Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6303-2020
https://doi.org/10.5194/gmd-13-6303-2020
Model description paper
 | 
11 Dec 2020
Model description paper |  | 11 Dec 2020

Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model

Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein

Related authors

Downscaling of air pollutants in Europe using uEMEP_v6
Qing Mu, Bruce Rolstad Denby, Eivind Grøtting Wærsted, and Hilde Fagerli
Geosci. Model Dev., 15, 449–465, https://doi.org/10.5194/gmd-15-449-2022,https://doi.org/10.5194/gmd-15-449-2022, 2022
Short summary
Local fractions – a method for the calculation of local source contributions to air pollution, illustrated by examples using the EMEP MSC-W model (rv4_33)
Peter Wind, Bruce Rolstad Denby, and Michael Gauss
Geosci. Model Dev., 13, 1623–1634, https://doi.org/10.5194/gmd-13-1623-2020,https://doi.org/10.5194/gmd-13-1623-2020, 2020
Short summary
The impact of measures to reduce ambient air PM10 concentrations originating from road dust, evaluated for a street canyon in Helsinki
Ana Stojiljkovic, Mari Kauhaniemi, Jaakko Kukkonen, Kaarle Kupiainen, Ari Karppinen, Bruce Rolstad Denby, Anu Kousa, Jarkko V. Niemi, and Matthias Ketzel
Atmos. Chem. Phys., 19, 11199–11212, https://doi.org/10.5194/acp-19-11199-2019,https://doi.org/10.5194/acp-19-11199-2019, 2019
Short summary
Modelling the dispersion of particle numbers in five European cities
J. Kukkonen, M. Karl, M. P. Keuken, H. A. C. Denier van der Gon, B. R. Denby, V. Singh, J. Douros, A. Manders, Z. Samaras, N. Moussiopoulos, S. Jonkers, M. Aarnio, A. Karppinen, L. Kangas, S. Lützenkirchen, T. Petäjä, I. Vouitsis, and R. S. Sokhi
Geosci. Model Dev., 9, 451–478, https://doi.org/10.5194/gmd-9-451-2016,https://doi.org/10.5194/gmd-9-451-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Analytical and adaptable initial conditions for dry and moist baroclinic waves in the global hydrostatic model OpenIFS (CY43R3)
Clément Bouvier, Daan van den Broek, Madeleine Ekblom, and Victoria A. Sinclair
Geosci. Model Dev., 17, 2961–2986, https://doi.org/10.5194/gmd-17-2961-2024,https://doi.org/10.5194/gmd-17-2961-2024, 2024
Short summary
Challenges of constructing and selecting the “perfect” boundary conditions for the large-eddy simulation model PALM
Jelena Radović, Michal Belda, Jaroslav Resler, Kryštof Eben, Martin Bureš, Jan Geletič, Pavel Krč, Hynek Řezníček, and Vladimír Fuka
Geosci. Model Dev., 17, 2901–2927, https://doi.org/10.5194/gmd-17-2901-2024,https://doi.org/10.5194/gmd-17-2901-2024, 2024
Short summary
A machine learning approach for evaluating Southern Ocean cloud radiative biases in a global atmosphere model
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024,https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Decision Support System version 1.0 (DSS v1.0) for air quality management in Delhi, India
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024,https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary

Cited articles

Andersson, C., Langner, J., and Bergström, R.: Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis, Tellus, 59B, 77–98, https://doi.org/10.1111/j.1600-0889.2006.00196.x, 2007. 
Bächlin, W., Bösinger, R.: Untersuchungen zu Stickstoffdioxid-Konzentrationen, Los 1 Überprüfung der Rombergformel, Ingenieurbüro Lohmeyer GmbH & Co. KG, Karlsruhe, Projekt 60976-04-01, Stand: Dezember 2008, Gutachten im Auftrag von: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein–Westfalen, Recklinghausen, 2008. 
Benson, P.: A review of the development and application of the CALINE3 and 4 models, Atmos. Environ., 26B:3, 379–390, https://doi.org/10.1016/0957-1272(92)90013-I, 1992. 
Benson, P.: CALINE4 – A dispersion model for predicting air pollutant concentrations near roadways, FHWA/CA/TL-84/15, California Department of Transportation, Sacramento, CA, available at: https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB85211498 (last access: 8 December 2020), 1984. 
Download
Short summary
Air pollution is both a local and a global problem. Since measurements cannot be made everywhere, mathematical models are used to calculate air quality over cities or countries. Modelling over countries limits the level of detail of the models. For countries, the level of detail is only a few kilometres, so air quality at kerb sides is not properly represented. The uEMEP model is used together with the regional air quality model EMEP MSC-W to model details down to kerb side for all of Norway.