Articles | Volume 14, issue 3
Geosci. Model Dev., 14, 1469–1492, 2021
https://doi.org/10.5194/gmd-14-1469-2021
Geosci. Model Dev., 14, 1469–1492, 2021
https://doi.org/10.5194/gmd-14-1469-2021
Model description paper
15 Mar 2021
Model description paper | 15 Mar 2021

An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0

Michael Weger et al.

Related authors

On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022,https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018,https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary

Related subject area

Atmospheric sciences
A daily highest air temperature estimation method and spatial–temporal changes analysis of high temperature in China from 1979 to 2018
Ping Wang, Kebiao Mao, Fei Meng, Zhihao Qin, Shu Fang, and Sayed M. Bateni
Geosci. Model Dev., 15, 6059–6083, https://doi.org/10.5194/gmd-15-6059-2022,https://doi.org/10.5194/gmd-15-6059-2022, 2022
Short summary
TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone
Vanessa Simone Rieger and Volker Grewe
Geosci. Model Dev., 15, 5883–5903, https://doi.org/10.5194/gmd-15-5883-2022,https://doi.org/10.5194/gmd-15-5883-2022, 2022
Short summary
A description of the first open-source community release of MISTRA-v9.0: a 0D/1D atmospheric boundary layer chemistry model
Josué Bock, Jan Kaiser, Max Thomas, Andreas Bott, and Roland von Glasow
Geosci. Model Dev., 15, 5807–5828, https://doi.org/10.5194/gmd-15-5807-2022,https://doi.org/10.5194/gmd-15-5807-2022, 2022
Short summary
Integrated Methane Inversion (IMI 1.0): a user-friendly, cloud-based facility for inferring high-resolution methane emissions from TROPOMI satellite observations
Daniel J. Varon, Daniel J. Jacob, Melissa Sulprizio, Lucas A. Estrada, William B. Downs, Lu Shen, Sarah E. Hancock, Hannah Nesser, Zhen Qu, Elise Penn, Zichong Chen, Xiao Lu, Alba Lorente, Ashutosh Tewari, and Cynthia A. Randles
Geosci. Model Dev., 15, 5787–5805, https://doi.org/10.5194/gmd-15-5787-2022,https://doi.org/10.5194/gmd-15-5787-2022, 2022
Short summary
Computationally efficient methods for large-scale atmospheric inverse modeling
Taewon Cho, Julianne Chung, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 15, 5547–5565, https://doi.org/10.5194/gmd-15-5547-2022,https://doi.org/10.5194/gmd-15-5547-2022, 2022
Short summary

Cited articles

Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a
Baik, J.-J., Park, S.-B., and Kim, J.-J.: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model, J. Appl. Meteorol. Clim., 48, 1667–1681, https://doi.org/10.1175/2009JAMC2066.1, 2009. a
Baumann-Stanzer, K., Andronopoulos, S., Armand, P., Berbekar, E., Efthimiou, G., Fuka, V., Gariazzo, C., Gašparac, G., Harms, F., Hellsten, A., Jurcacova, K., Petrov, A., Rákai, A., Stenzel, S., Tavares, R., Tinarelli, G., and Trini Castelli, S.: COST ES1006 Model evaluation case studies: Approach and results, available at: http://www.elizas.eu/images/Documents/Model Evaluation Case Studies_web.pdf (last access: 2 March 2021), 2015. a
Benavides, J., Snyder, M., Guevara, M., Soret, A., Pérez García-Pando, C., Amato, F., Querol, X., and Jorba, O.: CALIOPE-Urban v1.0: coupling R-LINE with a mesoscale air quality modelling system for urban air quality forecasts over Barcelona city (Spain), Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, 2019. a
Birmili, W., Rehn, J., Vogel, A., Boehlke, C., Weber, K., and Rasch, F.: Micro-scale variability of urban particle number and mass concentrations in Leipzig, Germany, Meteorol. Z., 22, 155–165, https://doi.org/10.1127/0941-2948/2013/0394, 2013. a
Short summary
A new numerical air-quality transport model for cities is presented, in which buildings are described diffusively. The used diffusive-obstacles approach helps to reduce the computational costs for high-resolution simulations as the grid spacing can be more coarse than in traditional approaches. The research which led to this model development was primarily motivated by the need for a computationally feasible downscaling tool for urban wind and pollution fields from meteorological model output.