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Abstract. The ability to achieve high spatial resolutions
is an important feature for numerical models to accurately
represent the large spatial variability of urban air pollu-
tion. On the one hand, the well-established mesoscale chem-
istry transport models have their obvious shortcomings due
to the extensive use of physical parameterizations. On the
other hand, obstacle-resolving computational fluid dynamics
(CFD) models, although accurate, are still often too compu-
tationally intensive to be applied regularly for entire cities.
The major reason for the inflated computational costs is the
required horizontal resolution to meaningfully apply obsta-
cle discretization, which is mostly based on boundary-fitted
grids, e.g., the marker-and-cell method. In this paper, we
present the new City-scale AIR dispersion model with DIf-
fuse Obstacles (CAIRDIO v1.0), in which the diffuse in-
terface method, simplified for non-moving obstacles, is in-
corporated into the governing equations for incompressible
large-eddy simulations. While the diffuse interface method
is widely used in two-phase modeling, this method has
not been used in urban boundary-layer modeling so far. It
allows us to consistently represent buildings over a wide
range of spatial resolutions, including grid spacings equal
to or larger than typical building sizes. This way, the gray
zone between obstacle-resolving microscale simulations and
mesoscale simulations can be addressed. Orographic effects
can be included by using terrain-following coordinates. The
dynamic core is compared against a standard quality-assured
wind-tunnel dataset for dispersion-model evaluation. It is
shown that the model successfully reproduces dispersion pat-
terns within a complex city morphology across a wide range
of spatial resolutions tested. As a result of the diffuse obstacle
approach, the accuracy test is also passed at a horizontal grid
spacing of 40 m. Although individual flow features within in-

dividual street canyons are not resolved at the coarse-grid
spacing, the building effect on the dispersion of the air pol-
lution plume is preserved at a larger scale. Therefore, a very
promising application of the CAIRDIO model lies in the re-
alization of computationally feasible yet accurate air-quality
simulations for entire cities.

1 Introduction

The state of the art in urban-air-quality modeling now al-
most routinely encompasses the scales at which processes
governing the atmospheric dispersion within the urban plan-
etary boundary layer (PBL) are explicitly represented (Bena-
vides et al., 2019; Croitoru and Nastase, 2018; Kadaverugu
et al., 2019). The reasons for this increase in physical de-
tail are manifold. On the one hand, even though PBL mix-
ing processes are often parameterized to a large extent, the
parameterizations themselves must rely on a sound physi-
cal basis, for which detailed large-eddy simulations (LESs)
can be consulted (Noh and Raasch, 2003; Kanda et al.,
2013). Direct benefits of more detailed numerical simula-
tions include an increased ability to produce more repre-
sentative air-quality forecasts for individual locations (Car-
lino et al., 2016) and the provision of high-resolution four-
dimensional data for research purposes, e.g., source attri-
bution (Fernández et al., 2019) and exposure risk assess-
ment (Chang, 2016). Exposure-relevant air pollution con-
centrations at pedestrian level are subjected to a consider-
able and also complex spatiotemporal variability, as they
are not only influenced by the relative location of pollu-
tion sources but also very importantly by the urban mor-
phology and associated meteorological conditions (Birmili
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et al., 2013; Paas et al., 2016; Harrison, 2018). For an ac-
curate simulation, it is thus not only key to explicitly repre-
sent the urban canopy features but also to consider the pre-
vailing mesoscale meteorological conditions. Depending on
the level of physical detail, a trade-off in the use of high-
resolution numerical simulations is often their exclusive ap-
plicability in a limited area, which can be very restrictive.
Hence, an active topic of research is dedicated to improve
the numerical efficiency of high-resolution modeling tools
and their incorporation into a larger modeling framework
(Baik et al., 2009; Jensen et al., 2017; Kurppa et al., 2020).
Commonly used multiscale approaches consist of nested do-
mains and involve different types of models designed for
a specific scale range. To address the global and regional
scales, the use of chemistry transport models (CTMs) in
combination with numerical weather prediction (NWP) mod-
els is a well-established practice. Examples of those cou-
pled model systems include the Integrated Forecasting Sys-
tem with chemistry (C-IFS; Flemming et al., 2015), the
Weather Research and Forecasting model with chemistry
(WRF-Chem; Grell et al., 2005), the Community Multi-
scale Air Quality model (CMAQ; Appel et al., 2017), the
ICOsahedral Nonhydrostatic model with Aerosols and Reac-
tive Trace gases (ICON-ART; Rieger et al., 2015), and the
Consortium for Small-scale Modeling Multi-Scale Chem-
istry Aerosol Transport model (COSMO-MUSCAT; Wolke
et al., 2004, 2012). In all of these models, subgrid-scale ef-
fects of temperature and moisture, as well as PBL dynam-
ics, are parameterized. The influence of the urban canopy on
the PBL in NWP models can be considered through sophis-
ticated canopy parameterizations (Martilli et al., 2002; Schu-
bert et al., 2012). The improvements of these so-called ur-
banized NWPs are substantially reflected in the modeled pol-
lutant concentrations (Kim et al., 2015; Wang et al., 2019).
Nevertheless, as the model domain does not allow for an ex-
plicit representation of buildings, the pollutants emitted at
street level are diluted over the entire grid cell, which can
considerably deviate from real conditions, where a large part
of the physical volume may be impervious. As a result, pol-
lutant concentrations modeled using NWP-based approaches
are more representative of the urban background (Korhonen
et al., 2019). Another practical limit to resolution and accu-
racy of NWP models arises from the use of parameterizations
themselves. Using WRF, Haupt et al. (2019) observed that
for horizontal grid spacings below the typical PBL height,
numerical results can become spurious. Based on their find-
ings, they recommend not to apply NWPs on the subkilome-
ter scale without careful replacement of the used parameteri-
zations. In PBL meteorology, the microscale seamlessly fol-
lows the lower limit of the mesoscale (super-kilometer range)
(Stull, 1988; Rakai and Gergely, 2013). However, adopting
the modeling perspective, there is a clear segregation of mi-
croscale and mesoscale. While the latter is constrained at the
lower end of the resolution by the extensive use of parame-
terizations, attempting to model PBL processes directly with

microscale approaches requires sufficiently fine grid spac-
ings. The landscape of microscale models is diverse (Fallah-
Shorshani et al., 2017; Brown, 2014; Hanna et al., 2006)
and it reflects the difficulty of finding a compromise be-
tween computational resources and accuracy. Computational
fluid dynamics (CFD) models can be seen as the microscale
pedants to NWPs. Among them, LES approaches are the
most accurate but expensive ones. LES models resolve the
turbulent spectra up to the filter cut-off size (often equivalent
to the grid size) and rely on simplistic subscale parameteri-
zations only (e.g., Maronga et al., 2019). These two different
approaches (extensive parameterization vs. explicit represen-
tation) are difficult to merge at the bridging scale range (few
tens of meters to 1 km), for which reason Haupt et al. (2019)
coined the keyword of “terra-incognita” to refer to the prob-
lem. An exemplary study, in which a LES model was applied
for horizontal resolutions up to above 100 m, is given by Ef-
stathiou et al. (2016). However, their simulations did not in-
clude an urban canopy, whose discretization would obviously
require a much finer grid. In fact, to fully resolve the energy-
dominant eddies within street canyons, a spatial resolution
of 15–20 grid points over a typical obstacle dimension size
is needed (Xie and Castro, 2006). This translates in a grid
spacing of about 1 m for typically sized buildings. The use
of such fine grids for entire city domains is still prohibitively
expensive in LES modeling. For example, Wolf et al. (2020)
used a grid spacing of 10 m in their cutting-edge research
study to simulate air pollutant dispersion in Bergen, Norway,
with the Parallelized Large-Eddy Simulation Model (PALM)
model. While this spatial resolution, according to the argu-
ment above, does not ensure a LES model to be eddy resolv-
ing in every part of the domain, the preference of a physically
based model over the more widely used parameterized mod-
els for this grid size (e.g., plume or street-canyon models)
can nevertheless be a legitimate choice. Resolved physics can
still be maintained outside the densely built urban canopy.
Within the canopy, the dispersion pattern on a larger scale
is mostly shaped by the channeling and blocking effects of
buildings, which can be represented also with coarser grids.

In physical computing, it is well known that only a slight
increase in the grid spacing results in large computational
savings (e.g., models using explicit time integration ideally
perform 16 times faster on the same domain using a grid
with doubled grid spacings in all three dimensions). These
computational savings could in turn be spent in larger phys-
ical domains for more comprehensive yet accurate urban-
air-quality simulations. A key feature that sets the techni-
cal limits to the spatial resolution in urban boundary-layer
modeling is the discretization method used for obstacles.
A class of methods that allow for obstacle geometries not
bound to the grid is the immersed boundary methods, sum-
marized by Mittal and Iaccarino (2005). These are essen-
tially Cartesian methods, but instead of relying on a com-
monly used marker-and-cell method (grid cells are assigned
either to the building interiors or to the atmosphere), they
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represent rigid boundary conditions (e.g., Neumann bound-
ary condition for pressure) on grid-cell faces not coinciding
with the obstacle boundary. Among these methods, the so-
called direct forcing uses the ghost-cell interpolation tech-
nique, where image points from adjacent interior ghost points
are mirrored across the rigid boundary and interpolated us-
ing surrounding fluid nodes. While this method greatly en-
hances the flexibility in the choice of the grid size, it still
suffers from the empirical nature in the selection of the in-
terpolation nodes and the interpolation method itself. On the
other hand, an equivalent boundary forcing can be more rig-
orously deduced from a two-phase flow model (Drew, 1983)
by neglecting the restoring source terms. Treating one of the
phases as an non-deformable solid, Kemm et al. (2020) de-
rived a diffuse interface (DI) model for compressible flu-
ids. One of the main advantages of their approach is the
algorithmic simplicity, as the boundary-forcing term is an-
alytically coupled to the DI, which is advected as a scalar.
In this work, we adopt the basic idea of DI and implement
diffuse obstacle boundaries (DOBs) in our new City-scale
AIR dispersion model with DIffuse Obstacles (CAIRDIO
v1.0), which will be used as a computationally feasible yet
accurate downscaling tool for mesoscale air pollution fields
over urban areas. DOBs allow buildings to be represented
as diffuse features, and thus the flexibility in the choice of
grid resolution can be greatly increased. A DOB is a sim-
plified form of DI resulting from the static boundaries as-
sociated with buildings. A DOB is incorporated in the dis-
crete differential operators by considering the conservation
laws in a finite volume framework. The equations are then
solved with standard methods on a Cartesian grid. To inter-
pret our DOB approach from a physical point of view, it can
be argued that the grid cells are interspersed with a porous
and semi-permeable medium. Their detailed structure is only
of concern insofar as it determines the mass and momentum
budged at the grid level through two different types of in-
terface fields. To the authors’ knowledge, this approach has
not been used for air-quality modeling so far, but very in-
terestingly the concept of permeability finds application in
geological science (Haga, 2011). In contrast to geometry-
aligned discretizations, which preserve a high degree of ac-
curacy near obstacle walls but require high resolutions, this
approach is more suited for the integral aspect of building
shapes and configurations at marginal resolutions. However,
by increasing the grid resolution, the approach seamlessly
transitions to a traditional obstacle-resolving Cartesian ap-
proach, as the interface eventually becomes sharply defined
and imposes Neumann boundary conditions on the pressure.

The paper is organized as follows: Sect. 2 provides a de-
tailed description of the model CAIRDIO, including the spa-
tial discretization method. Section 3 contains numerical tests
to demonstrate the diffuse obstacle discretization, the dy-
namic core, and the parallel scaling capabilities. In Sect. 4,
we present a model-evaluation study by simulating a realis-
tic wind-tunnel dispersion experiment. Finally, in Sect. 5, the

benefits and limitations of the approach are summarized and
concluded with an outlook for potential future applications.

2 Model description

2.1 Basic equations

The physical domain consists of an interspersed, stationary
solid phase representing the buildings and a mobile fluid
phase. The governing equations for the mobile phase are
deduced from a simplified two-phase model by neglecting
restoring forces. In a two-phase model, phase-fraction func-
tions α1, α2 with 0≤ α1 ≤ 1 and α1+α2 = 1 are used to for-
mulate the set of equations of both phases individually. The
equation of motion of an incompressible phase is adopted
from Drew (1983) (Eqs. 41, 45 therein). By setting the inter-
facial force density and surface tension to zero, the simplified
momentum equation of the mobile phase (indicated with α1)
is written as

∂t (α1ρu)=−∇ · (α1ρu⊗u)−α1∇ (α1p)+pI∇α1

+∇ · (α1T)+α1ρb. (1)

Here, the 3-D velocity vector is denoted by u, and ρ is
the density of air and pI the interface pressure, which reflects
Newton’s third law of motion near a fixed wall. As in Kemm
et al. (2020), pI is assumed to be in equilibrium with the sur-
rounding fluid pressure p. The stress tensor T contains the
contributions from subscale and surface fluxes in LES aver-
aging. In this model, the implicit approach is used for spatial
filtering (Schumann, 1975). Viscous stresses are neglected
due to the high Reynolds numbers typically encountered in
atmospheric flows. The sum of external body forces b con-
tains the gravitational force and inertial forces resulting in
a rotating frame of reference. The interface in our case is
static, as buildings do not respond to the flow. This makes it
possible to multiply the equation of motion with α−1

1 ρ−1 to
obtain the tendency equation in single-flow denotation. The
reference density ρref is kept constant in time for an incom-
pressible fluid. The full set of model equations reads

∂tu=−α
−1
1 ∇ (α1u⊗u)−

1
ρref

α−1
1 α1∇p−α

−1
1 ∇

· (α1T)−f ×u+g
2v −2v

2v
, (2)

α−1
1 ∇ · (α1u)= 0, (3)

∂t2=−α
−1
1 ∇ · (α1u2)+α

−1
1 ∇ · (α1kh∇2)+α

−1
1 S2, (4)

∂tQv =−α
−1
1 ∇ · (α1uQv)+α

−1
1 ∇ · (α1kh∇Qv)

+α−1
1 SQv , (5)

2v =2(1+ 0.61Qv) . (6)

In the momentum equation (Eq. 2), the body-force term is
replaced by the Coriolis term, with the Coriolis parameter f
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for a mean geographic latitude, and the buoyancy term using
the Boussinesq approximation. g is the gravity-acceleration
vector in the local frame of reference and 2v the virtual po-
tential temperature defined by Eq. (6). The overbar denotes
the horizontal mean state. Equation (3) is the continuity equa-
tion derived in an analogous way to the momentum equation
from the original formulation in Drew (1983). The transport
equation for scalars, like the potential temperature 2 and
specific humidityQv, contains source terms from parameter-
ized surfaces fluxes. These have to be multiplied with α−1

1 .
The scalar field kh is the eddy-diffusion coefficient for heat.
Note that the combinations α−1

1 ∇ ·α1 and α−1
1 α1∇ can be

identified as particular versions of the divergence and gradi-
ent operator, which incorporate diffuse boundaries. Using a
staggered grid, the stencil of α1 (face centered) differs from
α−1

1 (volume centered), so that the terms do not cancel each
other out.

2.2 Computational grid

The computation uses a structured Arakawa-C grid, with
the velocity components being defined at the cell faces and
scalar fields at the cell centers. Vertical coordinate transfor-
mation allows for a curvilinear grid in the physical space to
be adapted to a smoothly varying terrain function:

x̃ = x, ỹ = y, z̃= z−h(x,y). (7)

Here, z is the mean sea level height and h(x,y) the terrain-
height function. Elevated levels are simply given by adding a
horizontally constant vertical increment to the first level.

The pressure gradient in terrain-following coordinates is
modified to

∇p = ∇̃p−
[
∂xh(x,y)+ ∂yh(x,y)

]
∂zp. (8)

The divergence operator is applied on the contravariant
velocity components, which are parallel to the cell-face nor-
mal. In our simple case, only the vertical contravariant veloc-
ity component ω differs from the covariant non-transformed
component. It is given by

ω = w− ∂xhu− ∂yhv. (9)

Using Eq. (9), the advective tendency of a scalar q is writ-
ten as

∂tq =−u∂xq − v∂yq −
[
w− u∂xh− v∂yh

]
∂zq. (10)

Similarly, the continuity equation in terrain-following co-
ordinates follows from

∂xu+ ∂yv+ ∂z(w− ∂xhu− ∂yhv)= 0. (11)

Combining Eqs. (11) and (8), the metric terms in the
Laplace operator are obtained, which is later needed for the

pressure equation:

4=4̃− ∂x (∂xh∂z)− ∂y
(
∂yh∂z

)
− ∂z (∂xh∂x) (12)

− ∂z
(
∂yh∂y

)
+ ∂z

[
(∂xh)

2∂z

]
+ ∂z

[
(∂yh)

2∂z

]
.

As u, v, and w are maintained as the prognostic model
variables and g is invariant under the given coordinate trans-
formation, no metric terms arise in the buoyancy term. How-
ever, the horizontal averaging of2v is carried out on z isosur-
faces. Therefore,2v is remapped to an auxiliary vertical grid
and the calculated tendency is remapped back to the compu-
tational grid.

2.3 Diffuse obstacle boundaries

The spatial discretization uses a finite volume method, which
allows a consistent treatment of the diffuse obstacle bound-
aries. To consider the conservation of a scalar q within two
partitioned phases, the Gauss theorem is formulated for a sin-
gle grid-cell volume 1V and its total surface area ∂1V :∫
1V

∂t
[
qmχm+ qs(1−χm)

]
dV ′ =

−

∫
∂(1V )

[
ηm ·umqm+ (1− ηm) ·usqs

]
dA′. (13)

Here, subscript m refers to the mobile phase and subscript
s to the solid phase for the building interior. A′ and V ′ are
formal integration variables. χm is the volume-fraction func-
tion of the mobile phase and ηm the area-fraction function,
over which the flux of the mobile phase is integrated. As al-
ready mentioned, the stationary solid phase is dropped, as
it is ∂tχm = 0, ∂tqs = 0 and us = 0. This simplifies the con-
servation form and finally leads to the particular differential
form of the transport equation for the mobile phase:

∂tqm =−
1

χm1V

∫
∂(1V )

ηm ·umqm dA=

−
1
χm
∇ · ηm(umqm)=: −∇m · (umqm). (14)

The subscript m was only briefly introduced here and will
be dropped again, as only the mobile phase is of interest.

Using the Cartesian grid structure, the discrete flux diver-
gence results from

∇ ·F =
1

χ1V
[(ηx1AxFx)

L
− (ηx1AxFx)

R (15)

+ (ηy1AyFy)
L
− (ηy1AyFy)

R

+ (ηz1AzFz)
L
− (ηz1AzFz)

R
],

where 1V and 1Ax,y,z are the cuboid volumes and face ar-
eas, respectively. The superscripts R and L refer to the left

Geosci. Model Dev., 14, 1469–1492, 2021 https://doi.org/10.5194/gmd-14-1469-2021



M. Weger et al.: Urban dispersion model CAIRDIO 1473

and right cell faces for each dimension, respectively. Fx , Fy ,
and Fz are fluxes whose concrete form is determined by the
partial differential equation. Note that the contravariant flux
has to be used for Fz.

The pressure-gradient components on the cell faces are
discretized with second-order accuracy. The gradient com-
ponents centered on the x- and z-oriented cell faces, respec-
tively, are

∂xp =
2ηx1Ax

(χ1V )L+ (χ1V )R

(
pR
−pL)

−
1
1x

(
hR
−hL)Lz→x∂zp, (16)

∂zp =
2ηz1Az

(χ1V )L+ (χ1V )R

(
pR
−pL) , (17)

where Lz→x is the linear interpolation operator from a z face
to an x face, and 1x is the cuboid size used for differencing
the terrain function.

For a grid-conform surface, the area fractions ηx,y,z =
0, from which the required homogeneous zero Neumann
boundary condition follows. In this case, a grid cell is com-
pletely surrounded by grid-conform surfaces and the pres-
sure value inside is decoupled from any neighboring values,
reflecting its physical meaninglessness. For partially open
semi-permeable cell faces, the boundary condition is im-
posed on a fraction of the cell face area only.

The scaling fields ηx,y,z and χ are derived from geomet-
ric building data. As an alternative to using terrain-following
coordinates, it is possible to use diffuse boundaries for the
terrain, in which case, the subsurface is also represented by
a geometric shape. Per definition, the volume-fraction field
χ is expressed as the fraction of the obstacle-free volume in
each grid cell. For numerical reasons, however, χ is limited
to a small non-zero value. For well-resolved buildings, the
area-scaling fields ηx,y,z are derived by calculating the inter-
sections of the buildings with the grid-cell faces. For under-
resolved buildings, however, this method fails to take the grid
alignment into account. A resulting effect may be the entire
missing of buildings if they do not intersect with a particular
cell face but nevertheless block the flow within a grid cell.
Figure 1a shows two possible scenarios, where grid cells are
intersected by a building, which obviously blocks the flow
in one dimension completely but does not intersect with the
cell faces oriented in the direction of the blocking. In order to
capture such occurrences more reliably, a modified method to
calculate the area fractions is used. In this method, the grid-
cell volume is partitioned in slices, with the slicing planes
being displaced along the dimension considered (e.g., the x
dimension for yz faces). The minimum value over the free-
volume fractions of all slices is computed to define a cell-
area-scaling factor, which is then assigned to the cell face in
closer proximity to the obstacle. For a more robust capture
of non-parallel building walls, the slicing can be repeated
several times with a slight rotation of the plane normal. If,

Figure 1. (a) Depiction of two different building sections (gray-
filled areas) inside a grid cell. The black lines mark the effectively
blocked area of the respective side. The line pattern symbolizes the
slicing of the grid-cell volume, which is shown here only for the
x dimension. (b) Scaling factors for a complete building, now de-
picted as fields calculated for three different grid resolutions. χ is
the volume-scaling field, and ηx , ηy are the horizontal components
of the area-scaling field.

occasionally, a cell face is assigned to both values from the
adjacent left and right grid cells, respectively, the minimum
of both values is taken. For the resulting cell face left with-
out assignment, the geometric intersection with buildings is
calculated as in the resolved case. Figure 1b demonstrates
that this method preserves the blocking effect of a triangular-
shaped building for spatial resolutions, which are too coarse
to resolve individual building walls.

2.4 Numerics

2.4.1 Advection scheme

The advective tendency for a scalar q is obtained by adding
the remnant velocity-divergence term from the approximate
pressure solution to the flux-divergence term of the conser-
vation law (Eq. 15):

(∂tq)adv =−∇ · (uq)+ q∇ ·u. (18)

The flux components are linear and given by the product of
the reconstructed values q̃ at cell faces and the exactly given
momentum components. We use an upwind-biased stencil of
fifth order, which results in two reconstructions (q̃+ and q̃−)
on each cell face. For an x-oriented face, the reconstructions
are merged to the numerical flux by considering the wind
direction:

(uq)x = 0.5
[
ux(q̃

+
+ q̃−)− ||ux ||(q̃

+
− q̃−)

]
. (19)

For non-uniform grid spacings, the coefficients of the re-
construction polynomials are precomputed from the spatial
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Figure 2. (a) Plot of the pseudo-grid spacing 1eff
x computed for

a solid cylinder with diameter of 10 m using a uniformly constant
grid spacing of 1 m. Decoupled cells inside the cylinder are charac-
terized by 1eff

x > 2 m in this plot. (b) Using same 1eff
x of (a), the

reconstruction coefficients are computed for a five-point upwind-
biased stencil. The absolute values of the reconstruction coefficients
are re-normed to 1 and depicted in shades of gray at individual re-
construction sites, which are marked by a vertical red bar. Stencil
points are rendered invisible for values below 10−4 and as such
have a negligible influence on the reconstructed value.

derivative of the Lagrange polynomial which interpolates the
primitive function at cell faces (see, e.g., Shu, 1998). We use
the pseudo-grid spacing calculated by 1eff

x = 21xχ/(ηL
x +

ηR
x ) instead of the computational grid spacing in order to au-

tomatically adjust the effective stencil width near obstacle
boundaries. The behavior of the pseudo-grid-based recon-
struction of maximum fifth order is demonstrated in Fig. 2 for
a positive flow direction (left to right). Within the shown cir-
cular obstacle, the pseudo-grid spacing tends toward infinity,
which effectively excludes such decoupled cells from inter-
polation. The resulting smaller stencils can be downwind bi-
ased. An effective measure to prevent numerical instabilities
is the application of a flux limiter (e.g., from Sweby, 1984)
near obstacle boundaries. To avoid non-physical results of
positive scalars, a limiter has to be applied anyway. In the
case of momentum advection, we use the absolute difference
|ηx(j−1)−ηx(j)| as a weighting function to merge the lim-
ited and unlimited reconstructions for obstacle-specific lim-
iting. Note that this expression is upwind-biased (assuming a
positive wind direction). In the free boundary layer, the dif-
ference is zero and no limiting is applied. The routine for
scalar cell-centered advection is repeatedly used to advect
a left-faced ul and right-faced value ur for each momentum
component (Hicken et al., 2005; Jähn et al., 2015), resulting
in a total of six advection steps. The final momentum tenden-
cies are obtained by interpolation of two centered tendencies
on the face:

∂adv
t u=

(
χ1V ∂adv

t ul)R
+
(
χ1V ∂adv

t ur)L
(χ1V )R+ (χ1V )L

. (20)

Spatial accuracy of momentum advection is limited to the
order of this interpolation procedure, which is of second or-
der here.

2.4.2 Model integration

In the incompressible-flow equations, the pressure-gradient
term is not directly coupled to a prognostic pressure equa-
tion. The projection method of Chorin (1968) is used to split
the solution procedure in two steps. The first step integrates
all the momentum tendencies, except the stated pressure-
gradient term, explicitly in time to obtain a predicted velocity
ũ:

ũ= ut0 + (∂tu)ex|t01t. (21)

The final velocity estimate after one integration step ut1
has to fulfill the continuity equation:

∇ ·ut1 = 0. (22)

The required corrective tendency has to be associated with
the neglected pressure gradient, which is formally integrated
with an Euler-backward step to obtain the final velocity at
t1 = t0+1t :

ut1 = ũ−
1t

ρref
∇|pt1 . (23)

By applying the divergence operator on both sides and re-
quiring that ∇ ·ut1 = 0, the well-known Poisson equation for
pressure is obtained:

ρref

1t
∇ · ũ=4p|t1 . (24)

After algebraic solution of this equation, the final state can
now be composed of the fractional tendencies:

ut1 = ut0 +1t

[
(∂tu)ex|t0 −

1
ρref
∇p|t1

]
. (25)

Equation (25) is only first-order accurate in time. For
higher accuracy, it is instead used a third-order strong-
stability-preserving Runge–Kutta scheme (SSP-RK3) for the
advective and pressure-gradient tendencies, which also al-
lows us to use larger time steps. The pressure to correct the
first two intermediate states is extrapolated from values given
at previous time steps, and only for the final stage, the pres-
sure solver is applied (Karam et al., 2019). We found that
this combination supports stable integration up to a Courant
number of C = 0.7.

2.4.3 Pressure solution

The discretization of the Laplace operator P in the Poisson
equation (Eq. 24) is obtained by the product of the discrete
divergence D and gradient in sparse matrix form. D is defined
by the flux balance in Eq. (15). Combining the operators to
the pressure equation, the following sparse linear system is
obtained:

Pp =
1
1t

Dũ=: b, (26)
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where ũ, p, and b are the one-dimensional expanded ar-
rays of the corresponding structured fields. Equation (26) is
solved with a geometric multigrid method in parallel using
domain decomposition in two dimensions. The multigrid al-
gorithm consists of applying a smoothing method of choice
which is accelerated by coarse-grid corrections. Therefore,
a hierarchy of coarse grids is employed (Brandt and Livne,
2011). A 3-D coarsening of the grid is carried out by ag-
glomeration of eight grid cells to form a coarse-grid cell of
the next-level grid. For uneven grid sizes, a plane of grid
cells with respective orientation is left uncoarsened. This
particular multigrid used in combination with finite volume
discretizations is often referred to as a cell-centered multi-
grid in literature (Mohr and Wienands, 2004). Particular
challenges to the multigrid algorithm include grid stretch-
ing and, in our case, non-smoothly varying coefficients as-
sociated with the diffuse boundaries, both resulting in co-
efficient anisotropy. An odd grid size results in coefficient
anisotropy of the coarse-grid operators. In such cases, plane
smoothers are often much more robust than their point-wise
pendants (Llorente and Melson, 2000). Nevertheless, most of
the difficulties could be overcome by applying less elaborate
methods in the current model. Based on smoothing analysis,
Larsson et al. (2005) give a condition for the optimal loca-
tion of an uncoarsened plane in the case of an odd grid size.
Galerkin coarse-grid approximation can result in a better ap-
proximation of the coarse-grid operator in this case, while
discretization coarse-grid approximation can be more effi-
cient for even-sized grid dimensions. Our algorithm employs
a combination of both methods on different grid levels.

Yavneh (1996) found that for smoothing, successive over-
relaxation (SOR) is generally superior to Gauss–Seidel
smoothing (even for isotropic coefficients), and he also de-
rived approximately optimal over-relaxation factors for SOR
with red–black ordering applied in multigrid for the solution
of anisotropic elliptic equations. In our implementation, also
sparse-approximate inverse (SPAI) matrices (Tang and Wan,
2000; Bröker and Grote, 2001; Sedlacek, 2012) are available
as suitable alternatives to SOR. These smoothers can inher-
ently consider coefficient anisotropy through the algebraic
method by which they are derived. Moreover, a variable num-
ber of non-zeros in the matrix allows a flexible control of the
approximation quality and smoothing efficacy.

2.4.4 Lateral boundary conditions

Before each pressure correction step, lateral boundary con-
ditions of the intermediate velocity field ũ are updated. The
update has to ensure global mass conservation:∮
∂V

ρref

1t
ũ ·ndA′ = 0. (27)

This expression implies a homogeneous-zero Neumann
boundary condition for pressure at all lateral boundaries, as

the already updated boundary values should not be changed
by the projection:

0= ρref
∂ũ

∂t
·n=∇p ·n. (28)

Here, n is the unit normal vector on the boundary surface.
A more general case arises with the use of terrain-following
coordinates. By requiring not only ∂tω = 0 but additionally
∂tw = 0 at the bottom and top of the computation domain,
the following boundary condition follows at these bound-
aries:

∂zp = 0 (29)

∂xp =

{
0 ∂xh 6= 0

not specified else

∂yp =

{
0 ∂yh 6= 0

not specified else.
(30)

In the discrete gradient operator, homogeneous Neumann
boundary conditions are implemented by setting all coeffi-
cients associated with the node to zero where the condition
applies.

The boundary condition for the velocity field has to be
compatible with a dynamic mesoscale forcing and also sat-
isfy Eq. (27). Firstly, inflow and outflow regions are dynam-
ically determined in order to impose separate appropriate
boundary conditions. Outflow regions are characterized by
convective transport out of the domain. Therefore, a sim-
ple normalized convective transport speed (C⊥ = 1t

1x
u ·n) is

computed. Note that more elaborate formulations for C⊥ ex-
ist. C⊥ is further bounded to [0,1] for numerical reasons. It
is then C⊥ > 0 for outflow regions. For such regions, the ra-
diation boundary condition by Miller and Thorpe (1981) is
imposed:

ut+1
l+1 = u

t
l+1−C⊥

(
utl+1−u

t
l

)
. (31)

The order of the spatial indexing l is in normal direction
to the boundary and not to be mixed up with the standard in-
terior indexing. The index l+1 corresponds to the first ghost
cell. At the remaining inflow boundaries, Dirichlet condi-
tions are specified.

Instead of this flexible inflow–outflow boundary condition,
a Rayleigh damping layer can be used as another prognostic
tendency near the domain top:

∂
dmp
t q =−

R(z)

τ
(q − q0). (32)

Equation (32) can be applied to gradually relax any prog-
nostic variable toward a prescribed horizontal mean state at
the top boundary. R is a ramp function with values between
[0,1], τ the damping timescale, and q0 the prescribed bound-
ary value.
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Figure 3. Example of a horizontal multigrid domain decomposition involving six grid levels. Depicted are the area-scaling factors of yz
faces for the city of Leipzig at resolutions of (a) 80, (b) 160, (c) 320, (d) 640, (e) 1280, and (f) 2560 m. The scaling factors are needed in the
discretization of the Poisson equation. On the coarsest grid, a single processor is left for the computation.

Final mass conservation is enforced by making sure that
the total inflow–mass flow is exactly balanced by the total
outflow–mass flow. This is accomplished by computing an
averaged correction velocity from the mass-flow difference.
In the case, each spatial dimension is considered indepen-
dently from each other, this results in three different correc-
tion velocities. The correction velocities are finally added to
the boundary-perpendicular velocity component at the out-
flow regions.

Figure 4 shows that the outflow boundary condition with
the proposed convective transport speed is well suited to our
incompressible model even for highly unsteady flows, like
the depicted vortex street in the wake of a cylinder. Individ-
ual vortices are not visibly reflected at the boundary, and also
in the temporal mean, based on Fig. 4b), the influence of the
boundary is not noticeable. The flexible boundary condition
can principally be applied to any other scalar quantity, al-
though, specifying Dirichlet conditions for advected scalars
was found to be well suited.

2.5 Physical processes

2.5.1 Subgrid model

For numerical simplicity and efficiency, a static Smagorin-
sky subgrid model is used (Deardorff, 1970). Since the at-
mospheric model is operated in the limit of infinite Reynolds

numbers, the principal purpose of the subgrid model is to
dissipate enough energy at the shortest wavelengths to ob-
tain a physically realistic energy cascade. In our case, the
subgrid model also has to compensate for the under-resolved
vertical mixing of tracers within the urban boundary layer.
In the Smagorinsky model, the rates of strain sx,y are approx-
imated by the velocity gradients:

sx,y =
1
2

(
∂yu+ ∂xv

)
. (33)

The subscripts x, y refer to the spatial components. The tur-
bulent fluxes are derived in analogy to the viscous fluxes by
assuming an eddy viscosity εk:

u′xu
′
y = 2εx,ysx,y . (34)

The often additionally mentioned anisotropic residual-
stress tensor is ignored in the given incompressible case. In
the most simple case, εx,y is also diagnosed from the rates
of strain. εx,y is denoted in tensor form, as an anisotropic
mixing length lx,y is used to reflect grid anisotropy:

εx,y = l
2
x,y |S|f =

(
cs1x,y

)2
|S|fs. (35)

|S| is the Frobenius norm of the strain-rate tensor. cs is the
Smagorinsky constant, which is fixed in a static model. Tests
with a boundary-layer simulation revealed that the range
0.1< cs < 0.15 gives good results in combination with the
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Figure 4. LES of 3-D flow past a cylinder. The horizontal grid spac-
ing is uniformly 0.5 m. The cylinder has a diameter of 40 m. The
approaching flow is laminar with u= 1 ms−1. Flexible Dirichlet-
radiation conditions are imposed on all horizontal domain bound-
aries, while periodic boundary conditions are used in the z direc-
tion. The contour plot depicts the pressure and the streamlines the
horizontal velocity field. Panel (a) shows a frame at the instance
during a sharply defined vortex is about to cross the right boundary;
panel (b) shows the temporal mean over a representative simulation
period.

fifth-order upwind scheme. Grid anisotropy enters via 1x,y ,
which is further modified by half the mean distances to walls
hx and hy , respectively:

1x,y =min
(√
1x1y,1.8hx,1.8hy

)
. (36)

Function fs introduces the influence of the stratification on
the eddy viscosity. It is assumed that

fs =


0 Ri ≥ 0.25
√

1− 16Ri Ri < 0
(1− 4Ri)4 else,

(37)

with the Richardson number Ri:

Ri =
g∂z2v

2v|S|2
. (38)

For scalar diffusion, the eddy viscosity is divided by the
turbulent Prandtl number, which is assumed to be Pr = 2/3
here.

If not mentioned otherwise, the appearing spatial deriva-
tives are discretized with second-order differences. To obtain
the strain-rate components and the eddy viscosity on dif-
ferent stencil points (cell faces areas and cell centers), lin-
ear interpolation is used. The subgrid tendency is formed by

the divergence of the diffusive fluxes. Shifted grids are in-
troduced to account for the definition of the velocity com-
ponents on the cell faces. For example, diffusion of the
u component requires a grid shifted by 1x/2, for which
the scaling fields are also obtained by linear interpolation.
The diffusive fluxes are given by

Fx,y = 2εx,ysx,y . (39)

For diffusion of the u component, the fluxes in the three
spatial directions are Fx,x , Fx,y , and Fx,z. Those of the other
components are obtained by permuting the subscripts. For
a scalar quantity q, the required fluxes are Fx,x , Fy,y , and
Fz,z, with the rates of strain being replaced by the gradient
components.

2.5.2 Surface fluxes

Surface fluxes for momentum, heat and moisture are pa-
rameterized using Monin–Obukhov similarity theory (Louis,
1979). An expression for the vertical transfer coefficient Cz
can be obtained by transforming the logarithmic wind law:

Cz =
k2

log2(z/z0)
. (40)

k = 0.4 is the Von Kármán constant, z0 the surface roughness
length, and z the height difference from the modeled surface
to the grid level where the parameterization is evaluated.

The momentum sinks from horizontal surfaces are

∂u′w′

∂z
=−

Az

1V
fmCzu

√
u2+ v2 (41)

and

∂v′w′

∂z
=−

Az

1V
fmCzv

√
u2+ v2. (42)

Analogously, the source terms for heat and moisture from
horizontal surfaces are

∂2′w′

∂z
=−

Az

1V
fhCz

(
2−2s)√u2+ v2 (43)

and

∂Q′vw
′

∂z
=−

Az

1V
fhCz

(
Qv−Q

s
v
)√
u2+ v2. (44)

2s is the surface potential temperature, andQs
v the surface

specific humidity. Az is the total exposed horizontal surface
within the grid cell, and 1V the effective cell volume. fm
and fh are stability functions, and z0 is the surface roughness
length. We adopt the expressions given in Doms et al. (2013)
to calculate fm and fh for land surfaces. Sources and sinks
from vertical building walls are treated similarly, but the sta-
bility function is set to unity in this case. For x-oriented sur-
faces, z is replaced by half of the average distance between
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surfaces in the equation for the transfer coefficient. Analo-
gously, Az is replaced by Ax for the total projected surface
area with x orientation. The surface fields 2s and Qs

v are
part of the external forcing and have to be provided either by
the hosting mesoscale model or field-interpolated measure-
ments.

2.5.3 Turbulence recycling scheme

Wu (2017) gives an overview of various turbulence genera-
tion methods to provide turbulent inflow conditions. Among
the different methods, a turbulence recycling scheme is used
in our model, as it is computationally efficient and can be
applied to a wide range of different domains and flow types.
In our implementation, turbulence can be extracted within
a maximum of four vertical planes, each one properly dis-
placed parallel to a particular inflow boundary. The resulting
domain fetch for turbulence recycling has to extend several
integral length scales in order to prevent a spurious periodic
pattern of the recycled turbulent features.

At each model time step, a horizontal filter is applied on
the velocity components within the recycling plane. In the
case of coupling with a mesoscale model, the filter width wr
is set to just below the spatial resolution of the host model
in order to spare mesoscale variations. Vertical filtering is
not feasible due to the strong vertical wind shear within the
boundary layer. The filtered velocity component is subtracted
from the original one to obtain the small-scale fluctuation
component:

u(z,y)′ = u(z,y)−< u(z,y)>wr . (45)

Equation (45) assumes a boundary perpendicular to the
flow in the x direction. The turbulent intensity is rescaled
to the target value, after which the fluctuation field can be
added to the inflow boundary field uin of the large-scale flow
uls.

uin(z,y)= uls(z,y)+min
[
amax,

||u′tar||2(z)

||u′||2(z)

]
u′(z,y) (46)

amax is used to limit the artificial amplification of turbulence
shortly after model initialization.

The filtering operation as well as the calculation of the
turbulent intensities require communications in the parallel
implementation. For optimal parallel scaling, filtering is per-
formed on each subdomain containing a part of the recycling
plane instead of the much simpler method of filtering all the
data with a single processor. A box-shaped filter is used to
minimize the amount of communication in the parallel fil-
tering. A final communication may be necessary to transfer
the recycled turbulence to the inflow boundary. Despite the
communication-intense filtering, the computational costs of
the recycling scheme were found to be 1 % to 2 % of total
costs on average.

2.6 Programming language

The presented model (CAIRDIO v1.0) is written in Python,
a programming language which facilitates a straightforward
implementation of numerical methods, code compactness,
and code readability. Python packages like NumPy, SciPy,
and mpi4py make the programming language also suitable
for high-performance computing. Our model implementation
can particularly benefit from NumPy, as all time-critical nu-
merical routines (e.g., all the routines for the computation of
explicit tendencies) support vectorized computations. This is
an inherent property of the diffuse interface approach, as all
grid cells, except for the ghost cells at subdomain bound-
aries, are computation cells and treated in the same manner.
All tendencies are formulated in flux-divergence form, and as
a result, obstacle boundaries do not have to be specified par-
ticularly. For the multigrid pressure solver, SciPy provides
efficient data structures, methods, and functions for sparse-
matrix algebra. Parallel computation is realized through a 2-
D domain decomposition, with each processing node running
its own full-fledged simulation. Message Passing Interface
(MPI) is used to successively exchange data between subdo-
mains.

3 Numerical tests

Some numerical tests are conducted in order to examine grid
sensitivity of the diffuse obstacle interface, the dynamic core,
and parallel efficiency of the model. To test the diffuse ob-
stacle interface, a similar advection test as reported in Cal-
houn and LeVeque (2000) is performed. In order to show that
the dynamic core can reproduce the expected evolution of an
idealized setup, the rising-bubble experiment of Wicker and
Skamarock (1998) is conducted once again. It also provides
a benchmark to compare the anelastic approximation with a
fully compressible model used in the original study. Finally,
a third test is conducted to demonstrate the strong scalability
on a high-performance computing platform.

3.1 Advection through an obstacle field

In this 2-D test, the computation domain contains randomly
positioned circular obstacles of varying size. In a first step, an
approximate potential flow solution is computed. Therefore,
one step of the pressure projection method is applied on the
initial wind field defined by u= 1 and v = 0. The resulting
potential flow field is used to advect a test-tracer front, which
is solely characterized by the left inflow boundary condition:

c =

{
1 t ≤ 40s

0 t > 40s.
(47)

For the transversal-flow direction, periodic boundary con-
ditions are used.
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Figure 5. Results of the advection test with obstacles. Map plots of the concentration field of a test tracer after a simulation time of 150 s.
The obstacles are drawn by contours of the volume-scaling field χ . Shown are the results of the flow simulations for the grids (a) 200× 100
cells, (b) 100× 50 cells, (c) 50× 25 cells, and 25× 13 cells, respectively.

Figure 6. Washout curves of the test tracer for the different grid
resolutions in Fig. 5. The values are computed by integrating over
the modeled outflow at the downwind (right) domain border.

The reference simulation is carried out on a domain with
200× 100 grid cells and a uniform grid spacing of 1 m. The
obstacle radii range from 5 to 10 m. The simulation is re-
peated on coarser grids with dimension sizes of 100× 50,
50× 25, and 25× 13, respectively. Figure 5 shows the sim-
ulation results at t = 150 s. The obstacles are well resolved
on the grid with 1 m spacing but become more and more
diffuse with decreasing grid resolution towards 8 m for the
coarsest grid. The initially planar test-tracer wave is delayed
and deformed by the obstacles. The qualitative impression is
that the shape of the wave is not very sensitive to the grid
resolution. Even in the most diffuse case, the position and
shape of the wave match that of the higher-resolved simu-
lations well. The wave dispersion can be quantified by con-
sidering the washout curves shown in Fig. 6, which are the

spatially averaged concentrations at the outflow boundary vs.
time. For the case with the finest grid, the concentrations at
the outflow boundary start to rise after t = 145 s and peak at
about t = 185 s. At t = 250 s, most of the wave is advected
out of the domain. Remarkably, as already found by Calhoun
and LeVeque (2000), the washout curve is not sensitive to the
grid resolution up to 4 m, which is at the transition when ob-
stacles start to become diffuse. For the case with the coarsest
resolution of 8 m, the peak is slightly broader, peak concen-
trations are lower, and the peak occurs earlier by about 5 s.
At this grid resolution, the numerical diffusion of the advec-
tion scheme becomes important, as the resolution capability
is around six grid points, which is barely enough to resolve
the wave.

3.2 Rising thermal

In the rising thermal simulation described in Wicker and
Skamarock (1998), the Euler equations without diffusion are
solved on a 2-D domain with a height of 10 km and a width
of 20 km. The grid spacing is uniformly 125 m. The initially
constant virtual potential temperature field of 2v = 300K is
perturbed by a circular thermal:

12v =

{
2cos2 (πr

2L

)
r ≤ L

0 r > L,

r =
√
x2+ (z− 2km)2, (48)

L= 2km.

The initial vertical velocity is set to w = 0ms−1 and the
horizontal velocity to u= 20ms−1. Periodic lateral bound-
ary conditions are used and a rigid boundary is placed at the
domain top. Due to buoyant forces, the thermal starts rising
while it is constantly advected to the right and eventually re-
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Figure 7. Original plot of Wicker and Skamarock (1998) (Fig. 5c–d therein) © American Meteorological Society. Used with permission. It
shows the rising thermal problem computed using a third-order upwind scheme and a second-order Runge–Kutta scheme (Fig. 5c–d therein):
shown are the potential temperature (a) and vertical velocity (b) after 1000 s of integration time.

Figure 8. Rising thermal simulation with lateral advection: (a) contours of virtual potential temperature at different time steps. The initial
and intermediate states are drawn with dashed lines; the final state at t = 1000 s is drawn with solid lines. The contours with θv = 300K are
omitted. (b) Contours of vertical wind speed at t = 1000 s. Dashed lines are used for negative values.

enters the domain at the left boundary. After a simulation
time of t = 1000 s, the thermal is again situated in the center
of the domain.

Figure 8a shows the evolution of the thermal based on
contours of 2v at the time steps of t = 0, t = 350, t = 650,
and t = 1000 s. Two distinct and symmetric rotors develop.
At the simulation time of t = 1000 s, the overall appearance
of the thermal matches well that of the original simulation
by Wicker and Skamarock (1998) as can be seen from the
comparison with the original plot in Fig. 7. In our simu-
lation, however, the thermal is more compact as it is con-
fined between x =±2300 m and the peak height is at about
8100 m. In the original simulation, it is confined between
about x =±2600 m and below 8500 m. Whether this slight
discrepancy stems from the Boussinesq approximation or the
different numerical schemes used can not be finally clarified.

By scale analysis, the magnitude of the buoyant acceleration
is about 1 or 2 orders less than that of the inertial accelera-
tion in the given example. So, the Boussinesq approximation
should indeed apply well in this example. The used fifth-
order upwind scheme is much less diffusive than the third-
order scheme used by Wicker and Skamarock (1998). On the
other hand, the flux limiter introduces an adequate amount of
diffusion near sharp gradients to prevent oscillations and to
ensure a positive solution (θv ≥ 300 K). This can explain our
smoother contour lines inside the rotor. A slight asymmetry
from the lateral advection can be noticed, which is most ev-
ident in the contours of vertical wind speed in Fig. 8b. This
asymmetry can be slightly more reduced by decreasing the
integration step size (not shown). The combination of the ad-
vection scheme with the third-order SSP-RK3 time scheme
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gives stable results up to a Courant number of C = 0.7. Pos-
itivity of the solution is preserved up to C = 0.5.

3.3 Strong scalability test

We tested parallel scalability of the model for a domain span-
ning 350×350 grid cells in the horizontal dimensions and 82
grid cells in the vertical, thus consisting of approximately 10
million cells in total. For realistic demands on the pressure
solver, a grid of diffuse buildings was placed at the bottom
of the domain and vertical grid stretching was applied. The
high-performance computing platform we used for the scal-
ing test is organized into nodes, each one equipped with two
12-core Intel Xeon E5-2680 v3 CPUs, making in total 24
cores per node available. The strong scalability test is car-
ried out for a variable number of cores ranging from 1 to
400. The 400 cores correspond to a minimum average hor-
izontal subdomain size of 17.5 grid cells. Figure 9 demon-
strates the scaling efficiency of the model, as well as of the
individual tasks for pressure projection and advection com-
putation of three momentum components and two scalars,
which together are responsible for the bulk of the computa-
tion time. As a reference, the dashed lines show ideal scal-
ing starting from a reference of a single core. Comparing
the experimentally obtained curves with the idealized curves,
firstly, a peculiar drop in scaling efficiency between four and
nine cores can be noticed. However, this drop cannot be ex-
plained by the parallelization design and it was also not ob-
served using a different platform with less cores (not shown).
The arithmetic-intense advection computation shows, apart
from the already noted drop between four and nine cores,
excellent scaling, which becomes even super-linear above
100 cores due to cache effects. Not surprisingly, the pressure
solver, which requires two communications for each smooth-
ing iteration, does not scale so well. While cache effects can
balance the increasing communication overhead up to 200
cores, above this number, scaling is no longer satisfactory.
Due to the lower costs of the pressure solution in compari-
son with the advection computation, the model shows a very
good scaling up to 400 cores for this test case. Note, how-
ever, that the best decomposition to benefit from cache ef-
fects shifts toward a lower number of cores when the vertical
dimension size is decreased. In theory, the implementation
of the smoothing procedure supports overlapped communi-
cation and computation, as the matrix–vector product of the
halo layer is computed independently from the inner matrix–
vector product. In this test, we could not observe any true
overlap, which would require further investigation. Address-
ing this feature in future can help to additionally improve
scalability of the pressure solver.

Figure 9. Strong scalability of CAIRDIO v1.0 tested for a domain
with 350× 350× 82 grid cells using 1 to 400 cores on a high-
performance computing platform. Dashed lines show ideal scaling.

4 Model evaluation with wind-tunnel experiment and
grid size sensitivity tests

The“Michelstadt” wind-tunnel experiment, which was car-
ried out in the WOTAN wind tunnel (Lee et al., 2009) of
the University of Hamburg, Germany, is used to evaluate
the model accuracy and reliability of dispersion simulations
within an urban canopy. Advantages of wind-tunnel data over
field observations for model evaluation are the accurately
controlled approaching-flow conditions and the high den-
sity of wind and concentration measurements in both space
and time, which results in a high statistical significance of
data (Schatzmann et al., 2017). The fictitious city district
“Michelstadt” is based on a typical central European down-
town area with spacious polygonal courtyards surrounded by
residential building units at a scale of 1 : 225 (see Fig. 10a).
Building roofs are approximated by horizontal surfaces, and
their heights range from 15 to 25 m at the full scale. The ap-
proaching flow can be characterized by a neutrally stratified
and horizontally homogeneous urban boundary layer with a
parametric surface-roughness length of approximately 1.4 m.
Experiments were carried out using two different approach-
flow directions of 0 and 180◦. This provides the opportunity
to test the robustness of model results after model-parameter
tuning using the wind-tunnel results from the default 0◦ di-
rection. The experimental dataset consists of time-resolved
flow and dispersion measurements, from which temporally
averaged statistics were calculated. A dense array of sen-
sors provided horizontal wind measurements within planes at
heights of 2, 9, 18, 27, and 30 m over a restricted area. For the
dispersion modeling, neutrally buoyant gas was continuously
released at different locations on the floor (see Fig. 10 for
the locations of the release points). Release points S2 and S4
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Figure 10. (a) Depiction of the model domain for the numerical simulation of the “Michelstadt” wind-tunnel experiment. Rigid boundaries,
including the buildings, the side walls, and the roughness elements are drawn using gray color. The yellow circles mark the tracer-gas release
points. The dotted red line is at the position of the turbulence recycling plane. The area within the red bounding box contains the horizontal
wind measurements arranged in horizontal planes. (b) Comparison of measured (black arrows) and modeled (red arrows) time-averaged
horizontal wind vectors at 2 m height.

were used for the approach-flow direction of 0◦, S6, S7, and
S8 for the reverse direction. S5 was used for both wind direc-
tions. Tracer-gas detectors to measure concentrations were
all positioned at a full-scale height of 7.5 m and at differ-
ent horizontal positions depending on the source. Further in-
formation on the experiment and the datasets is provided in
Baumann-Stanzer et al. (2015). The numerical simulations
are performed at the full scale using a series of grids with
horizontal resolutions of 5, 10, 20, 40, and 80 m. The 5 m
horizontal resolution is used as the reference. The coarser
domains are used to test the grid sensitivity of the disper-
sion simulation. The vertical grid spacing near the surface
ranges from 2 m for the finest grid to 7 m for the coarsest
ones. It is increasingly stretched beyond 30 m above sur-
face. The effective domain height is approximately 600 m,
which corresponds to the scaled wind-tunnel height. Above
this height, the wind components are dampened to the hori-
zontally and temporally average state. A first precursor sim-
ulation is run with periodic boundary conditions to obtain
laminar and turbulent inflow profiles for the full vertical do-
main extent. These are used to drive the actual experimental
simulations containing the buildings and test-tracer release
points. In the precursor simulation, which uses a shorter do-
main with a total length of roughly 1km, buildings are not
present and the entire rigid bottom-domain boundary is cov-
ered with roughness elements. The geometries and arrange-
ment of elements are adapted from the experiment. In order
to model the effect of the lateral wind-tunnel confinement,
rigid walls are placed at the flow-perpendicular boundaries.
The modeled statistics of the established neutrally stratified
boundary-layer flow are rescaled to the reference wind speed
of 6ms−1 at 50m height. The obtained horizontally averaged
vertical profiles are vertically interpolated for the coarse-
grid simulations. In the experimental simulations containing
the model city, turbulent approach-flow conditions with the
correct target intensities are generated using the turbulence-
recycling scheme. The recycling plane is placed well down-

stream of the model city and after a short pattern of rough-
ness elements near the outflow boundary (Fig. 10a). This al-
lows for a much shorter additional domain fetch necessary
for turbulence generation. This particular positioning of the
recycling plane is also well supported by the similar paramet-
ric roughness length of the elements and the model city. Also,
the extracted fluctuation intensities are rescaled to the values
of the target wind field, which further reduces the impact of
obstacles further upstream.

4.1 Inflow profile

Figure 11 shows the modeled and rescaled horizontally av-
eraged statistics of the boundary-layer flow generated by
the precursor simulation. The experimentally obtained pro-
files are included for comparison. In the modeled mean
horizontal wind speed, the roughness layer extends up to
20 m height, above which it is proceeded by the logarith-
mic Prandtl layer. The slope of the modeled wind profile in
the semi-logarithmic depiction matches the observed profile
well. The modeled turbulent intensities are generally under-
estimated by up to 20 % when compared with the observa-
tions. This difference is most likely due to artificial dissipa-
tion in the model. The peak values at about 400 m height are
probably residual reflections at the domain top, which are
not completely prevented by the dampening. The measure-
ments below a height of 20 m are more difficult to compare,
since they are located within the roughness layer and thus
are strongly influenced by the relative location to the nearby
roughness elements.

4.2 Horizontal wind evaluation

The modeled horizontal wind is evaluated on the reference
grid with 5 m horizontal resolution. Figure 10b gives a first
qualitative impression of the agreement. It shows the time-
averaged horizontal wind vectors both for the model and the
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Figure 11. Modeled (dotted lines) and measured (full lines) mean and turbulent statistics of the approach flow in the “Michelstadt” wind-
tunnel experiment. Depicted are (a) the temporal mean velocity component u and (b–d) the grid-scale turbulent intensities u′, v′, and w′,
respectively.

Figure 12. Scatter plot of modeled vs. measured horizontal wind speed within planes at different heights. For a quantitative comparison,
NMSE and FB are calculated.

measurements within the plane of 2 m height. Overall, the
model is capable of reproducing the measured flow pattern.
However, the modeled wind direction does not always match
the corresponding measured vector well, which is most no-
table near some intersections. The scatter plots for wind
speed (Fig. 12) and wind direction (Fig. 13) give a more
quantitative and conclusive picture. The accuracy of modeled
wind speed is high taking the normalized mean standard error

(NMSE) as a proxy. Its value is consistently below 0.1. The
fractional bias (FB) shows only a very slight underestimation
of the wind speed (0.02–0.07). This is not very surprising, as
the model resolution of 5 m is not high enough to completely
resolve the recirculation zones within the urban canopy (Xie
and Castro, 2006). Thus, the modeled wind speed within cir-
culation zones tends to be lower as a result of more extensive
spatial averaging.
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Figure 13. Scatter plot of modeled vs. measured horizontal wind direction within planes at different heights.

4.3 Dispersion evaluation

The resulting time-averaged modeled concentrations are in-
terpolated to the detector sites and paired with correspond-
ing measurements. As a proxy for the quality of model re-
sults in comparison to the measurements, NMSE, FB, and
additionally the fraction of within a factor of 2 (FAC2) are
calculated. Based on the guidelines presented in Hanna and
Chang (2012), acceptance criteria for a valid simulation are
NMSE< 6, |FB|< 0.67, and FAC2> 0.3.

The simulations with the approach-flow direction of 0◦

are used to optimize the model configuration with respect to
these test criteria, while the reverse flow direction is used to
validate the robustness of model results using the same pa-
rameter configuration. One important model tuning parame-
ter is the Smagorinsky constant, which was set to cs = 0.15
for all simulations. However, for the simulations with 40
and 80 m resolution, the vertical mixing length had to be
increased to 20 m within the urban canopy to compensate
for the poorly defined eddies important for vertical mixing.
Among the tested sources, S2 is the only one emitting into an
open area, whereas all other sources are placed within street
canyons or courtyards. Thus, S2 is probably the least diffi-
cult to simulate. Figure 14 gives an impression of the simu-

lated time-averaged plumes resulting from S2 at the height
of detector sites. Figure 14a shows the reference simula-
tion with the highest grid resolution. The overall qualitative
agreement with measurements seems very good, except for a
street canyon in roughly−45◦ direction and in close proxim-
ity to the source. Therein, the modeled concentrations are too
low. Expectedly, increasing the grid spacing results in a dete-
rioration of the qualitative agreement with measurements and
with the reference simulation. For example, increasingly less
tracer gas is advected inside the flow-parallel street canyon,
where most of the detectors reside. Instead, the plumes are
increasingly smeared over a wider area. This is especially ev-
ident for the 20 m grid spacing, whereas for the even coarser
resolutions of 40 m, the agreement with measurements im-
proves again. Notably, this behavior is only observed for this
particular source. The grid resolution of 80 m clearly shows
the least accurate results. While the dispersion pattern still
resembles those of the better resolved simulations and shows
the imprint of buildings, concentrations are too high in the
downwind swath. At this resolution, a more elaborate mix-
ing parameterization could still give improved results over
the simple Smagorinsky model.

For the quantitative evaluation of the presented simula-
tions, modeled and measured values are compared in scatter
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Figure 14. Map plots of modeled concentration fields in ppmv at 7.5 m height for source S2 and different grid resolutions. The black circles
mark the location of measurements for this particular source, and the fill color indicates the measured concentration according to the color
bar of the map plots.

plots in Fig. 15, and the aforementioned statistical acceptance
parameters are derived. For the reference case, most of the
model data are tightly distributed near the bisecting line. In
fact, the model accuracy is very good (NMSE= 0.10), with
only a slight positive bias toward too-low values (FB= 0.12)
and only few outliers present (FAC2= 0.84). The decrease
in model accuracy with increasing grid spacing is evident in
the scatter plots, as modeled values tend to be too low for
high concentrations measured, and vice versa. This results in
a steady increase in NMSE= 0.25 for the 10 m grid spac-
ing and NMSE= 1.35 for the 20 m grid spacing. Since FB
is more sensitive to deviations at the upper end of the log-
arithmic scale, the smearing also results in an increasingly
positive bias (FB= 0.17 and FB= 0.65). The trend is, how-
ever, reversed at the even coarser resolution of 40 m, result-
ing in an improvement of model results for this particular
source. Finally, the 80 m case shows a large negative bias
(FB=−0.57) and a value of FAC2= 0.32 at the verge of ac-
ceptance. Table A1 summarizes the statistical parameters for
all other simulated cases. From the sensitivity results in Ta-

ble A1, it can be concluded that the quality of model results
generally declines with decreased grid resolution (mostly ev-
ident in NMSE value) but not to an extent to compromise
model reliability at up to 40 m resolution, where buildings are
only represented diffusely. Only one source located within
a courtyard was problematic to model with 40 m grid spac-
ing, as the resulting plume was not well contained within.
We attributed this to the difficulty in representing diagonally
oriented building walls as impermeable as they are at such
coarse resolutions. Using the 80 m grid, the model still per-
forms acceptably for some of the sources. Figure 16 shows
scatter plots of modeled and observed data collected from
all simulated cases with a given resolution. The according
statistical results are again summarized in Table A2. It is
shown that the reliability of model results is not very sen-
sitive to the grid spacing down to 40 m resolution. For exam-
ple, FAC2 decreases from a value of 0.8 at 5 m to 0.61 at 40 m
grid spacing. Conversely, NMSE increases from 0.54 to 2.75,
which is still well within the acceptable range. The average
fractional bias is below FB= 0.2 for all simulations, except
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Figure 15. Scatter plots of measured vs. modeled concentrations for source S2 and different grid resolutions. The dotted lines confine the
region within a factor of 2 of measurements.

Figure 16. Scatter plots of measured vs. modeled concentrations combined for all sources and different grid resolutions. The dotted lines
confine the region within a factor of 2 of measurements.
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for the 80 m case, where it is much larger (FB=−0.35). In
this regard, the increased vertical mixing length showed to
be an effective tuning option in combination with the 40 m
resolution to keep the bias comparatively low (FB=−0.17).
It has to be kept in mind that this test uses isolated point
sources. When applied to a more realistic scenario with traf-
fic emissions, modeled, for example, by emission lines, it can
be hypothesized that scattering of the data would be of less
a concern, because the pollution is more widely distributed
horizontally. Therefore, ultimately, the most important relia-
bility measure in our view is the FB value, as it is a proxy of
whether the model will under- or overestimate air pollution.
In this regard, the 80 m resolution is the least accurate, and it
is currently not reached without the use of a more sophisti-
cated mixing parameterization. Finally, when comparing all
model results with only those from the 180◦ approach-flow
tests using the same parameter configuration, it was found
that these latter cases could be modeled not significantly less
accurately. This is largely attributed to the simplicity of the
model, as it requires little parameter tuning.

5 Summary

In this paper, the new large-eddy-simulation-based CAIR-
DIO model for urban dispersion simulations was presented.
The model uses diffuse obstacle boundaries in the frame-
work of a finite volume discretization to represent building
walls at a wide range of spatial resolutions. Diffuse obstacle
boundaries allow for a consistent implementation of build-
ings in the model code, as they are essentially described by a
scalar field for the volume-scaling factors and a vector field
for the area-scaling factors. Using these fields to discretize
the differential operators, boundary conditions are incorpo-
rated automatically and the governing equations are solved
for the entire computation grid without the need to distin-
guish different types of grid cells. This allows for a straight-
forward and vectorized implementation of spatial operations.
The inherent option for under-resolved diffuse buildings en-
ables the model to be applied at marginal grid resolutions in-
accessible for conventional Cartesian grid models. The com-
putational savings can be invested in larger domains to model
whole city areas and its surroundings. The large-scale influ-
ence of orographic terrain can be adequately represented by
curvilinear grids. To benefit from modern hardware archi-
tecture, the model is parallelized using a 2-D domain de-
composition method, which is sufficient for the expected
large grid-aspect ratios of typical boundary-layer applica-
tions. The numerical schemes presented are approved and
efficient choices. Linear upwind schemes of selectable or-
der of accuracy with optional limiting are used for advec-
tion, a static Smagorinsky model for subgrid turbulence mod-
eling, and multi-stage higher-order time methods for model
integration. The coupling with the mesoscale meteorology
can be obtained through different forcing methods by us-

ing data from a mesoscale host model. A simple numerical
test, consisting of a test tracer being advected by a potential
flow through an obstacle field, demonstrated the robustness
of the obstacle discretization up to grid spacings where the
resolution capability of the numerical schemes starts to in-
terfere. The results of the rising thermal experiment to test
the dynamic core are plausible and similar to those presented
in the original studies. Finally, we evaluated the model with
data from the “Michelstadt” wind-tunnel experiment. In this
study, the model reproduced reliably the complex wind fields
and embedded tracer dispersion. For the latter application,
this was also true using spatial resolutions beyond 20 m, at
which buildings can only be represented as increasingly dif-
fuse features. The sensitivity study researching grid spac-
ing of the dispersion test showed promising results for a
future study with more realistic emission distributions and
real-sized cities. In the near future, also the coupling with
mesoscale meteorology will be addressed. From previous
and accompanying air-quality studies, simulations with the
regional COSMO-MUSCAT CTM are available for different
German cities, including Berlin and Leipzig, for which also
comprehensive measurement data are available for model
evaluation. In this framework, a promising application could
be a more comprehensive and holistic model evaluation with
field data, as mobile measurements are available for the city
of Leipzig in addition to operational air monitoring. Poten-
tial model improvements worthy of being addressed in the
future are the parameterization of air pollution sinks and the
implementation of a simple urban atmospheric chemistry. Al-
ternatively, it would be interesting to include diffuse obstacle
boundaries in the MUSCAT aerosol–chemistry code and to
investigate whether there is a benefit for the application on
urban-air-pollution modeling.
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Appendix A

Table A1. Statistical results of all dispersion simulations performed in the “Michelstadt” wind-tunnel simulation study. The cases super-
scripted with an asterisk were carried out using the reverse approach-flow direction of 180◦. Missed acceptance criteria are highlighted in
bold font.

Source (1h) Mean wt [ppmv] Mean model [ppmv] NMSE FB FAC2

0◦ approach flow

S2 (5 m) 16.2± 22.5 14.5± 18.5 0.10 0.12 0.84
S2 (10 m) 16.2± 22.5 13.7± 17.3 0.25 0.17 0.74
S2 (20 m) 16.2± 22.5 8.3± 9.4 1.35 0.65 0.50
S2 (40 m) 16.2± 22.5 17.8± 23.8 0.30 −0.09 0.82
S2 (80 m) 16.2± 22.5 29.1± 32.0 0.96 −0.57 0.32
S4 (5 m) 4.0± 3.6 4.5± 4.0 0.18 −0.14 0.71
S4 (10 m) 4.0± 3.6 4.4± 3.6 0.07 −0.11 1.00
S4 (20 m) 4.0± 3.6 5.2± 4.7 0.50 −0.26 0.43
S4 (40 m) 4.0± 3.6 6.3± 5.8 0.60 −0.46 0.57
S4 (80 m) 4.0± 3.6 18.9± 12.1 1.46 –1.30 0.0
S5 (5 m) 25.7± 40.8 27.1± 72.8 2.58 −0.05 0.48
S5 (10 m) 25.7± 40.8 30.1± 43.0 1.02 −0.16 0.52
S5 (20 m) 25.7± 40.8 38.5± 57.9 2.11 −0.40 0.67
S5 (40 m) 25.7± 40.8 41.1± 63.8 1.52 −0.48 0.62
S5 (80 m) 25.7± 40.8 55.6± 56.2 2.30 –0.73 0.24

180◦ approach flow

S5∗ (5 m) 42.4± 131.9 49.4± 154.7 0.49 −0.15 0.76
S5∗ (10 m) 42.4± 131.9 69.8± 227.2 3.19 −0.49 0.71
S5∗ (20 m) 42.4± 131.9 45.9± 118.8 0.18 −0.08 0.68
S5∗ (40 m) 42.4± 131.9 43.8± 87.2 2.41 −0.03 0.65
S5∗ (80 m) 42.4± 131.9 48.3± 55.9 7.10 −0.13 0.50
S6∗ (5 m) 54.1± 126.8 57.5± 127.7 0.21 −0.06 0.78
S6∗ (10 m) 54.1± 126.8 58.5± 155.2 0.47 −0.08 0.89
S6∗ (20 m) 54.1± 126.8 59.0± 136.6 1.32 −0.09 0.78
S6∗ (40 m) 54.1± 126.8 53.3± 94.1 2.91 0.01 0.76
S6∗ (80 m) 54.1± 126.8 41.5± 33.6 6.19 0.26 0.54
S7∗ (5 m) 37.8± 63.9 37.0± 70.8 0.39 0.02 0.86
S7∗ (10 m) 37.8± 63.9 44.1± 72.3 0.58 −0.16 0.79
S7∗ (20 m) 37.8± 63.9 53.8± 89.9 1.76 −0.35 0.63
S7∗ (40 m) 37.8± 63.9 43.3± 60.0 2.20 −0.14 0.55
S7∗ (80 m) 37.8± 63.9 49.9± 33.8 1.66 −0.28 0.33
S8∗ (5 m) 11.4± 7.8 9.6± 7.1 0.05 0.18 0.88
S8∗ (10 m) 11.4± 7.8 13.5± 14.1 1.06 −0.16 0.55
S8∗ (20 m) 11.4± 7.8 10.6± 11.2 1.19 0.08 0.42
S8∗ (40 m) 11.4± 7.8 31.3± 40.8 4.06 –0.93 0.30
S8∗ (80 m) 11.4± 7.8 58.4± 40.3 1.74 –1.35 0.03
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Table A2. Statistical results derived from the combined data of all simulated sources at the given spatial resolution. The cases superscripted
with an asterisk are the combined results of the 180◦ approach-flow cases only.

Source (1h) Mean wt [ppmv] Mean model [ppmv] NMSE FB FAC2

All (5 m) 32.2± 80.4 33.0± 89.5 0.54 −0.02 0.80
All (10 m) 32.2± 80.4 38.9± 113.1 1.57 −0.19 0.74
All (20 m) 32.2± 80.4 38.5± 89.5 1.72 −0.18 0.61
All (40 m) 32.2± 80.4 38.3± 65.4 2.75 −0.17 0.61
All (80 m) 32.2± 80.4 46.1± 41.1 3.89 −0.35 0.33
All∗ (5 m) 37.2± 91.2 38.5± 100.2 0.40 −0.03 0.83
All∗ (10 m) 37.2± 91.2 46.2± 129.5 1.48 −0.22 0.75
All∗ (20 m) 37.2± 91.2 45.8± 100.7 1.50 −0.21 0.63
All∗ (40 m) 37.2± 91.2 43.2± 71.2 2.72 −0.15 0.56
All∗ (80 m) 37.2± 91.2 49.4± 40.1 3.97 −0.28 0.35
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are accessible in the release under the GPL v3 license and later at
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