Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1469-2021
https://doi.org/10.5194/gmd-14-1469-2021
Model description paper
 | 
15 Mar 2021
Model description paper |  | 15 Mar 2021

An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0

Michael Weger, Oswald Knoth, and Bernd Heinold

Related authors

Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling
Michael Weger and Bernd Heinold
Atmos. Chem. Phys., 23, 13769–13790, https://doi.org/10.5194/acp-23-13769-2023,https://doi.org/10.5194/acp-23-13769-2023, 2023
Short summary
On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022,https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018,https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025,https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025,https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025,https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary

Cited articles

Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a
Baik, J.-J., Park, S.-B., and Kim, J.-J.: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model, J. Appl. Meteorol. Clim., 48, 1667–1681, https://doi.org/10.1175/2009JAMC2066.1, 2009. a
Baumann-Stanzer, K., Andronopoulos, S., Armand, P., Berbekar, E., Efthimiou, G., Fuka, V., Gariazzo, C., Gašparac, G., Harms, F., Hellsten, A., Jurcacova, K., Petrov, A., Rákai, A., Stenzel, S., Tavares, R., Tinarelli, G., and Trini Castelli, S.: COST ES1006 Model evaluation case studies: Approach and results, available at: http://www.elizas.eu/images/Documents/Model Evaluation Case Studies_web.pdf (last access: 2 March 2021), 2015. a
Benavides, J., Snyder, M., Guevara, M., Soret, A., Pérez García-Pando, C., Amato, F., Querol, X., and Jorba, O.: CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain), Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, 2019. a
Birmili, W., Rehn, J., Vogel, A., Boehlke, C., Weber, K., and Rasch, F.: Micro-scale variability of urban particle number and mass concentrations in Leipzig, Germany, Meteorol. Z., 22, 155–165, https://doi.org/10.1127/0941-2948/2013/0394, 2013. a
Short summary
A new numerical air-quality transport model for cities is presented, in which buildings are described diffusively. The used diffusive-obstacles approach helps to reduce the computational costs for high-resolution simulations as the grid spacing can be more coarse than in traditional approaches. The research which led to this model development was primarily motivated by the need for a computationally feasible downscaling tool for urban wind and pollution fields from meteorological model output.