Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-673-2020
https://doi.org/10.5194/gmd-13-673-2020
Methods for assessment of models
 | 
21 Feb 2020
Methods for assessment of models |  | 21 Feb 2020

An evaluation of clouds and radiation in a large-scale atmospheric model using a cloud vertical structure classification

Dongmin Lee, Lazaros Oreopoulos, and Nayeong Cho

Related authors

Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean
Daeho Jin, Lazaros Oreopoulos, Dongmin Lee, Nayeong Cho, and Jackson Tan
Atmos. Chem. Phys., 18, 3065–3082, https://doi.org/10.5194/acp-18-3065-2018,https://doi.org/10.5194/acp-18-3065-2018, 2018
Short summary
Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia
D. Lee, Y. C. Sud, L. Oreopoulos, K.-M. Kim, W. K. Lau, and I.-S. Kang
Atmos. Chem. Phys., 14, 6853–6866, https://doi.org/10.5194/acp-14-6853-2014,https://doi.org/10.5194/acp-14-6853-2014, 2014
A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data
Z. Zhang, K. Meyer, S. Platnick, L. Oreopoulos, D. Lee, and H. Yu
Atmos. Meas. Tech., 7, 1777–1789, https://doi.org/10.5194/amt-7-1777-2014,https://doi.org/10.5194/amt-7-1777-2014, 2014
Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment
C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, and P. Lu
Atmos. Chem. Phys., 13, 2347–2379, https://doi.org/10.5194/acp-13-2347-2013,https://doi.org/10.5194/acp-13-2347-2013, 2013
Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation
Y. C. Sud, D. Lee, L. Oreopoulos, D. Barahona, A. Nenes, and M. J. Suarez
Geosci. Model Dev., 6, 57–79, https://doi.org/10.5194/gmd-6-57-2013,https://doi.org/10.5194/gmd-6-57-2013, 2013

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Barker, H.: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data, J. Geophys. Res., 113, D00A01, https://doi.org/10.1029/2007JD009677, 2008. 
Bodas-Salcedo, A., Webb, M., Bony, S., Chepfer, H., Dufresne, J., Klein, S., Zhang, Y., Marchand, R., Haynes, J., Pincus, R., and John, V.: COSP Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. 
Chou, M., Suarez, M., Ho, C., Yan, M., and Lee, K.: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models, J. Climate, 11, 202–214, 1998. 
Dolinar, E., Dong, X., Xi, B., Jiang, J., and Su, H.: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations, Clim. Dynam., 44, 2229–2247, https://doi.org/10.1007/s00382-014-2158-9, 2015. 
Geleyn, J. F. and Hollingsworth, A.: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation, Contrib. Atmos. Phys., 52, 1–16, 1979. 
Download
Short summary
We apply a cloud classification method based on cloud vertical structure (CVS) from active sensors to evaluate cloudiness in NASA’s GEOS-5 model. We assess the model CVS classes compared to observations and evaluate the simulated cloud radiative effect and its contributions. We apply an analysis framework whereby the source of the model radiative effect errors is traced back to either errors in the nature of the simulated CVS classes or in the frequency at which they are produced by the model.