Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6303-2020
https://doi.org/10.5194/gmd-13-6303-2020
Model description paper
 | 
11 Dec 2020
Model description paper |  | 11 Dec 2020

Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model

Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein

Related authors

Downscaling of air pollutants in Europe using uEMEP_v6
Qing Mu, Bruce Rolstad Denby, Eivind Grøtting Wærsted, and Hilde Fagerli
Geosci. Model Dev., 15, 449–465, https://doi.org/10.5194/gmd-15-449-2022,https://doi.org/10.5194/gmd-15-449-2022, 2022
Short summary
Local fractions – a method for the calculation of local source contributions to air pollution, illustrated by examples using the EMEP MSC-W model (rv4_33)
Peter Wind, Bruce Rolstad Denby, and Michael Gauss
Geosci. Model Dev., 13, 1623–1634, https://doi.org/10.5194/gmd-13-1623-2020,https://doi.org/10.5194/gmd-13-1623-2020, 2020
Short summary
The impact of measures to reduce ambient air PM10 concentrations originating from road dust, evaluated for a street canyon in Helsinki
Ana Stojiljkovic, Mari Kauhaniemi, Jaakko Kukkonen, Kaarle Kupiainen, Ari Karppinen, Bruce Rolstad Denby, Anu Kousa, Jarkko V. Niemi, and Matthias Ketzel
Atmos. Chem. Phys., 19, 11199–11212, https://doi.org/10.5194/acp-19-11199-2019,https://doi.org/10.5194/acp-19-11199-2019, 2019
Short summary
Modelling the dispersion of particle numbers in five European cities
J. Kukkonen, M. Karl, M. P. Keuken, H. A. C. Denier van der Gon, B. R. Denby, V. Singh, J. Douros, A. Manders, Z. Samaras, N. Moussiopoulos, S. Jonkers, M. Aarnio, A. Karppinen, L. Kangas, S. Lützenkirchen, T. Petäjä, I. Vouitsis, and R. S. Sokhi
Geosci. Model Dev., 9, 451–478, https://doi.org/10.5194/gmd-9-451-2016,https://doi.org/10.5194/gmd-9-451-2016, 2016
Short summary

Related subject area

Atmospheric sciences
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024,https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024,https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024,https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024,https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024,https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary

Cited articles

Andersson, C., Langner, J., and Bergström, R.: Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis, Tellus, 59B, 77–98, https://doi.org/10.1111/j.1600-0889.2006.00196.x, 2007. 
Bächlin, W., Bösinger, R.: Untersuchungen zu Stickstoffdioxid-Konzentrationen, Los 1 Überprüfung der Rombergformel, Ingenieurbüro Lohmeyer GmbH & Co. KG, Karlsruhe, Projekt 60976-04-01, Stand: Dezember 2008, Gutachten im Auftrag von: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein–Westfalen, Recklinghausen, 2008. 
Benson, P.: A review of the development and application of the CALINE3 and 4 models, Atmos. Environ., 26B:3, 379–390, https://doi.org/10.1016/0957-1272(92)90013-I, 1992. 
Benson, P.: CALINE4 – A dispersion model for predicting air pollutant concentrations near roadways, FHWA/CA/TL-84/15, California Department of Transportation, Sacramento, CA, available at: https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB85211498 (last access: 8 December 2020), 1984. 
Download
Short summary
Air pollution is both a local and a global problem. Since measurements cannot be made everywhere, mathematical models are used to calculate air quality over cities or countries. Modelling over countries limits the level of detail of the models. For countries, the level of detail is only a few kilometres, so air quality at kerb sides is not properly represented. The uEMEP model is used together with the regional air quality model EMEP MSC-W to model details down to kerb side for all of Norway.