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Abstract. We revisit the concept of the cloud vertical struc-
ture (CVS) classes we have previously employed to clas-
sify the planet’s cloudiness (Oreopoulos et al., 2017). The
CVS classification reflects simple combinations of simulta-
neous cloud occurrence in the three standard layers tradi-
tionally used to separate low, middle, and high clouds and
was applied to a dataset derived from active lidar and cloud
radar observations. This classification is now introduced in
an atmospheric global climate model, specifically a version
of NASA’s GEOS-5, in order to evaluate the realism of its
cloudiness and of the radiative effects associated with the
various CVS classes. Such classes can be defined in GEOS-
5 thanks to a subcolumn cloud generator paired with the
model’s radiative transfer algorithm, and their associated ra-
diative effects can be evaluated against observations. We find
that the model produces 50 % more clear skies than obser-
vations in relative terms and produces isolated high clouds
that are slightly less frequent than in observations, but opti-
cally thicker, yielding excessive planetary and surface cool-
ing. Low clouds are also brighter than in observations, but
underestimates of the frequency of occurrence (by ∼ 20 % in
relative terms) help restore radiative agreement with observa-
tions. Overall the model better reproduces the longwave ra-
diative effects of the various CVS classes because cloud ver-
tical location is substantially constrained in the CVS frame-
work.

1 Introduction

The large impact of clouds on the Earth’s radiation budget
and the growing wealth of satellite-based cloud observations
are strong motivators for their systematic assessment in cli-
mate models. Such evaluation exercises focus on either cloud
properties, the metrics of cloud radiative impact, or ideally on
both (Pincus et al., 2008; Nam et al., 2012; Klein et al., 2013;
Wang and Su, 2013; Dolinar et al., 2015).

Assessments of cloud properties with satellite observa-
tions are not always straightforward for a variety of reasons
such as inability to define in the model a particular satellite-
observed property or limitations in the satellite observations.
For example, the vertically integrated cloud optical depth of
the cloudy portion of a model grid cell is an ill-defined quan-
tity that cannot be obtained trivially from the model’s optical
depth profile since it is intimately associated with a cloud
fraction profile, thus making layer optical depths relevant for
only the cloudy portions of the grid cell that vary by model
height and can conceptually be vertically aligned in various
ways. In contrast, vertically integrated cloud optical depth is
quite robustly defined in observations since it is measured
with passive imagers at a much higher resolution for which
overcast conditions can be more safely assumed. Issues such
as these have led to the development of “satellite simulators”
that transform global climate model (GCM) cloud fields to
forms that are closer analogs to their counterparts observed
by satellites (e.g., the COSP simulator; Bodas-Salcedo et
al., 2011).

The quality of simulated clouds in GCMs can also be mea-
sured in terms of the realism of their radiative impact using
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quantities such as the cloud radiative effect (CRE), i.e., the
difference between all-sky and clear-sky fluxes at the spatial
scales of a model grid cell (Wang and Su, 2013). This type of
comparison can be performed at a variety of spatiotemporal
scales and is often quite illuminating, but the interpretation of
findings can suffer from inconsistencies in how the estimates
are obtained for satellites and models.

This paper is yet another attempt to evaluate clouds in
an atmospheric GCM (AGCM), specifically a version of the
Goddard Earth Observing System version 5 (GEOS-5) model
(Rienecker et al., 2008; Molod et al., 2012), a multipurpose
global model that is used for a variety of applications. Both
approaches of cloud assessment are used, namely compar-
ison of the cloud fields themselves but also comparison of
cloud radiative impacts. Our cloud property evaluation fo-
cuses on a single aspect of cloudiness: cloud vertical struc-
ture (CVS). The comparison is possible because of recent
progress in two areas: active cloud remote sensing, which
makes resolving cloud vertical profiles possible, and the de-
velopment of schemes (subcolumn generators) that create
subgrid cloud vertical structures in GCMs. Being able to cat-
egorize clouds in terms of a few CVS categories facilitates
the comparison between observations and models and en-
ables a more rigorous CRE comparison that evaluates the
model’s skill with regard to how it simulates the radiative
impact of individual CVS classes.

2 Data and methodology

The observational reference dataset of CVS class occurrence
and associated radiative fluxes is essentially the same as
Oreopoulos et al. (2017), hereafter O17, and spans 4 years
(2007–2010). A schematic illustration of the original CVS
classes of O17 is reproduced here as Fig. 1. The details of
how cloud layer boundaries available in the 2B-CLDCLASS-
LIDAR R04 dataset (Sassen and Wang, 2012; see also
http://tinyurl.com/2b-cldclass-lidar, last access: 19 February
2020), a joint product coming from CloudSat and CALIPSO
(hereafter CC) active cloud radar and lidar observations,
were interpreted as cloud layer profiles belonging to one
of these classes are described exhaustively in the appendix
of O17. The definition of the CVS classes hinges on defin-
ing broad categories of high (H ), middle (M), and low (L)
clouds that are confined to three standard atmospheric lay-
ers: one above 440 hPa, another between 680 and 440 hPa,
and yet another below 680 hPa, respectively. The vertical
level boundaries defining these standard layers come from
the International Satellite Cloud Climatology Project (IS-
CCP), (Rossow and Schiffer, 1991). The reference radiative
fluxes come from the 2B-FLXHR-LIDAR R04 CC product
(L’Ecuyer et al., 2008; Henderson et al., 2013; Matus and
L’Ecuyer, 2017) and are obtained from a radiative transfer
algorithm operating on observed and reanalysis output that
has at its core retrieved CC cloud properties.

For the purposes of this study, the CVS classes have been
reduced to seven by merging the CVS classes for which
clouds occur simultaneously in the same two or three stan-
dard adjacent layers (all multilayer CVS classes other than
HL). In other words, we no longer distinguish between CVS
classes with clouds occurring in the same adjacent standard
layers, even if those were previously discerned based on
whether or not a clear layer of substantial vertical extent was
present to separate the cloud layers. This means in practice
that we no longer distinguish (see Fig. 1) between CVS =
H ×M ×L and HML (now simply HML), CVS=H ×M

and HM (now simply HM), or CVS=M ×L and ML (now
simply ML). The reason for reducing the CVS classes to
7 from the original 10 is the complexity of the model cloud
profiles, which can consist of numerous distinct cloud lay-
ers and which therefore renders the O17 CVS classification
scheme inapplicable. The original scheme was designed for
observed cloud profiles from CC that rarely (less than 1 %
of the time) consisted of more than four distinct cloud layers
in which case they were either ignored or processed only in
the simplest of cases (such as multiple individual cloud lay-
ers residing within a single standard layer – see the appendix
of O17).

A prerequisite for the evaluation of GEOS-5 clouds in
terms of their CVS class frequency and the CRE statistics
associated with these CVS classes is creating comparable
datasets. Assigning CVS classes to grid cell GCM cloud
fields is not possible without the manipulation of the GCM
cloud profiles. To this end, we use the cloud subcolumn gen-
erator that is paired with the RRTMG-LW and RRTMG-SW
radiative transfer codes (Mlawer et al., 1997; Iacono et al.,
2008) in the model’s Monte Carlo independent column ap-
proximation (McICA; Pincus et al., 2003) implementation.
This subcolumn generator follows Räisänen et al. (2004) and
can produce subcolumns that are consistent with specific as-
sumptions about the vertical overlap of both cloud fraction
and the horizontal distributions of cloud condensate. While
the latter type of overlap is irrelevant to CVS class frequency
statistics, it does matter for the radiative transfer calculations
producing the radiative fluxes used to estimate CREs. The
140 subcolumns created by the model’s generator (which
match the number of “g points” in RRTMG-LW’s correlated-
k scheme) are essentially assumed equivalent to the cloud
profiles viewed by the active instruments (CALIPSO’s li-
dar and CloudSat’s radar) and whose vertical location in-
formation is recorded in the 2B-CLDLASS-LIDAR product.
Herein, we will show results from two types of cloud fraction
overlap schemes that have been implemented in the cloud
subcolumn generator: generalized (GN) overlap, also known
as exponential overlap (Hogan and Illingworth, 2000; Ore-
opoulos and Norris, 2011), and maximum random overlap
(MR overlap; Geleyn and Hollingsworth, 1979).

The model, GEOS-5 tag Jason-2_0, was run with fixed sea
surface temperatures (SSTs) for the same period as the refer-
ence dataset, 2007–2010. The model integration was driven
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Figure 1. The original 10 CVS classes of Oreopoulos et al. (2017) used as a reference for the comparison of this paper. The multilayer CVS
classes other than HL are merged in this paper, thus reducing the total number of CVS classes to seven. We essentially do no distinguish
between contiguous and noncontiguous clouds in adjacent standard layers. Dotted lines show which pairs of CVS classes have been combined
for this study.

by radiative fluxes and heating rates produced by applying
generalized overlap in the radiation calculation. RRTMG-
LW and RRTMG-SW were called for an additional set of
flux calculations this time using the MR overlap assumption
to produce cloudy subcolumns but only in diagnostic mode;
i.e., the generated fluxes served only diagnostic purposes and
were not passed back to the model to influence the evolution
of its energetics and dynamics. This way, with one interac-
tive and one diagnostic call to the RRTMG codes, we were
able to obtain two sets of CVS diagnostics and corresponding
CREs. In both cases, the subcolumns come from a common
mean cloud fraction and condensate profile. The layer con-
densates are assumed to possess horizontal subgrid conden-
sate heterogeneity as prescribed in Oreopoulos et al. (2012).
This subgrid condensate variability affects the model’s CRE
distribution, but not the CVS fields and statistics.

In the subcolumn generator, the decorrelation length (e-
folding distance) for the generalized overlap scheme was set
to vary zonally as described in Oreopoulos et al. (2012).
The physical meaning of the decorrelation length is that
cloud layers separated by a distance equal to the decorre-
lation length overlap as a mixture of maximum and random
overlap in e−1 (≈ 0.368) and 1-e−1 (≈ 0.632) proportions
(weights), respectively. At distances greater (smaller) than
the decorrelation length the contribution of random (maxi-
mum) overlap contribution increases (decreases) compared
to the above values. In the limit of zero separation cloud
overlap is purely maximum, while in the limit of infinite dis-
tance overlap is purely random. The zonal prescription of
decorrelation length by Oreopoulos et al. (2012) is based on
CloudSat observations and is meant to capture a more co-
herent vertical cloud alignment (i.e., more maximum overlap
and greater decorrelation length) at low latitudes compared
to high latitudes, as also seen by Barker (2008). This for-
mulation of overlap is an alternative to maximum random
overlap, which was the standard popular choice in earlier
years. The Geleyn and Hollingsworth (1979) implementa-
tion of MR overlap in our generator based on Räisänen et

al. (2004) allows for random overlap even within a “block”
of contiguous clouds: immediately adjacent clouds are maxi-
mally overlapped, but nonadjacent clouds within the contigu-
ous block can have portions that are randomly overlapped
if there is a local minimum in cloud fraction between them.
Random overlap applies for those cloudy portions that do not
fully overlap the in-between layers. This type of MR over-
lap should be contrasted with other implementations (e.g.,
Chou et al., 1998) in which maximum overlap always takes
place within the block, while the various distinct blocks of
the atmospheric column (always separated by clear layers)
are themselves randomly overlapped.

3 GEOS-5 cloud evaluation with CVS

3.1 Climatological CVS occurrence

Figure 2 compares the observed and simulated (from GN
overlap) multiannual maps of the relative frequency of oc-
currence (RFO) for all seven CVS classes of our study. The
observed fields are sampled at rather coarse 4◦×4◦ scales to
compensate for the substantial sparseness of the active ob-
servations (gridding at higher resolutions would make for
relatively noisy maps). Above each panel, we provide the
area-weighted RFO global mean of the CVS (equivalent to its
global cloud fraction). These fields include nighttime obser-
vations and simulations since the former are possible for ac-
tive sensors and the latter are passed as input for the model’s
nighttime RRTMG-LW calculations.

Before examining consistency (or lack thereof) for cloud
fields, we first turn our attention to clear skies. We note that
the observations suggest a cloudier world with clear skies
occurring only ∼ 25 % of the time (or, alternatively, cover-
ing 25 % of the global area between 82◦ S and 82◦ N). The
GEOS-5 AGCM, on the other hand, produces clear skies
more frequently, ∼ 38 % of the time over the entire globe
(90◦ S to 90◦ N) for GN and ∼ 42 % for MR. Despite the
model’s positive clear-sky fraction bias (negative cloud frac-
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Figure 2. Geographical RFO distribution (%) for cloudless skies and the seven CVS classes according to CloudSat/CALIPSO observations
(a) as well as for GEOS-5 (GN overlap assumption, b). Global mean values are shown above each panel; in the case of GEOS-5 we provide
the global values for both the GN and MR overlap (in parentheses).

tion bias), many patterns of clear-sky occurrence are real-
istic, with peaks occurring in desert areas, western North
America, and the southern parts of Africa and South Amer-
ica. Over the ocean, the model seems to be producing clear
skies in the Maritime Continent and the far southern oceans
more frequently than observations, but these overestimates
are still much smaller compared to those in wide subtropical
swaths of the Atlantic and Pacific oceans. The model also ex-
hibits pronounced cloudiness underestimates in the descend-

ing branch of the central Pacific Walker circulation. The only
notable model underestimate of clear-sky frequency occurs
over western Antarctica. The MR overlap assumption makes
the clear-sky overestimates worse, with the biggest impact
seen in the central and western tropical Pacific (clear subcol-
umn in Fig. 3). Note that the observed global clear-sky frac-
tion is lower in 2B-CLDCLASS-LIDAR compared to pas-
sive satellite observations such as those from MODIS (King
et al., 2003) because of CALIOP’s enhanced ability to detect
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clouds that are optically very thin. Model cloud coverage,
on the other hand, has traditionally been tuned to resemble
that seen in cloud climatologies obtained by satellite obser-
vations from passive imagers at solar and thermal infrared
wavelengths.

Moving on to cloudy skies, a quick survey of the remain-
ing panels in Fig. 2 reveals that the model exhibits consider-
able skill in simulating cloudiness when viewed under the
prism of CVS classes. Weaknesses, however, become ap-
parent upon closer examination. In terms of global values,
the only CVS class in which the model produces a sub-
stantial RFO overestimate is HM for both overlap assump-
tions. For CVS=HML, global RFOs agree, especially for
the GN overlap assumption. The global RFOs of all other
CVS classes are underestimated to varying degrees, with the
underestimates being slightly worse for the MR overlap as-
sumption, except for CVS=L for which MR RFO slightly
exceeds GN RFO. The total RFO of the four CVS classes
containing H clouds is ∼ 40 % in observations and ∼ 36 %
(GN) or ∼ 32 % (MR) in the model. The remaining CVS
classes consisting of only L and M clouds add up to a global
RFO of ∼ 35 % in observations and ∼ 26 % in the model
(both GN and MR). Therefore, most of the 13 % discrepancy
between GEOS-5 and GN in global cloud fraction comes
from the three CVS classes containing only L and M clouds,
while the larger discrepancy of ∼ 17 % for GEOS-5 and MR
is more evenly split between these three CVS classes and the
remaining four containing H clouds.

A closer comparison of geographical features is also in-
formative. Figure 2b shows only the GN overlap results and
can be directly compared with Fig. 2a showing the observed
maps. The performance of the MR overlap implementation
can be gleaned in terms of its deviation from GN in the Fig. 3
difference maps.

Simulating low clouds has been identified as a challenge
for large-scale models, but this version of GEOS-5 seems
to be simulating the isolated low clouds (CVS=L) quite
well, with a global underestimate of ∼ 5 % for GN overlap
and ∼ 4 % for MR (absolute values), as well as with char-
acteristic cloud patterns associated with marine stratocumu-
lus being present albeit with less extensive spatial coverage.
While GEOS-5 does not produce isolated M clouds (CVS
class M) as often as in the observations, the impact is ex-
pected to be small as this CVS class is the least frequently ob-
served exclusively over land, specifically deserts, ice- and/or
snow-covered surfaces, and regions of pronounced orogra-
phy. Overall, however, there is not such a great paucity of M

clouds in the model when taking into account the other CVS
classes containing this type of cloud. Setting aside deep and
multilayer clouds (the HML CVS class), M clouds appear
only about 11 % (for GN – the figure rises to 22 % for MR)
more frequently (in relative terms) in observations than the
model; the combined RFO of M, ML, and HM is 14.5 % in
the observations and 13 % (11.8 %) in the model for the GN
(MR) implementation. Finally, H over L clouds (CVS class

HL) are one of the biggest contributors to the overall cloudi-
ness discrepancy between the real and simulated worlds as
they appear twice as often in the observations as in the GN
version of the model (and even more relative to the MR im-
plementation of the model). The model seems to be lacking
much of the tropical presence of this CVS class.

A closer look at the influence of the overlap assumption on
CVS RFOs can be gauged from the Fig. 3 maps. We have pre-
viously seen that the MR overlap assumption generally pro-
duces less cloudiness than GN. This happens systematically
(i.e., virtually all locations) for five out of seven CVS classes.
The interesting exception is CVS=L (CVS=M is absent
in GEOS-5 for all practical purposes). The Fig. 3 difference
map for CVS=L reveals that the GN’s reduced cloudiness
comes mostly from the extratropics; tropical and subtropical
pockets can be found where the GN cloud amounts exceed
those from MR, as in the other CVS classes. The contrast
between CVS=L and the other CVS classes illustrates the
fact that the specific flavors of these overlap assumptions as
implemented in GEOS-5 can produce a variety of outcomes
that depend on the total geometrical extent of contiguous or
noncontiguous vertical cloud configurations and the detailed
shape of the cloud fraction profile.

3.2 Global CRE comparison by CVS class

Figure 4 compares the global mean CRE between the model
and observations, the latter (r) coming from the aforemen-
tioned 2B-FLXHR-LIDAR CC product. It shows the mean
values only when the CVS occurs; i.e., CRE is weighted by
area, but not by global RFO. We call this type of CRE the
“cloudy column” or “overcast” CRE since it is calculated by
taking the mean of the CRE values of cloudy subcolumns be-
longing to the CVS class. CRE values for each cloudy sub-
column also correspond to overcast conditions since there is
no partial cloudiness at the subcolumn scale. We show over-
cast CRE from three perspectives: the top of the atmosphere
– TOA (Fig. 4a), the surface – SFC (Fig. 4c), and the at-
mospheric column – ATM (Fig. 4b), the latter derived as
the difference between the TOA and SFC CREs. Moreover,
we distinguish between shortwave (SW) and longwave (LW)
components and also display their sum, which we call “to-
tal” CRE (also called “net” CRE). With CRE being defined
as the difference between cloudy and clear-sky net (down–
up) fluxes, negative values indicate a radiative cooling effect,
while positive values indicate a radiative warming effect. For
TOA and SFC, all SW CREs are negative. Note also the mag-
nitudes at TOA and SFC being rather similar for SW, with
the slightly larger SFC value resulting from the small posi-
tive ATM SW CRE, which indicates that clouds slightly en-
hance atmospheric column absorption. While LW CREs at
both TOA and SFC are positive and therefore indicative of
warming, the ATM LW CRE can be either positive or neg-
ative. Note that all positive global means involve H clouds.
Again, we show model results for the two overlap assump-
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Figure 3. RFO difference (%) maps for clear skies (divided by two to use a common color scale) and the seven CVS classes as simulated by
GEOS-5 using the GN and MR overlap assumptions in the cloudy subcolumn generator.

tions, GN and MR, although their CREs are quite close in
general. The observed SW CREs depend strongly on the in-
coming solar flux at the approximate 13:30 local overpass
time and are therefore scaled to diurnal fluxes by normaliz-
ing with the ratio of the instantaneous to diurnally averaged
incoming solar flux at TOA (O17); the LW CREs are simple
averages of the daytime and nighttime overpass values. On
the other hand, both SW and LW CREs from the model are
daily averages of 3-hourly mean outputs.

For TOA SW CRE, the best agreement between model
and observations occurs for CVS=L and CVS=HM. For
the remaining CVS classes the model either overestimates
(CVS=H, M, HL) or underestimates (CVS=ML, HML)
overcast TOA SW CRE. The overestimate for CVS class H
is very large in relative terms given the small absolute mag-
nitude of the observed CRE. It appears then that H clouds in
the model are optically thicker than in observations. Discrep-
ancies are smaller for TOA LW CRE, reflecting the lesser
dependence of this quantity on cloud properties other than
cloud-top location (which is constrained because of the CVS
class decomposition) once clouds reach a certain value of op-
tical thickness (∼ 5). The biggest bias (underestimate) ap-
pears for CVS=HML CVS, but since it is still smaller than
the SW CRE bias it results in an underestimate of net plan-
etary cooling as expressed by total TOA CRE (purple bars).
Given the better agreement between LW CREs, total TOA
CRE biases largely follow the sign of the SW CRE biases.
These findings are very insensitive to the type of chosen over-
lap, although the differences in magnitudes between the two

simulated values are still large enough to be distinguishable
in most cases.

When moving to an examination of surface (SFC) CREs
(Fig. 4c) our conclusions about the SW CRE component are
the same as before since atmospheric (ATM) SW CREs are
small positive values (panel b). LW CRE values are again
simulated quite well since most of the variability is driven
by the location of the cloud bottom, which is constrained by
CVS class. The largest biases occur for CVS=L and HL
(overestimates by the model), and since the TOA CREs have
small biases for those cases, errors (excessive cooling) ma-
terialize in the ATM LW CRE. Still, the largest ATM LW
CRE error occurs for CVS=HM (excessive warming by the
model) because the TOA and SFC CRE errors are in the
opposite direction. Given the small magnitude of ATM SW
CRE, the total ATM CRE errors track those of the LW com-
ponent.

Figure 5 compares observed and modeled CRE values that
are now weighted by the global mean RFO (f for observa-
tions) of the CVS classes in addition to areal weighting. We
can call this type of CRE “all-sky” CRE since in the calcu-
lation of the mean all subcolumns that do not belong to the
CVS class under consideration contribute zero errors. Sum-
ming then these CVS-specific values yields the true global
CRE of observed and modeled CRE fields. Since the all-sky
CRE values and the range of the y axis are much smaller
than in Fig. 4, it makes sense to compare the two figures
only with respect to relative biases, essentially focusing on
the position of the symbols (simulated values) relative to the
bar (observed values). While this will be shown more explic-
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Figure 4. Comparison between observations and the model (GN
and MR) of global overcast CREs (Wm−2): top of the atmosphere
(TOA) (a), surface (SFC) (c), and atmospheric column (ATM) (b)
derived as the difference between the TOA and SFC CREs. CREs
are distinguished into shortwave (SW) and longwave (LW) compo-
nents, and their sum, the “total” CREs for each CVS class, are also
shown. Note that the y-axis range is the same for TOA and SFC
CRE, but it is substantially more compressed for ATM CRE.

itly in Fig. 6, comparison of Figs. 4 and 5 basically indicates
whether RFO errors suppress (i.e., compensate for) or am-
plify cloud property only errors. Take CVS=HL, for exam-
ple: RFO errors (underestimates) help suppress the TOA and
SFC SW (and total) overestimates. In general, we do not see
much of the opposite effect, i.e., an amplification of relative
error CRE when moving from overcast to all-sky CRE. Of
course, a very low RFO also makes an overcast CRE that pre-
viously seemed substantial disappear, with CVS=M being
a characteristic case in point. The discussion of all-sky CRE
error interpretation continues in the next subsection where a
more formal error decomposition framework is introduced.

3.3 CRE error decomposition

Figure 6 shows the decomposition of GEOS-5 all-sky CRE
global errors 1CRE in Fig. 5 to overcast CRE and RFO error
contributions for the GN case only (the conclusions remain
the same for MR). The decomposition can be expressed as
follows (e.g., Tan et al., 2015):

1CRE= f ×1r + r ×1f +1r ×1f. (1)

This representation of CRE error arises when the model
global all-sky CRE of a CVS class (Fig. 5) is expressed as
the product of a deviation 1r from the observed mean over-
cast CRE r (Fig. 4), and the model global RFO is expressed
as a deviation 1f from the observed mean RFO, f :

CREGEOS−5 = (r +1r)× (f +1f ). (2)

Figure 5. As Fig. 4, but for all-sky (RFO-weighted) CREs.

Basically, the model’s grid-mean CRE error for a CVS class
arises from a combination of overcast CRE bias 1r under the
observed RFO f and the simulated RFO bias 1f under ob-
served overcast CRE r , plus a covariation term of RFO and
CRE errors under observed f and r (Tan et al., 2015). Such
a decomposition of CRE error allows us to infer, for exam-
ple, whether the model’s poor simulation of all-sky CRE is
mostly due to errors in simulating the occurrence frequency
of the CVS class or errors in the optical and physical proper-
ties of the CVS class that drive the overcast CRE. Similarly, it
potentially reveals cases in which good simulations of global
all-sky CRE in Fig. 5 benefit from compensating errors in
simulated RFO (Fig. 2) and overcast CRE (Fig. 4).

Separate panels are used in Fig. 6 for SW (a, d, g), LW
(b, e, h), and total (c, f, i) CRE. The breakdown by TOA,
SFC, and ATM is also preserved, thus yielding a total of
nine panels. In the SW, TOA (Fig. 6a), and SFC (Fig. 6g)
results look again very similar, while the ATM CRE errors
(Fig. 6d) are too small to merit discussion. For most CVS
classes (five out of seven) all-sky SW CRE errors (gray bars)
come from overcast CRE errors (red bars), namely errors in
CVS optical properties. The excessive planetary cooling of
the cloudy columns (negative red bars, four CVS classes) is
always dampened by compensating errors, sometimes virtu-
ally eliminating the error (as in CVS=L, HL), reducing it
slightly (CVS=H), or overcorrecting (CVS=M). SW TOA
overcast CREs (red bars in Fig. 6a) in the opposite direction
(cooling underestimates) become bigger all-sky errors due to
RFO errors for CVS=ML and HML, while the all-sky er-
rors for CVS=HM come almost exclusively from RFO er-
rors (blue bars in Fig. 6a). Finally, three CVS classes have
sizable covariation errors (green bars) in the same direction
as RFO errors. The above error interpretation is virtually the
same for surface (SFC) SW errors (Fig. 6g).
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Figure 6. Decomposition of all-sky CRE error (Eq. 1) for GEOS-5 CVS classes when the GN overlap assumption is used. Gray bars represent
the overall all-sky CRE error, and the remaining bars represent contributions to that error as follows: red bars represent overcast CRE errors,
blue bars RFO errors, and green bars covariation errors. The nine panels represent all combinations of CRE, namely SW, LW, total at TOA,
SFC, and within ATM.

Contrary to the SW, the LW CRE errors for all three van-
tage points (TOA in Fig. 6b, SFC in Fig. 6h, ATM in Fig. 6e)
deserve their own discussion as they have different char-
acteristics. At TOA and SFC, the errors are substantially
smaller than their SW counterparts. Three of the four CVS
classes with H clouds (the exception being CVS=H) exhibit
∼ 2 Wm−2 (absolute) errors, coming from RFO contribu-
tions in two out of the three classes. These three classes have
smaller all-sky errors at the SFC, in one case (CVS=HL)
because of compensating errors. The largest component er-
rors occur for CVS=L, which has the largest absolute mag-
nitude of all-sky SFC CRE, but with component errors in the
opposite direction, compensation reduces the all-sky CRE er-
ror. Because the TOA errors for this CVS class are small, the
SFC errors carry to the ATM errors. The other CVS class
with large ATM error is HML, whereby TOA and SFC errors
of the opposite sign conspire to magnify the ATM error.

Errors in total all-sky CRE are driven mainly by SW er-
rors at TOA and SFC (Fig. 6c and i) as well as LW errors for
ATM (Fig. 6f). Errors of the opposite sign reduce the over-
cast cooling error at the SFC for CVS=L and HL and the
all-sky warming error for CVS=ML. But because the SFC
LW CRE errors are in general small, the total CRE SFC er-
rors largely retain the characteristics of the SW component.
In the atmospheric column, SW and LW overcast (and all-
sky) errors are additive for CVS=HML and opposing for
CVS=L, the only two classes for which ATM SW CRE reg-
isters errors of notable magnitude (see Figs. 4b and 5b).

In summary, this decomposition analysis showed the mul-
tiple ways relatively good agreement with observed all-sky
CRE values from various vantage points can be achieved by
GEOS-5 (or any other model evaluated this way). Overcast
CRE and RFO errors can compensate, TOA and SFC all-sky
CRE errors can compensate (for ATM LW CRE, e.g., CVS is
M, ML), SW and LW errors can compensate for total CREs,
and finally the errors among various CVS classes can com-
pensate towards decreasing the global CRE error.

3.4 Seasonal CRE comparison

Figures 7–9 compare the multiyear mean annual cycle of
TOA, SFC, and ATM total (SW+LW) all-sky CRE zonal
averages between observations and the model (employing the
GN overlap assumption) for the four CVS classes with the
greatest all-sky SW or LW CREs according to Fig. 5.

Inspection of the TOA and SFC CRE plots shows that the
model has some skill in simulating the seasonal competition
between SW and LW CRE, but this should not come as a
surprise as it is driven mainly by seasonal changes in inso-
lation. Basically, with everything else staying the same, the
SW CRE contribution to total CRE scales with the amount of
incoming solar energy. Positive values of total TOA and SFC
CRE occur when the solar insolation is weak during the win-
ter, thus allowing the positive LW CRE to exceed the negative
SW CRE. At TOA, this takes place only for the HML CVS
class since this is the class with competing SW and LW CREs
of relatively large magnitude. Note that the model summer
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Figure 7. Comparison of the multiyear annual cycle of TOA total (SW+LW) all-sky CRE zonal averages (W m−2) between observations
(top row, panels a to e) and the model (bottom row, panels f to j) when employing the GN overlap assumption for the four CVS classes with
the greatest all-sky CREs according to Fig. 5. The rightmost panels displays the scaled (half) total CRE of all CVS classes combined.

planetary cooling is stronger than in the observations. At the
SFC, besides CVS=HML the seasonal switch from cool-
ing to warming also takes place for CVS=L because the
LW CRE is of comparable magnitude to its SW counterpart.
The model’s CVS=H is virtually neutral radiatively at TOA
throughout the year, in contrast to the observations, for which
it provides planetary radiative heating in the tropics and sub-
tropics. It seems then that in the model CVS=H consists of
optically thicker clouds that reflect more solar radiation to
space than in the real world. H clouds in GEOS-5 also ap-
pear to be optically thicker when overlapping with L clouds
(CVS=HL), in this case producing planetary cooling in the
tropics throughout the year and in the extratropics during the
summer months of high insolation, in contrast to the obser-
vations for which their cooling effect is very weak and oc-
curs only in the austral extratropics during summertime. Ev-
idence for optically thicker H clouds in both CVS=H and
HL is also seen at SFC total CREs, which are more nega-
tive in the model than in the observations. Overall (all CVS
classes combined; Figs. 7e, j and 8e, j), the model produces
a rather realistic pattern of seasonal variations in zonal mean
total CRE.

Total ATM CREs are driven, as we have seen earlier, by the
LW component, and their seasonal cycles are fairly well rep-
resented by the model for three of the four most radiatively
important CVS classes (Fig. 9). The nature of CVS=HML,
however, seems to be different in GEOS-5 compared to
observations. At high latitudes, the atmospheric column is
cooled by this type of cloudiness, especially during the sum-

mer months, as the SFC total CRE (Fig. 8) exceeds the TOA
CRE (Fig. 7). Since the SW contribution is relatively small,
it then seems that L clouds within CVS=HML have lower
bases or are optically thicker during the summer months in
the model compared to observations, making their downward
emission towards the surface, and therefore also the contrast
between TOA and SFC emission, stronger in the model than
the observations. Figure 9i also shows that the near-zero to-
tal ATM CRE for CVS=HML in GEOS-5 (Fig. 5) is a result
of positive and negative total ATM CRE regional compensa-
tions. Overall, the model captures the basic zonal pattern of
atmospheric heating and warming (Fig. 9e, j), with heating
prevailing in the tropics and cooling in the extratropics. The
tropical heating is, however, weaker than in the observations,
while the extratropical atmospheric cooling is stronger.

4 Conclusions

We have introduced a method of cloud evaluation for large-
scale atmospheric models that focuses on the vertical struc-
ture of cloudiness. Cloud vertical structure (CVS) is resolved
in a rather simplified way based on the various combinations
of cloud presence in three standard layers that have been
traditionally used to distinguish between high, middle, and
low clouds. A reference dataset for such CVS classification
now exists because of CloudSat and CALIPSO active sen-
sor observations (Oreopoulos et al., 2017). For the purposes
of model evaluation, the initial dataset of 10 CVS classes
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Figure 8. As Fig. 7, but for SFC total all-sky CRE.

Figure 9. As Fig. 7, but for ATM total all-sky CRE.

was simplified to consist of 7 classes by merging some of
the original classes that had clouds in adjacent standard lay-
ers. Beyond comparison of the frequency of occurrence of
the CVS classes we also compared their radiative impact in
terms of the cloud radiative effect (CRE). While the CVS
classes by design constrain cloud vertical location (albeit not
in the strictest of ways), they constrain extinction to a lesser
extent and mostly qualitatively (e.g., multilayer cloud con-

figurations are expected to have a greater total column ex-
tinction). This is taken into account when examining the per-
formance of the model in terms of SW and LW CRE. We
developed a framework wherein we can compare CRE for
only when a CVS class occurs (overcast CRE) or perform a
comparison that also accounts for how frequently the CVS
class occurs (all-sky CRE). We can then naturally examine
to what extent errors in the latter type of CRE come from
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errors in the overcast CRE of the class and/or biases in the
frequency of occurrence.

The GEOS-5 model under evaluation produces about 50 %
more clear skies than observations in relative terms. It pro-
duces isolated high clouds (cloud top and base above the
440 hPa level) that are slightly less frequent than in obser-
vations but are optically thicker, yielding excessive plane-
tary and surface cooling. Low clouds (cloud tops and bases
within the lowest layer of the troposphere up to 680 hPa) are
usually a challenge for global models, but GEOS-5 is doing
reasonably well and compensates for a lower frequency of
occurrence (by ∼ 20 % in relative terms) with overestimates
in extinction, producing in the end an excellent agreement
with observations for SW and LW all-sky CREs at either
the TOA, SFC, or the atmospheric column vantage points.
Overall LW CREs are better simulated since they are mainly
driven by vertical cloud location, which is substantially con-
strained when clouds are broken by CVS class. But either
component of CRE can be off in terms of the contribution to
the global CRE if the frequency of occurrence is deficient.
The other side of the coin is, of course, that incorrect sim-
ulation of the frequency of occurrence can compensate for
biased cloud optical and physical properties that determine
the overcast CRE of the CVS class. Needless to say, CRE
biases among different CVS classes can also cancel out to
various degrees when global or regional CREs encompass-
ing all clouds represented by the CVS classes are calculated.
In such a holistic view, the model appears able, for example,
to reproduce the aggregate planetary feature of atmospheric
radiative warming in the tropics and cooling in the extrat-
ropics driven by cloud configurations dominated by high and
low clouds, respectively, albeit with magnitudes that differ
from those observed.

The evaluation we conducted requires that the model has
the capability to produce cloudy subcolumns, which are then
considered equivalent to the atmospheric column profiles
seen by the active observations. There is no unique way to
go from mean cloud fraction profiles to subcolumns having
layer cloud fractions that are either one or zero. We tried
two ways to produce subcolumns that assume different cloud
fraction overlaps and obtained rather close results. By adopt-
ing our framework of cloud evaluation, which, incidentally,
should be used in conjunction with other cloud evaluation
methodologies (e.g., cloud regimes as in Jin et al., 2017a, b),
one can assess whether other large-scale models are more
sensitive (i.e., produce a greater diversity of CVS climatolo-
gies) to different overlap assumptions applied to the same
original mean cloud fraction profiles. What one should al-
ways keep in mind, however, is that no matter how good
the cloud subcolumn generator is, observed CVS class global
frequencies and patterns cannot be reproduced if the model’s
underlying mean cloud profiles used as input to the generator
are deficient.
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