosci. Model Dev., 14, 151–175, 2021



162 B. Szabó et al.: Updated European hydraulic pedotransfer functions

OC significantly improves the prediction of WP if added to
PSD and DEPTH. If BD or CACO3 or PH_H2O or CEC are
added to PSD and DEPTH, the performance of the prediction
does not improve significantly. Adding CACO3 and CEC to
PSD, DEPTH and OC significantly improves the prediction.

3.2.4 Plant available water content

Tables S1, S2 and Figs. S1, S10–13 show the performance of
AWC and AWC_2 predictions. Considering PSD, DEPTH,
and BD as input, PTF03 is the best performing algorithm and
in both case had the largest training data sets. For both AWC
and AWC_2, BD is the most important predictor among the
analysed variables (Fig. 3). The second most important vari-
able is USCLAY in the case of AWC_2 and USSILT for
AWC. Increasing BD and USCLAY decreases AWC_2. In
the case of AWC, increasing BD and decreasing USSILT de-
creases the water content (Fig. 4).

OC and BD significantly improve the prediction of
AWC_2 when added as input variables next to PSD and
DEPTH. If either BD or OC is already included, adding the
respective other, does not significantly improve the predic-
tion. Neither PH_H2O, CACO3 nor CEC improves the pre-
diction.

For the prediction of AWC, further addition of only BD
or OC or CACO3 or PH_H2O or CEC to PSD and DEPTH
does not significantly improve the prediction. If both OC and
BD are included as predictors next to PSD and DEPTH, the
prediction significantly improves.

There is no significant difference between direct and in-
direct predictions, neither for AWC nor for AWC_2. How-
ever, the size of the test set used for the statistical analysis is
limited. There were only 145 samples in the TEST_BASIC
set and 64 samples in TEST_CHEM+ set after merging
datasets available for both direct and indirect predictions
for analysing AWC, and 70 and 34 samples in the case
of AWC_2. Thus, if prediction of FC_2/FC and WP are
needed in addition to AWC_2/AWC, we recommend com-
puting AWC from those to save on computing time. Variation
in AWC could be explained less efficiently (Tables S1, S2)
than the other studied water retention values but the perfor-
mance of the prediction is comparable with that of published
values in the literature (Li et al., 2016; Malone et al., 2009).

3.2.5 Saturated hydraulic conductivity

The performance of KS prediction is shown in Table 6,
Figs. S14 and S15. The predictors of the best performing
PTF derived on the largest training set are PSD, DEPTH
and OC (PTF02). The prediction of KS significantly im-
proves if OC is included among the predictor variables next
to PSD and DEPTH. No other predictors significantly im-
prove the performance of the PTF. On the training dataset,
when OC is greater than 2.5 %, the influence of clay con-
tent on KS is more dominant than that of OC (Fig. 4). In

the case of KS prediction, the simplest best performing PTF
– which was derived on a training dataset with KS ranging
between −3.00 and 4.67 log10 (cm d−1) – has an RMSE of
0.94 log10 (cm d−1) and NRMSE 0.14 log10 (cm d−1) (Ta-
ble S3). PSD and CEC are the most important input variables
for the prediction of KS when all nine variables are consid-
ered as predictors (Fig. 3). In that case, OC is the fifth and
BD is only the eighth most important variable. The predic-
tion performance is influenced by the heterogeneity of mea-
surement methods of KS in the EU-HYDI dataset. When
the methods are homogeneous, the RMSE value is usually
around 0.6–0.8 log10 (cm d−1) as reviewed by Zhang and
Schaap (2019). ROSETTA3 PTF with PSD and BD predic-
tors had an RMSE of 0.68 log10 (cm d−1) with an NRMSE
of 0.11 log10 (cm d−1) (Zhang and Schaap, 2017). Araya
and Ghezzehei (2019) published PTF using PSD, BD and
OC predictors with the highest accuracy in the literature
with an RMSE of 0.34 log10 (cm d−1) and NRMSE of 0.06
log10 (cm d−1). In Lilly et al. (2008), the performance of the
KS predictions and findings were similar to this study. They
report an RMSE between 0.95 and 1.08 log10 (cm d−1) – with
an NRMSE between 0.17 and 0.20 log10 (cm d−1) – for the
KS prediction when analysed with several input combina-
tions. Even when information on soil structure and crack ori-
entation was considered – next to topsoil and subsoil distinc-
tion, PSD, BD and OC – the RMSE was 0.97 log10 (cm d−1).
BD would be among the most important variables, but also in
their analysis its influence was masked out. They derived the
PTFs on the HYPRES dataset (Wösten et al., 1999), which
also includes very diverse methods to determine the satu-
rated hydraulic conductivity and part of which is also con-
tained in the EU-HYDI. The uncertainty in the predictions
(Fig. 2) could be decreased if the predictions would be dif-
ferentiated according to the measurement methods, but that
might decrease the applicability of the PTFs. On the contrary,
this study indicates the necessity to include saturated hy-
draulic conductivity values determined from many different
measurement techniques, otherwise, the PTFs are expected
to lose their generality.

3.3 Parameter estimations

The performance of parametric PTFs are shown in Tables 7
and 8 and Figs. 5, 6, S16–S21. Figure 7 illustrates the impor-
tance of variables for the prediction of VG and MVG parame-
ters. The best performing PTF derived on the largest training
set is PTF29 – with PSD, DEPTH, OC, BD, PH_H2O and
CEC – for MRC and PTF27 – with PSD, DEPTH, OC, BD,
CACO3, PH_H2O – for HCC.

For θr, overall, BD is the most important predictor while
all other predictors show similar variable importance (Fig. 7).
Interpretation of this parameter is complex, but it was
demonstrated that it is influenced by the soil specific surface
area (Assouline and Or, 2013), and the measured data range
(Weber et al., 2019). For θs, the most important predictor is
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Figure 3. Relative variable importance computed with the random forest algorithm for the prediction of water content with PTF32 at
saturation (THS), at field capacity; −100 (FC_2) and −330 (FC) matric potential head, at wilting point (WP), of the plant available water
content based on FC_2 (AWC_2) and FC (AWC), and the saturated hydraulic conductivity (KS). USSILT: silt content (2–50 µm (mass %));
USSAND: sand content (50–2000 µm (mass %)); USCLAY: clay content (< 2 µm (mass %)); PH_H2O: pH in water (–); OC: organic carbon
content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); CEC: cation exchange capacity (cmol (+) kg−1);
CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3).

by far BD, similarly to THS. The importance of CEC has to
be noted for the prediction of parameters α, n and L. For the
prediction of parameter n – which relates to the pore size dis-
tribution – USCLAY and USSAND are the most important
variables. K0 is influenced by several soil properties besides
those included in the dataset used here, e.g. pore connectivity,
tortuosity, primary pore orientation. These properties cannot
be directly inferred from other soil properties limiting the ex-
planatory power of the available properties. The prediction of
K0 remains complex and challenging. Variable importance of
all studied predictors is greater than 70 %. Moreover, K0 is
influenced by the data quality, and is correlated in parameter
space, which is not treated here.

Only a few studies have analysed the importance of CEC
for MRC and HCC PTFs (Botula et al., 2013; Hodnett and
Tomasella, 2002; Pachepsky and Rawls, 1999) which might
be linked to the fact that CEC is rarely available in soil hy-
draulic datasets. It is noteworthy to highlight that all best per-
forming MRC PTFs (PTF24, PTF28, PTF29, PTF30, PTF31)
include CEC among the predictors (Table 7). In addition to
that, Hodnett and Tomasella (2002) found that CEC was im-
portant for the prediction of θr and α parameters of the van
Genuchten model. This is because CEC provides indirect in-

formation on soil mineralogy and reflects soil specific surface
area, charge density and pore size which influence soil water
retention (Lal and Shukla, 2004).

3.3.1 Moisture retention curve

If BD or OC or CACO3 or CEC or PH_H2O are added as
a predictor to information on PSD and DEPTH, the perfor-
mance of the PTF significantly improves (Table 7, Fig. S16).
Adding BD next to PSD and DEPTH improves the predic-
tions more than adding OC (Table 7, Fig. S17). BD and OC
together significantly improve the prediction compared to us-
ing PSD, DEPTH together with either BD or OC. Adding
OC next to PSD, DEPTH, BD and chemical soil proper-
ties (CACO3 and/or CEC and /or PH_H2O) does not sig-
nificantly improve the prediction. If PSD, DEPTH, CACO3
and CEC are available, further addition of PH_H2O does not
improve the prediction. The best performing PTF includes
USSAND, USSILT, USCLAY, DEPTH, BD, CACO3, CEC.
Figure 5 shows a scatterplot of measured and predicted wa-
ter content values, including the performance of the worst
and the best performing PTF (PTF01 and PTF29). The im-
portance of including chemical properties and most impor-
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Figure 4. Partial dependence plot computed based on the random forest algorithm (PTF07) for the prediction of water content at saturation
(THS), field capacity at−100 (FC_2) and−330 (FC) matric potential head, wilting point (WP), plant available water content computed with
field capacity at−100 and−330 cm matric potential head (AWC_2, AWC) and saturated hydraulic conductivity (KS) for selected predictors.
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Table 6. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict saturated hydraulic con-
ductivity (KS). N : number of samples, RMSE: root mean square error (log10 (cm d−1)), and R2: determination coefficient, TEST_BASIC:
samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O
and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 3157 1.200 0.434 1117 1.181 0.307 a ab PTF01 –
PTF02 PSD+DEPTH+OC 2620 0.957 0.566 1117 0.953 0.548 b bc PTF02 PTF16
PTF03 PSD+DEPTH+BD 3146 1.160 0.467 1117 1.170 0.320 a a PTF01 –
PTF04 PSD+DEPTH+CACO3 639 0.861 0.241 169 0.959 0.123 – abc PTF01 –
PTF05 PSD+DEPTH+PH_H2O 907 0.875 0.213 169 0.944 0.151 – bc PTF01 –
PTF06 PSD+DEPTH+CEC 567 0.984 0.215 169 0.940 0.157 – bc PTF01 –
PTF07 PSD+DEPTH+OC+BD 2609 0.931 0.590 1117 0.939 0.562 b bc PTF02 PTF16
PTF08 PSD+DEPTH+OC+CACO3 613 0.872 0.244 169 0.943 0.153 – bc PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 862 0.847 0.257 169 0.938 0.162 – bc PTF02 –
PTF10 PSD+DEPTH+OC+CEC 525 0.977 0.223 169 0.938 0.162 – bc PTF02 –
PTF11 PSD+DEPTH+BD+CACO3 639 0.851 0.259 169 0.952 0.136 – bc PTF01 –
PTF12 PSD+DEPTH+BD+PH_H2O 898 0.853 0.256 169 0.947 0.145 – bc PTF05 –
PTF13 PSD+DEPTH+BD+CEC 558 0.980 0.230 169 0.941 0.157 – bc PTF01 –
PTF14 PSD+DEPTH+CACO3+PH_H2O 620 0.855 0.267 169 0.923 0.189 – bc PTF05 –
PTF15 PSD+DEPTH+CACO3+CEC 405 0.937 0.263 169 0.941 0.156 – abc PTF01 –
PTF16 PSD+DEPTH+PH_H2O+CEC 567 0.942 0.282 169 0.940 0.158 – bc PTF01 –
PTF17 PSD+DEPTH+OC+BD+CACO3 613 0.856 0.272 169 0.933 0.171 – bc PTF02 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 853 0.831 0.289 169 0.932 0.172 – bc PTF02 PTF16
PTF19 PSD+DEPTH+OC+BD+CEC 516 0.979 0.228 169 0.928 0.179 – c PTF02 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
613 0.860 0.264 169 0.929 0.177 – bc PTF02 –

PTF21 PSD+DEPTH+OC+CACO3+CEC 401 0.935 0.271 169 0.925 0.184 – bc PTF02 –
PTF22 PSD+DEPTH+OC+PH_H2O+CEC 525 0.931 0.295 169 0.933 0.170 – c PTF02 –
PTF23 PSD+DEPTH+BD+CACO3

+PH_H2O
620 0.844 0.286 169 0.889 0.247 – c PTF05 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 405 0.922 0.286 169 0.958 0.125 – abc PTF01 –
PTF25 PSD+DEPTH+BD+PH_H2O+CEC 558 0.944 0.286 169 0.950 0.140 – bc PTF05 –
PTF26 PSD+DEPTH+CACO3+PH_H2O

+CEC

405 0.922 0.286 169 0.922 0.190 – bc PTF05 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

613 0.844 0.293 169 0.893 0.241 – c PTF02 –

PTF28 PSD+DEPTH+OC+BD+CACO3
+CEC

401 0.926 0.285 169 0.925 0.185 – abc PTF02 –

PTF29 PSD+DEPTH+OC+BD+PH_H2O

+CEC

516 0.932 0.301 169 0.921 0.193 – bc PTF02 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

401 0.931 0.278 169 0.887 0.250 – bc PTF02 PTF17

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

405 0.914 0.298 169 0.912 0.207 – bc PTF05 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

401 0.921 0.292 169 0.916 0.201 – bc PTF02 PTF17

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.

tantly bulk density among the predictors is visible when mea-
sured water contents are greater than 0.50 cm3 cm−3. Those
high water content values are characteristic when the soil
is close to saturation, thus indirect information about the
structure is needed for more accurate predictions of those
water content values. Parametric PTFs underestimate water

content near saturation and between −200 and −15 000 cm
matric potential head (Fig. S18). Overestimation occurs be-
tween −10 and −50 cm matric potential head and above
16 000 cm matric potential head. When chemical soil proper-
ties are included, the degree of underestimation decreases be-
tween−200 and−15 000 cm matric potential head, but over-
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Table 7. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the van
Genuchten model to describe soil moisture retention curve (VG). N : number of samples, RMSE: root mean square error (cm3 cm−3), and
R2: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured
PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 4669 0.055 0.846 1591 0.068 0.776 a a PTF01 –
PTF02 PSD+DEPTH+OC 3708 0.047 0.887 1591 0.060 0.826 b c PTF02 PTF19
PTF03 PSD+DEPTH+BD 4593 0.041 0.913 1591 0.056 0.846 c hi PTF03 –
PTF04 PSD+DEPTH+CACO3 1671 0.039 0.911 288 0.052 0.852 – d PTF04 –
PTF05 PSD+DEPTH+PH_H2O 1897 0.045 0.894 288 0.055 0.834 – b PTF05 –
PTF06 PSD+DEPTH+CEC 1488 0.044 0.886 288 0.054 0.839 – d PTF06 –
PTF07 PSD+DEPTH+OC+BD 3695 0.037 0.933 1591 0.054 0.859 d fg PTF07 PTF21
PTF08 PSD+DEPTH+OC+CACO3 1589 0.036 0.924 288 0.048 0.871 – f PTF08 –
PTF09 PSD+DEPTH+OC+PH_H2O 1663 0.039 0.922 288 0.050 0.865 – gh PTF09 –
PTF10 PSD+DEPTH+OC+CEC 1293 0.036 0.920 288 0.051 0.858 – fg PTF10 –
PTF11 PSD+DEPTH+BD+CACO3 1670 0.034 0.934 288 0.043 0.900 – mn PTF11 –
PTF12 PSD+DEPTH+BD+PH_H2O 1847 0.038 0.926 288 0.044 0.892 – l PTF12 –
PTF13 PSD+DEPTH+BD+CEC 1437 0.039 0.908 288 0.044 0.892 – lm PTF13 –
PTF14 PSD+DEPTH+CACO3

+PH_H2O
1264 0.037 0.928 288 0.052 0.854 – e PTF14 –

PTF15 PSD+DEPTH+CACO3+CEC 758 0.040 0.907 288 0.049 0.870 – ij PTF15 –
PTF16 PSD+DEPTH+PH_H2O+CEC 1188 0.042 0.905 288 0.051 0.858 – f PTF16 –
PTF17 PSD+DEPTH+OC+BD+CACO3 1588 0.031 0.944 288 0.042 0.904 – n PTF11 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 1655 0.033 0.943 288 0.043 0.900 – l PTF12 PTF22
PTF19 PSD+DEPTH+OC+BD+CEC 1284 0.033 0.934 288 0.044 0.892 – lm PTF13 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
1201 0.033 0.943 288 0.048 0.874 – f PTF09 –

PTF21 PSD+DEPTH+OC+CACO3
+CEC

712 0.035 0.932 288 0.047 0.881 – l PTF21 –

PTF22 PSD+DEPTH+OC+PH_H2O
+CEC

996 0.033 0.939 288 0.049 0.869 – i PTF22 –

PTF23 PSD+DEPTH+BD+CACO3
+PH_H2O

1263 0.032 0.948 288 0.044 0.895 – lm PTF11 –

PTF24 PSD+DEPTH+BD+CACO3
+CEC

757 0.033 0.939 288 0.041 0.906 – o PTF24 –

PTF25 PSD+DEPTH+BD+PH_H2O
+CEC

1138 0.038 0.922 288 0.042 0.902 – n PTF25 –

PTF26 PSD+DEPTH+CACO3
+PH_H2O+CEC

717 0.037 0.924 288 0.047 0.878 – jk PTF15 –

PTF27 PSD+DEPTH+OC+BD+CACO3
+PH_H2O

1200 0.030 0.953 288 0.043 0.897 – lm PTF11 –

PTF28 PSD+DEPTH+OC+BD+CACO3
+CEC

711 0.032 0.941 288 0.041 0.906 – o PTF24 –

PTF29 PSD+DEPTH+OC+BD
+PH_H2O+CEC

988 0.032 0.945 288 0.041 0.906 – o PTF29 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

671 0.031 0.946 288 0.047 0.880 – k PTF21 PTF20

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

716 0.031 0.948 288 0.042 0.904 – o PTF24 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

670 0.031 0.948 288 0.042 0.903 – o PTF29 PTF22

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.
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Table 8. Performance of pedotransfer functions (PTFs) by input combination on training and test datasets to predict parameters of the
Mualem–van Genuchten model to describe soil moisture retention and hydraulic conductivity curve (MVG). N : number of samples, RMSE:
root mean square error (log10 (cm d−1)), and R2: determination coefficient, TEST_BASIC: samples with measured PSD, DEPTH, OC and
BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC. Recommended PTFs are highlighted in
bold.

Training set Test set Sign. difference2

Name of Predictor variables1 N RMSE R2 N RMSE R2 TEST_ TEST_ Recom- Pair
PTF in BASIC CHEM mended from
euptfv2 set +set PTF euptfv1

PTF01 PSD+DEPTH 739 0.604 0.804 176 0.708 0.796 a b PTF01 –
PTF02 PSD+DEPTH+OC 407 0.619 0.829 176 0.676 0.814 b jkl PTF02 PTF19
PTF03 PSD+DEPTH+BD 726 0.568 0.824 176 0.688 0.808 a ab PTF01 –
PTF04 PSD+DEPTH+CACO3 273 0.587 0.878 57 0.644 0.863 – ijk PTF04 –
PTF05 PSD+DEPTH+PH_H2O 230 0.578 0.889 57 0.663 0.855 – def PTF05 –
PTF06 PSD+DEPTH+CEC 141 0.672 0.858 57 0.662 0.856 – fghij PTF06 –
PTF07 PSD+DEPTH+OC+BD 404 0.529 0.873 176 0.659 0.824 b a PTF02 PTF19
PTF08 PSD+DEPTH+OC+CACO3 250 0.587 0.880 57 0.699 0.839 – b PTF02 –
PTF09 PSD+DEPTH+OC+PH_H2O 224 0.597 0.882 57 0.686 0.845 – fghi PTF02 –
PTF10 PSD+DEPTH+OC+CEC 138 0.699 0.846 57 0.702 0.837 – cde PTF02 –
PTF11 PSD+DEPTH+BD+CACO3 272 0.542 0.895 57 0.637 0.866 – defg PTF04 –
PTF12 PSD+DEPTH+BD+PH_H2O 229 0.520 0.909 57 0.620 0.873 – jklm PTF12 –
PTF13 PSD+DEPTH+BD+CEC 140 0.644 0.866 57 0.637 0.866 – lm PTF13 –
PTF14 PSD+DEPTH+CACO3+PH_H2O 223 0.539 0.904 57 0.691 0.842 – c PTF04 –
PTF15 PSD+DEPTH+CACO3+CEC 136 0.735 0.830 57 0.684 0.846 – c PTF04 –
PTF16 PSD+DEPTH+PH_H2O+CEC 141 0.666 0.860 57 0.666 0.854 – hijk PTF06 –
PTF17 PSD+DEPTH+OC+BD+CACO3 249 0.526 0.902 57 0.662 0.855 – ab PTF02 –
PTF18 PSD+DEPTH+OC+BD+PH_H2O 223 0.553 0.897 57 0.642 0.864 – klm PTF02 PTF19
PTF19 PSD+DEPTH+OC+BD+CEC 137 0.619 0.876 57 0.676 0.849 – b PTF02 –
PTF20 PSD+DEPTH+OC+CACO3

+PH_H2O
219 0.573 0.891 57 0.661 0.856 – n PTF20 –

PTF21 PSD+DEPTH+OC+CACO3
+CEC

135 0.730 0.831 57 0.653 0.860 – m PTF21 –

PTF22 PSD+DEPTH+OC+PH_H2O
+CEC

138 0.699 0.846 57 0.664 0.855 – lm PTF02 –

PTF23 PSD+DEPTH+BD+CACO3
+PH_H2O

222 0.515 0.911 57 0.639 0.865 – lm PTF23 –

PTF24 PSD+DEPTH+BD+CACO3+CEC 135 0.678 0.852 57 0.656 0.858 – c PTF04 –
PTF25 PSD+DEPTH+BD+PH_H2O

+CEC
140 0.595 0.885 57 0.646 0.862 – ghijk PTF12 –

PTF26 PSD+DEPTH+CACO3
+PH_H2O+CEC

136 0.712 0.841 57 0.669 0.852 – cd PTF04 –

PTF27 PSD+DEPTH+OC+BD
+CACO3+PH_H2O

218 0.524 0.907 57 0.606 0.879 – o PTF27 –

PTF28 PSD+DEPTH+OC+BD
+CACO3+CEC

134 0.656 0.860 57 0.639 0.865 – n PTF28 –

PTF29 PSD+DEPTH+OC+BD
+PH_H2O+CEC

137 0.646 0.865 57 0.638 0.866 – n PTF29 –

PTF30 PSD+DEPTH+OC+CACO3
+PH_H2O+CEC

135 0.726 0.833 57 0.680 0.847 – fghi PTF20 PTF19

PTF31 PSD+DEPTH+BD+CACO3
+PH_H2O+CEC

135 0.679 0.851 57 0.668 0.853 – c PTF12 –

PTF32 PSD+DEPTH+OC+BD+CACO3
+PH_H2O+CEC

134 0.645 0.864 57 0.678 0.848 – efgh PTF27 PTF19

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 Different letters indicate significant differences at the 0.05 level
between the accuracy of the methods based on the squared error; for example performance indicated with the letter c is significantly better than the one noted with letters b and a.
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Figure 5. Scatter plot of the measured versus median predicted water retention values computed with the van Genuchten (VG) model
(PTF01 vs. PTF29, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay,< 2 µm
(mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3); PH_H2O: pH in water (–);
CEC: cation exchange capacity (cmol (+) kg−1); Count: the number of cases in each hexagon.

Figure 6. Scatter plot of the measured versus median predicted hydraulic conductivity values computed with the Mualem–van Genuchten
(MVG) model (PTF01 vs. PTF27, i.e. the worst versus best performing PTF). PSD: particle size distribution (sand, 50–2000 µm; silt, 2–
50 µm; clay, < 2 µm (mass %)); DEPTH_M: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk density (g cm−3);
CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); Count: the number of cases in each hexagon.

estimation increases between −5 and −10 cm with around
0.02 cm3 cm−3.

3.3.2 Hydraulic conductivity curve

OC, CACO3, PH_H2O and CEC significantly improves the
prediction of HCC when added to PSD and DEPTH. Adding
BD next to PSD and DEPTH does not improve the predic-
tions (Table 8, Figs. S19, S20). If PSD, DEPTH and OC
are used as predictors, further addition of BD or CACO3 or
PH_H2O or CEC does not significantly improve the perfor-
mance of the PTFs. However, adding CaCO3 and CEC or
PH_H2O significantly improve the prediction. The perfor-
mance of the worst and the best performing PTF is shown
on Fig. 6. The PTF with only PSD and DEPTH underesti-
mate hydraulic conductivity values smaller than 0.01 cm d−1.
When OC, BD, PH_H2O and CEC are included, the under-

estimation decreases. This could be explained by the fact that
these predictors contain indirect information on soil particle
surface area and surface characteristics, which are some of
the governing properties of low hydraulic conductivities.

When soil chemical properties are not used as predictors,
hydraulic conductivity is underestimated close to saturation
and at matric potential heads smaller than −500 cm; overes-
timation occurs between −10 and −500 cm matric potential
head (Fig. S21). If chemical properties are also considered,
hydraulic conductivity is (i) underestimated at matric poten-
tial head smaller than −5000 cm, and (ii) overestimated be-
tween−5 and−5000 cm. With added information on chemi-
cal properties, the degree of underprediction decreases close
to saturation and at the very dry end of the hydraulic con-
ductivity curve. An increase in prediction performance for
values lower than 0.1 cm d−1 is visible also on Fig. 6.
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Figure 7. Relative variable importance computed with the random forest algorithm for the prediction of parameters of the van Genuchten and
Mualem–van Genuchten models based on PTF32. θr: residual water content (cm3 cm−3); θs: saturated water content (cm3 cm−3); α (cm−1),
n (–): shape parameters;K0: the hydraulic conductivity acting as a matching point at saturation (cm d−1); L: shape parameter related to pore
tortuosity (–); USSILT: silt content (2–50 µm (mass %)); USSAND: sand content (50–2000 µm (mass %)); USCLAY: clay content (< 2 µm
(mass %)); PH_H2O: pH in water (–); OC: organic carbon content (mass %); DEPTH_M: mean soil depth (cm); OC: organic carbon content
(mass %); CEC: cation exchange capacity (cmol (+) kg−1); >CACO3: calcium carbonate content (mass %); BD: bulk density (g cm−3).

Samples with measurements of the HCC at pressure heads
<−1000 cm are less frequent and are not as numerous
within a dataset of a single sample, if it was measured. Since
the dataset of estimated VG model parameters was identical
in this study and in Tóth et al. (2015), differences between
the two studies of the unsaturated HCC are related to the PTF
methods involved. However, at pressure heads <−1000 cm,
the HCC is dominated by non-capillary conductivity (Streck
and Weber, 2020; Weber et al., 2019), which is not included
in the MVG model. The considerable data mismatch observ-
able for the dry range (Fig. 6) can only be overcome by a dif-
ferent soil hydraulic property model and by a different PTF,
because of compensatory effects in the MVG. With this, we
mean that better data descriptions in the dry end will lead to a
larger mismatch in the wet end, as a consequence of the rigid
model structure in the MVG model, which only accounts for
capillary storage and conductivity. For better data description
at<−1000 cm other more comprehensive models need to be
adopted (Weber et al., 2020a).

3.4 Comparison of point and parameter predictions

We compared the performance of the best point prediction
methods (Tables 2–5) with the best parameter estimations
(Table 7) on the test sets. In 5 out of 20 cases, point predic-
tions are significantly more accurate and for further 8 cases,
RMSE was smaller. In all other cases, we have no signifi-
cant difference between point and parametric PTFs (Table 9).
The reason for higher RMSE in parameter estimation can be
that the MVG model does not always adequately describe the
measured MRC data (Weber et al., 2019). Therefore, when

THS, FC, FC_2 and WP are computed with parameter es-
timation those are not only affected by the uncertainty of
the prediction of VG parameters but by the goodness of VG
model fit as well. We found similar results in the case of eu-
ptfv1 (Tóth et al., 2015). Tomasella et al. (2003) and Børge-
sen and Schaap (2005) had comparable findings regarding
the performance of point and parametric PTFs. For THS,
point estimation performed better than parameter estimation.
When the moisture retention curve is not needed, but only
THS and/or FC/FC_2 and/or WP, we recommend computing
those with the point PTFs, more detailed explanation on it is
included in Tóth et al. (2015).

3.5 Comparison of euptfv1 and v2

The euptfv2 performs significantly better than euptfv1 in 14
out of 19 cases. In the remaining 5 cases, there is no sig-
nificant difference (Table 10). Predictions of FC and MRC
improve in all cases. The most important reason for it can be
that the interaction between the target variable and the pre-
dictors is more complex for the cases of predicting FC or
VG parameters, which can be untangled using random for-
est. This may provide a reason the random forest algorithm
performed significantly better than the PTFs derived with lin-
ear regression or a simple regression tree. For THS, WP, KS,
and MVG only those PTFs did not improve significantly, for
which comparisons on the TEST_CHEM+ set were possible
– which includes a reduced number of samples. The RMSE
of THS prediction was somewhat lower for euptfv1 than for
euptfv2, but the difference was not significant. It could be due
to the close to linear relationship between THS and BD and
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Table 9. The results of comparing the performance of parametric and point pedotransfer functions (PTFs) on the test sets of EU-HYDI to
predict saturated water content (THS), water content at −100 cm matric potential head (FC_2), water content at −330 cm matric potential
head (FC), water content at wilting point (WP). Rows in italic indicate cases where there was no significant difference between the two PTFs.

Predicted Available predictor variables1 Performance of Performance of Number of
soil hydraulic parameter estimation point estimation samples in
property (MRC with VG)2 test dataset

Recommended
PTF number

RMSE Recommended
PTF number

RMSE

THS PSD + DEPTH_M + OC PTF02 a 0.065 PTF02 a 0.061 216
(cm3 cm−3) PSD+DEPTH_M+OC+BD PTF07a 0.041 PTF03b 0.032 216

PSD+DEPTH_M+OC+BD+PH_H2O PTF12a 0.028 PTF03b 0.022 63
PSD+DEPTH_M+OC+CACO3
+PH_H2O+CEC

PTF21 a 0.051 PTF02 a 0.060 63

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O+CEC

PTF29 a 0.028 PTF03 a 0.022 63

FC_2 PSD+DEPTH_M+OC PTF02a 0.057 PTF02b 0.054 424
(cm3 cm−3) PSD + DEPTH_M + OC + BD PTF07 a 0.051 PTF03 a 0.051 424

PSD + DEPTH_M + OC + BD + PH_H2O PTF12 a 0.043 PTF07 a 0.049 68
PSD+DEPTH_M+OC+CACO3
+PH_H2O+CEC

PTF21 a 0.043 PTF09 a 0.047 68

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O+CEC

PTF29 a 0.036 PTF18 a 0.043 68

FC PSD + DEPTH_M + OC PTF02 a 0.057 PTF02 a 0.048 319
(cm3 cm−3) PSD + DEPTH_M + OC + BD PTF07 a 0.056 PTF02 a 0.048 319

PSD + DEPTH_M + OC + BD + PH_H2O PTF12 a 0.047 PTF02 a 0.047 129
PSD+DEPTH_M+OC+CACO3
+PH_H2O+CEC

PTF21 a 0.046 PTF08 a 0.045 129

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O+CEC

PTF29 a 0.041 PTF07 a 0.046 129

WP PSD+DEPTH_M+OC PTF02a 0.064 PTF02b 0.047 429
(cm3 cm−3) PSD+DEPTH_M+OC+BD PTF07a 0.061 PTF02b 0.047 429

PSD + DEPTH_M + OC + BD + PH_H2O PTF12 a 0.053 PTF07 a 0.045 91
PSD+DEPTH_M+OC+CACO3
+PH_H2O+CEC

PTF21 a 0.051 PTF07 a 0.045 91

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O+CEC

PTF29 a 0.054 PTF09 a 0.039 91

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk
density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2 MRC: moisture retention
curve; VG: parameters of the van Genuchten model. Different letters in a row indicate significant differences at the 0.05 level between the accuracy of the methods based on
the squared error; for example performance indicated with the letter b is significantly better than the one noted with letter a. RMSE: root mean squared error.

high relative importance of BD in THS prediction (84 %).
This way their interaction can be efficiently described with
the linear regression which is capable to extrapolate as well.
Extrapolation with the random forest algorithm is not possi-
ble outside the training data, which can limit its performance.
The general improvement of the PTFs in euptfv2 is three-
fold, the better performance is due to (i) using random forest
instead of single regression tree or linear regression, (ii) in-
cluding more detailed information on soil sampling depth,
not only distinguishing topsoils and subsoils and (iii) provid-
ing information on prediction uncertainty.

We recommend the use of euptfv2 instead of euptfv1
if continuous soil properties are available. If only texture
classes – i.e. no particle size distribution – are available, class
PTFs of euptfv1 can be used, that is PTF18 for modified FAO
texture classes and PTF19 for USDA texture classes.

4 Practical guidance on how to use the PTFs

The minimum input requirements for all PTFs are sand, silt
and clay content, and soil depth. Soil depth is defined as the
mean sampling depth, e.g. if PSD, BD and OC are provided
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Table 10. The results of comparing the performance of euptfv1 and euptfv2 on the test sets of EU-HYDI to predict soil hydraulic properties.
Rows in italic indicate cases where there was no significant difference between the two PTFs.

Performance2

Predicted soil euptfv1 euptfv2 Name of test set Number of samples

hydraulic property1 Name of PTF RMSE Name of PTF RMSE in test datasets

THS PTF04a 0.063 PTF02b 0.056 TEST_BASIC 1274
(cm3 cm−3) PTF05a 0.034 PTF03b 0.031 TEST_BASIC 1274

PTF06a 0.020 PTF03a 0.024 TEST_CHEM+ 156

FC PTF09a 0.054 PTF02b 0.050 TEST_BASIC 801
(cm3 cm−3) PTF09a 0.054 PTF07b 0.048 TEST_BASIC 801

PTF09a 0.058 PTF08b 0.053 TEST_CHEM+ 280

WP PTF12a 0.048 PTF02b 0.046 TEST_BASIC 2088
(cm3 cm−3) PTF12a 0.048 PTF07b 0.044 TEST_BASIC 2088

PTF12a 0.043 PTF09a 0.041 TEST_CHEM+ 294

KS PTF16a 1.06 PTF02b 0.95 TEST_BASIC 1117
(log10 cm d−1) PTF17a 1.00 PTF02a 0.91 TEST_CHEM+ 169

VG PTF19a 0.068 PTF02b 0.060 TEST_BASIC 1591
(cm3 cm−3) PTF21a 0.064 PTF07b 0.054 TEST_BASIC 1591

PTF22a 0.046 PTF12b 0.044 TEST_CHEM+ 288
PTF20a 0.054 PTF21b 0.047 TEST_CHEM+ 288
PTF22a 0.046 PTF29b 0.041 TEST_CHEM+ 288

MVG PTF19a 0.77 PTF02b 0.68 TEST_BASIC 176
(log10 cm d−1) PTF19a 0.66 PTF20a 0.66 TEST_CHEM+ 57

PTF19a 0.66 PTF27a 0.61 TEST_CHEM+ 57

1 THS: saturated water content (pF 0); FC_2: water content at −100 cm matric potential head (pF 2.0); FC: water content at −330 cm matric potential
head (pF 2.5); WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van Genuchten model; MVG:
parameters of the Mualem – van Genuchten model. 2 Different letters in a row indicate significant differences at the 0.05 level between the accuracy of the
methods based on the squared error;for example performance indicated with the letter b is significantly better than the one noted with letter a. RMSE: root
mean squared error; TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples with measured PSD, DEPTH, OC, BD,
CACO3, PH_H2O and CEC; N : number of samples.

for a soil sample from a depth of 0–20 cm, then the soil depth
input (DEPTH) to the prediction algorithm is set to 10 cm.

If only soil texture information is available for the predic-
tions, the class PTFs from euptfv1 could be applied (Tóth et
al., 2015).

We emphasize that:

1. the units of input soil properties (predictors) have to be
the same as indicated in the text and that the sand, silt,
and clay are defined by the following particle diame-
ters: clay< 2 µm, silt between 2 and 50 µm, and sand
between 50 and 2000 µm,

2. when only specific water content values at saturation,
field capacity or wilting point are required (i.e. THS,
FC_2, FC, WP) it is recommended to use point PTFs.
This is also true for the prediction of KS,

3. for AWC, the most accurate way is to predict FC and
WP with the point predictions, first, and then compute
AWC using Eq. (1), and similarly for AWC_2 using
FC_2 and Eq. (2),

4. it is recommended to do the VG prediction if only mois-
ture retention curve parameters are needed, and

5. the MVG prediction when both moisture retention and
hydraulic conductivity parameters are required.

The VG algorithms predict the following van Genuchten
model parameters: the residual water content θr (cm3 cm−3),
the saturated water content θs (cm3 cm−3), and shape param-
eters α (cm−1) and n (–). Parameter m (–) is provided based
on m= 1− 1/n (van Genuchten, 1980), and for the MVG
algorithms, the two additional parameters: K0 (cm d−1) the
hydraulic conductivity acting as a matching point at satura-
tion and L (–), a shape parameter related to pore tortuosity.

Table 11 shows the recommended PTFs for each predicted
soil hydraulic property and available predictor variables. The
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Table 11. List of recommended pedotransfer functions (PTFs) by predicted soil hydraulic property and available predictor variables.

Predictor variables1 Recommended PTFs2

THS FC_2 FC WP AWC_2 AWC KS VG MVG

PSD+DEPTH_M PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01
PSD+DEPTH_M+OC PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF02 PTF02
PSD+DEPTH_M+BD PTF03 PTF03 PTF01 PTF01 PTF03 PTF01 PTF01 PTF03 PTF01
PSD+DEPTH_M+CACO3 PTF04 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF04 PTF04
PSD+DEPTH_M+PH_H2O PTF05 PTF01 PTF01 PTF01 PTF01 PTF01 PTF01 PTF05 PTF05
PSD+DEPTH_M+CEC PTF01 PTF01 PTF06 PTF01 PTF01 PTF01 PTF01 PTF06 PTF06
PSD+DEPTH_M+OC+BD PTF03 PTF03 PTF02 PTF02 PTF03 PTF03 PTF02 PTF07 PTF02
PSD+DEPTH_M+OC+CACO3 PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF08 PTF02
PSD+DEPTH_M+OC+PH_H2O PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF09 PTF02
PSD+DEPTH_M+OC+CEC PTF02 PTF06 PTF02 PTF02 PTF02 PTF01 PTF02 PTF10 PTF02
PSD+DEPTH_M+BD+CACO3 PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF01 PTF11 PTF04
PSD+DEPTH_M+BD+PH_H2O PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF05 PTF12 PTF12
PSD+DEPTH_M+BD+CEC PTF03 PTF13 PTF06 PTF01 PTF03 PTF01 PTF01 PTF13 PTF13
PSD+DEPTH_M+CACO3+PH_H2O PTF05 PTF05 PTF04 PTF01 PTF01 PTF01 PTF05 PTF14 PTF04
PSD+DEPTH_M+CACO3+CEC PTF04 PTF04 PTF04 PTF01 PTF01 PTF01 PTF01 PTF15 PTF04
PSD+DEPTH_M+PH_H2O+CEC PTF05 PTF05 PTF06 PTF01 PTF01 PTF01 PTF01 PTF16 PTF06
PSD+DEPTH_M+OC+BD+CACO3 PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF11 PTF02
PSD+DEPTH_M+OC+BD+PH_H2O PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF12 PTF02
PSD+DEPTH_M+OC+BD+CEC PTF03 PTF13 PTF07 PTF07 PTF03 PTF03 PTF02 PTF13 PTF02
PSD+DEPTH_M+OC+CACO3
+PH_H2O

PTF02 PTF02 PTF02 PTF02 PTF02 PTF01 PTF02 PTF09 PTF20

PSD+DEPTH_M+OC+CACO3+CEC PTF02 PTF08 PTF04 PTF08 PTF02 PTF01 PTF02 PTF21 PTF21
PSD+DEPTH_M+OC+PH_H2O+CEC PTF02 PTF09 PTF09 PTF02 PTF02 PTF01 PTF02 PTF22 PTF02
PSD+DEPTH_M+BD+CACO3
+PH_H2O

PTF03 PTF03 PTF03 PTF01 PTF03 PTF01 PTF05 PTF11 PTF23

PSD+DEPTH_M+BD+CACO3+CEC PTF03 PTF11 PTF11 PTF01 PTF03 PTF01 PTF01 PTF24 PTF04
PSD+DEPTH_M+BD+PH_H2O
+CEC

PTF03 PTF12 PTF11 PTF01 PTF03 PTF01 PTF05 PTF25 PTF12

PSD+DEPTH_M+CACO3+PH_H2O
+CEC

PTF05 PTF05 PTF14 PTF05 PTF01 PTF01 PTF05 PTF15 PTF04

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O

PTF03 PTF07 PTF02 PTF07 PTF03 PTF03 PTF02 PTF11 PTF27

PSD+DEPTH_M+OC+BD+CACO3
+CEC

PTF03 PTF11 PTF07 PTF17 PTF03 PTF03 PTF02 PTF24 PTF28

PSD+DEPTH_M+OC+BD+PH_H2O
+CEC

PTF03 PTF12 PTF07 PTF07 PTF03 PTF03 PTF02 PTF29 PTF29

PSD+DEPTH_M+OC+CACO3
+PH_H2O+CEC

PTF02 PTF09 PTF08 PTF02 PTF02 PTF01 PTF02 PTF21 PTF20

PSD+DEPTH_M+BD+CACO3
+PH_H2O+CEC

PTF03 PTF11 PTF06 PTF05 PTF03 PTF01 PTF05 PTF24 PTF12

PSD+DEPTH_M+OC+BD+CACO3
+PH_H2O+CEC

PTF03 PTF18 PTF07 PTF09 PTF03 PTF03 PTF02 PTF29 PTF27

1 PSD: particle size distribution (sand, 50–2000 µm; silt, 2–50 µm; clay, < 2 µm (mass %)); DEPTH: mean soil depth (cm); OC: organic carbon content (mass %); BD: bulk
density (g cm−3); CACO3: calcium carbonate content (mass %); PH_H2O: pH in water (–); CEC: cation exchange capacity (cmol (+) kg−1). 2THS: saturated water content
(pF 0); FC_2: water content at -100 cm matric potential head (pF 2.0); FC: water content at -330 cm matric potential head (pF 2.5); AWC_2: plant available water content
based on FC_2; AWC: plant available water content based on FC; WP: water content at wilting point (pF 4.2); KS: saturated hydraulic conductivity; VG: parameters of the van
Genuchten model; MVG: parameters of the Mualem – van Genuchten model; TEST_BASIC: samples with measured PSD, DEPTH, OC and BD; TEST_CHEM+: samples
with measured PSD, DEPTH, OC, BD, CACO3, PH_H2O and CEC.

users need to check which basic soil properties are available
for the predictions, then look in Table 11 which PTF is rec-
ommended to use.

The algorithms have been implemented in a web interface
to facilitate the use of the PTFs, where the PTFs’ selection
is automated based on soil properties available for the pre-
dictions and required soil hydraulic property. The Code and
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data availability section provides information on how to ac-
cess this resource.

5 Conclusions

The updated EU-PTFs – euptfv2 – perform significantly bet-
ter than euptfv1 and are applicable for 32 predictor variables
combinations. Uncertainties of the predicted soil hydraulic
properties and model parameters can be computed. These un-
certainties are, without further discrimination, related to the
considered input data, predictors and the applied algorithm.
The euptfv2 includes transfer functions to compute soil water
content at saturation (0 cm matric potential head), field ca-
pacity (both −100 and −330 cm matric potential head) and
wilting point (−15 000 cm matric potential head), plant avail-
able water content computed with field capacity at−100 and
−330 cm matric potential head, saturated hydraulic conduc-
tivity, and Mualem–van Genuchten parameters of the mois-
ture retention and hydraulic conductivity curves. For analy-
ses of the impact as well as the significance of the uncer-
tainties on the predicted soil hydraulic properties and model
parameters, further studies are required.

Code and data availability. The current version of euptfv2 is avail-
able from a user friendly web interface: https://ptfinterface.
rissac.hu (last access: 4 January 2021, Szabó et al., 2019b) un-
der the Creative Commons Attribution-NonCommercial 3.0 Un-
ported License. The exact version of the model used to pro-
duce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/ZENODO.3759442, Szabó et al., 2020), as
are the R scripts to develop the predictions and the derived pedo-
transfer functions – in RData format – presented in this paper. The
training data set cannot be made publicly available due to legal re-
strictions of the EU-HYDI dataset, thus only a test sample is pro-
vided along with the model code. The R files are complied into an
R package to use the pedotransfer functions, archived on Zenodo
(https://doi.org/10.5281/zenodo.4281045, Weber et al., 2020b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-151-2021-supplement.
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