Model description paper
01 Dec 2020
Model description paper
| 01 Dec 2020
Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
Virginie Moreaux et al.
Related authors
No articles found.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Waly Faye, Awa Niang Fall, Didier Orange, Frédéric Do, Olivier Roupsard, and Alioune Kane
Proc. IAHS, 383, 391–399, https://doi.org/10.5194/piahs-383-391-2020, https://doi.org/10.5194/piahs-383-391-2020, 2020
Short summary
Short summary
People from the Senegalese Peanut Basin deal with a dramatic increase of water scarcity due both to a rain deficit and a surface water salinization. We carried out the analysis of daily rain from 1950 to 2015 and water salinity of 78 wells on 300 km2. We confirm a climatic break in 1970 leaded a long dry period until 2009, with a decreased of the rainy day number per year, probably driving a large extension of well salinization and salt soil crusting accelerated by a large tidal event in 1984.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Tiphaine Chevallier, Kenji Fujisaki, Olivier Roupsard, Florian Guidat, Rintaro Kinoshita, Elias de Melo Viginio Filho, Peter Lehner, and Alain Albrecht
SOIL, 5, 315–332, https://doi.org/10.5194/soil-5-315-2019, https://doi.org/10.5194/soil-5-315-2019, 2019
Short summary
Short summary
Soil organic carbon (SOC) is the largest terrestrial C stock. Andosols of volcanic areas hold particularly large stocks (e.g. from 24 to 72 kgC m−2 in the upper 2 m of soil) as determined via MIR spectrometry at our Costa Rican study site: a 1 km2 basin covered by coffee agroforestry. Andic soil properties explained this high variability, which did not correlate with stocks in the upper 20 cm of soil. Topography and pedogenesis are needed to understand the SOC stocks at landscape scales.
Jarmo Mäkelä, Jürgen Knauer, Mika Aurela, Andrew Black, Martin Heimann, Hideki Kobayashi, Annalea Lohila, Ivan Mammarella, Hank Margolis, Tiina Markkanen, Jouni Susiluoto, Tea Thum, Toni Viskari, Sönke Zaehle, and Tuula Aalto
Geosci. Model Dev., 12, 4075–4098, https://doi.org/10.5194/gmd-12-4075-2019, https://doi.org/10.5194/gmd-12-4075-2019, 2019
Short summary
Short summary
We assess the differences of six stomatal conductance formulations, embedded into a land–vegetation model JSBACH, on 10 boreal coniferous evergreen forest sites. We calibrate the model parameters using all six functions in a multi-year experiment, as well as for a separate drought event at one of the sites, using the adaptive population importance sampler. The analysis reveals weaknesses in the stomatal conductance formulation-dependent model behaviour that we are able to partially amend.
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019, https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Short summary
In a context of global changes, modeling and predicting the dynamics of soil carbon stocks in forest ecosystems are vital but challenging. Yasso07 is considered to be one of the most promising models for such a purpose. We examine the accuracy of its prediction of soil carbon dynamics over the whole French metropolitan territory at a decennial timescale. We revealed how the bottleneck in soil carbon modeling is linked with the lack of knowledge on soil carbon quality and fine-root litter.
Anne Sofie Lansø, Thomas Luke Smallman, Jesper Heile Christensen, Mathew Williams, Kim Pilegaard, Lise-Lotte Sørensen, and Camilla Geels
Biogeosciences, 16, 1505–1524, https://doi.org/10.5194/bg-16-1505-2019, https://doi.org/10.5194/bg-16-1505-2019, 2019
Short summary
Short summary
Although coastal regions only amount to 7 % of the global oceans, their contribution to the global oceanic surface exchange of CO2 is much greater. In this study, we gain detailed insight into how these coastal marine fluxes compare to CO2 exchange from coastal land regions. Annually, the coastal marine exchanges are smaller than the total uptake of CO2 from the land surfaces within the study area but comparable in size to terrestrial fluxes from individual land cover classes of the region.
Ian G. McKendry, Andreas Christen, Sung-Ching Lee, Madison Ferrara, Kevin B. Strawbridge, Norman O'Neill, and Andrew Black
Atmos. Chem. Phys., 19, 835–846, https://doi.org/10.5194/acp-19-835-2019, https://doi.org/10.5194/acp-19-835-2019, 2019
Short summary
Short summary
Wildfire smoke in July 2015 had a significant impact on air quality, radiation, and energy budgets across British Columbia. With lighter smoke, a wetland and forested site showed enhanced photosynthetic activity (taking in carbon dioxide). However, with dense smoke the forested site became a strong source. These results suggest that smoke during the growing season potentially plays an important role in the carbon budget, and this effect will likely increase as climate changes.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Clifton R. Sabajo, Guerric le Maire, Tania June, Ana Meijide, Olivier Roupsard, and Alexander Knohl
Biogeosciences, 14, 4619–4635, https://doi.org/10.5194/bg-14-4619-2017, https://doi.org/10.5194/bg-14-4619-2017, 2017
Short summary
Short summary
From the analysis of MODIS and Landsat satellite data of the Jambi province in Indonesia, this first study on the effects of oil palm expansion on the surface temperature in Indonesia shows shows a local and regional warming effect caused by the expansion of oil palm plantations and other cash or tree crops between 2000 and 2015. The observed warming effects may affect ecosystem services, reduce water availabilty in the dry period and increase the vulnerability to fires in the province.
Sung-Ching Lee, Andreas Christen, Andrew T. Black, Mark S. Johnson, Rachhpal S. Jassal, Rick Ketler, Zoran Nesic, and Markus Merkens
Biogeosciences, 14, 2799–2814, https://doi.org/10.5194/bg-14-2799-2017, https://doi.org/10.5194/bg-14-2799-2017, 2017
Short summary
Short summary
Burns Bog in Vancouver is the largest peatland on North America's west coast. It is undergoing rewetting as a restoration management after peat harvesting. Rewetting of disturbed areas facilitates their ecological recovery but has an immediate impact on carbon dioxide and methane exchange. On the floating flux tower, we quantified annual carbon dioxide and methane exchange to inform future management. Our results suggested that the study area was a net carbon sink after 7-year rewetting.
Andreas Brændholt, Klaus Steenberg Larsen, Andreas Ibrom, and Kim Pilegaard
Biogeosciences, 14, 1603–1616, https://doi.org/10.5194/bg-14-1603-2017, https://doi.org/10.5194/bg-14-1603-2017, 2017
Short summary
Short summary
In this study we found that CO2 fluxes from soil measured by the closed-chamber technique were overestimated during low atmospheric turbulence. This resulted in biased courses of CO2 fluxes during a day. We removed CO2 fluxes measured at low turbulence, which gave better flux estimates. We furthermore tested a novel technique that provided good measurement during low turbulence, thereby giving better estimates of CO2 emissions from soils, which is a crucial part of the global carbon cycle.
Loise Wandera, Kaniska Mallick, Gerard Kiely, Olivier Roupsard, Matthias Peichl, and Vincenzo Magliulo
Hydrol. Earth Syst. Sci., 21, 197–215, https://doi.org/10.5194/hess-21-197-2017, https://doi.org/10.5194/hess-21-197-2017, 2017
Short summary
Short summary
Upscaling instantaneous to daily evapotranspiration (ETi–ETd) is one of the central challenges in regional vegetation water-use mapping using polar orbiting satellites. Here we developed a robust ETi upscaling for global studies using the ratio between daily and instantaneous global radiation (RSd/RSi). Using data from 126 FLUXNET tower sites, this study demonstrated the RSd/RSi ratio to be the most robust factor explaining ETd/ETi variability across variable sky conditions and multiple biomes.
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
Y. Fan, O. Roupsard, M. Bernoux, G. Le Maire, O. Panferov, M. M. Kotowska, and A. Knohl
Geosci. Model Dev., 8, 3785–3800, https://doi.org/10.5194/gmd-8-3785-2015, https://doi.org/10.5194/gmd-8-3785-2015, 2015
Short summary
Short summary
A perennial crop model CLM-Palm is developed, including multilayer structure, phenology, and carbon and nitrogen allocation functions, for modeling an important oil palm agricultural system in the tropical regions. Simulated LAI, yield and NPP were calibrated and validated with multiple sites in Sumatra, Indonesia. The new model allows exploring the effects of tropical land use change, from natural ecosystems to monoculture plantations on carbon, water and energy cycles and regional climate.
X. Dou, B. Chen, T. A. Black, R. S. Jassal, M. Che, and Y. Liu
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-2001-2014, https://doi.org/10.5194/bgd-11-2001-2014, 2014
Revised manuscript not accepted
A. Mathys, T. A. Black, Z. Nesic, G. Nishio, M. Brown, D. L. Spittlehouse, A. L. Fredeen, R. Bowler, R. S. Jassal, N. J. Grant, P. J. Burton, J. A. Trofymow, and G. Meyer
Biogeosciences, 10, 5451–5463, https://doi.org/10.5194/bg-10-5451-2013, https://doi.org/10.5194/bg-10-5451-2013, 2013
Related subject area
Biogeosciences
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020
A dynamic local-scale vegetation model for lycopsids (LYCOm v1.0)
Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial ecosystem model
Global evaluation of the Ecosystem Demography model (ED v3.0)
A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model
Calibrating the soil organic carbon model Yasso20 with multiple datasets
The PFLOTRAN Reaction Sandbox
A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands
Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2)
Locating trees to mitigate outdoor radiant load of humans in urban areas using a metaheuristic hill-climbing algorithm – introducing TreePlanter v1.0
Sensitivity of asymmetric oxygen minimum zones to mixing intensity and stoichiometry in the tropical Pacific using a basin-scale model (OGCM-DMEC V1.4)
The importance of turbulent ocean–sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2
Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285)
Afforestation impact on soil temperature in regional climate model simulations over Europe
BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale
Modeling the short-term fire effects on vegetation dynamics and surface energy in southern Africa using the improved SSiB4/TRIFFID-Fire model
Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Performance analysis of regional AquaCrop (v6.1) biomass and surface soil moisture simulations using satellite and in situ observations
OMEN-SED(-RCM) (v1.1): a pseudo-reactive continuum representation of organic matter degradation dynamics for OMEN-SED
Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1)
Comparing an exponential respiration model to alternative models for soil respiration components in a Canadian wildfire chronosequence (FireResp v1.0)
A novel model–data fusion approach to terrestrial carbon cycle reanalysis across the contiguous U.S using SIPNET and PEcAn state data assimilation system v. 1.7.2
Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe
FABM-NflexPD 1.0: assessing an instantaneous acclimation approach for modeling phytoplankton growth
A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0
Using the International Tree-Ring Data Bank (ITRDB) records as century-long benchmarks for global land-surface models
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
A model-independent data assimilation (MIDA) module and its applications in ecology
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
Predicting Global Terrestrial Biomes with Convolutional Neural Network
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3− or CO32− input data
Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones
Partitioning soil organic carbon into its centennially stable and active fractions with machine-learning models based on Rock-Eval® thermal analysis (PARTYSOCv2.0 and PARTYSOCv2.0EU)
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc
SPEAD 1.0 – Simulating Plankton Evolution with Adaptive Dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea
Rapid development of fast and flexible environmental models: the Mobius framework v1.0
Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences
Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0.0)
CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden
Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0
Numerical model to simulate long-term soil organic carbon and ground ice budget with permafrost and ice sheets (SOC-ICE-v1.0)
Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment
Modeling long-term fire impact on ecosystem characteristics and surface energy using a process-based vegetation–fire model SSiB4/TRIFFID-Fire v1.0
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022, https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary
Short summary
By incorporating the domain knowledge into a machine learning model, KGML-ag overcomes the well-known limitations of process-based models due to insufficient representations and constraints, and unlocks the “black box” of machine learning models. Therefore, KGML-ag can outperform existing approaches on capturing the hot moment and complex dynamics of N2O flux. This study will be a critical reference for the new generation of modeling paradigm for biogeochemistry and other geoscience processes.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Suman Halder, Susanne K. M. Arens, Kai Jensen, Tais W. Dahl, and Philipp Porada
Geosci. Model Dev., 15, 2325–2343, https://doi.org/10.5194/gmd-15-2325-2022, https://doi.org/10.5194/gmd-15-2325-2022, 2022
Short summary
Short summary
A dynamic vegetation model, designed to estimate potential impacts of early vascular vegetation, namely, lycopsids, on the biogeochemical cycle at a local scale. Lycopsid Model (LYCOm) estimates the productivity and physiological properties of lycopsids across a broad climatic range along with natural selection, which is then utilized to adjudge their weathering potential. It lays the foundation for estimation of their impacts during their long evolutionary history starting from the Ordovician.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Lei Ma, George Hurtt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve Flanagan, Louise Chini, Abhishek Chatterjee, and Joseph Sullivan
Geosci. Model Dev., 15, 1971–1994, https://doi.org/10.5194/gmd-15-1971-2022, https://doi.org/10.5194/gmd-15-1971-2022, 2022
Short summary
Short summary
We present a global version of the Ecosystem Demography (ED) model which can track vegetation 3-D structure and scale up ecological processes from individual vegetation to ecosystem scale. Model evaluation against multiple benchmarking datasets demonstrated the model’s capability to simulate global vegetation dynamics across a range of temporal and spatial scales. With this version, ED has the potential to be linked with remote sensing observations to address key scientific questions.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Toni Viskari, Janne Pusa, Istem Fer, Anna Repo, Julius Vira, and Jari Liski
Geosci. Model Dev., 15, 1735–1752, https://doi.org/10.5194/gmd-15-1735-2022, https://doi.org/10.5194/gmd-15-1735-2022, 2022
Short summary
Short summary
We wanted to examine how the chosen measurement data and calibration process affect soil organic carbon model calibration. In our results we found that there is a benefit in using data from multiple litter-bag decomposition experiments simultaneously, even with the required assumptions. Additionally, due to the amount of noise and uncertainties in the system, more advanced calibration methods should be used to parameterize the models.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Nils Wallenberg, Fredrik Lindberg, and David Rayner
Geosci. Model Dev., 15, 1107–1128, https://doi.org/10.5194/gmd-15-1107-2022, https://doi.org/10.5194/gmd-15-1107-2022, 2022
Short summary
Short summary
Exposure to solar radiation on clear and warm days can lead to heat stress and thermal discomfort. This can be alleviated by planting trees providing shade in particularly warm areas. Here, we use a model to locate trees and optimize their blocking of solar radiation. Our results show that locations can differ depending, e.g., tree size (juvenile or mature) and number of trees that are positioned simultaneously. The model is available as a tool for accessibility by researchers and others.
Kai Wang, Xiujun Wang, Raghu Murtugudde, Dongxiao Zhang, and Rong-Hua Zhang
Geosci. Model Dev., 15, 1017–1035, https://doi.org/10.5194/gmd-15-1017-2022, https://doi.org/10.5194/gmd-15-1017-2022, 2022
Short summary
Short summary
We use observational data of dissolved oxygen (DO) and organic nitrogen to calibrate a basin-scale model (OGCM-DEMC V1.4) and then evaluate model capacity for simulating mid-depth DO in the tropical Pacific. Sensitivity studies show that enhanced vertical mixing combined with reduced biological consumption performs well in reproducing asymmetric oxygen minimum zones (OMZs). We find that DO is more sensitive to biological processes in the upper OMZs but to physical processes in the lower OMZs.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Jianyong Ma, Stefan Olin, Peter Anthoni, Sam S. Rabin, Anita D. Bayer, Sylvia S. Nyawira, and Almut Arneth
Geosci. Model Dev., 15, 815–839, https://doi.org/10.5194/gmd-15-815-2022, https://doi.org/10.5194/gmd-15-815-2022, 2022
Short summary
Short summary
The implementation of the biological N fixation process in LPJ-GUESS in this study provides an opportunity to quantify N fixation rates between legumes and to better estimate grain legume production on a global scale. It also helps to predict and detect the potential contribution of N-fixing plants as
green manureto reducing or removing the use of N fertilizer in global agricultural systems, considering different climate conditions, management practices, and land-use change scenarios.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
Philip Pika, Dominik Hülse, and Sandra Arndt
Geosci. Model Dev., 14, 7155–7174, https://doi.org/10.5194/gmd-14-7155-2021, https://doi.org/10.5194/gmd-14-7155-2021, 2021
Short summary
Short summary
OMEN-SED is a model for early diagenesis in marine sediments simulating organic matter (OM) degradation and nutrient dynamics. We replaced the original description with a more realistic one accounting for the widely observed decrease in OM reactivity. The new model reproduces pore water profiles and sediment–water interface fluxes across different environments. This functionality extends the model’s applicability to a broad range of environments and timescales while requiring fewer parameters.
Yujie Wang, Philipp Köhler, Liyin He, Russell Doughty, Renato K. Braghiere, Jeffrey D. Wood, and Christian Frankenberg
Geosci. Model Dev., 14, 6741–6763, https://doi.org/10.5194/gmd-14-6741-2021, https://doi.org/10.5194/gmd-14-6741-2021, 2021
Short summary
Short summary
We present the first step in testing a new land model as part of a new Earth system model. Our model links plant hydraulics, stomatal optimization theory, and a comprehensive canopy radiation scheme. We compared model-predicted carbon and water fluxes to flux tower observations and model-predicted sun-induced chlorophyll fluorescence to satellite retrievals. Our model quantitatively predicted the carbon and water fluxes as well as the canopy fluorescence yield.
John Zobitz, Heidi Aaltonen, Xuan Zhou, Frank Berninger, Jukka Pumpanen, and Kajar Köster
Geosci. Model Dev., 14, 6605–6622, https://doi.org/10.5194/gmd-14-6605-2021, https://doi.org/10.5194/gmd-14-6605-2021, 2021
Short summary
Short summary
Forest fires heavily affect carbon stocks and fluxes of carbon in high-latitude forests. Long-term trends in soil respiration following forest fires are associated with recovery of aboveground biomass. We evaluated models for soil autotrophic and heterotrophic respiration with data from a chronosequence of stand-replacing forest fires in northern Canada. The best model that reproduced expected patterns in soil respiration components takes into account soil microbe carbon as a model variable.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, and Michael Dietze
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-236, https://doi.org/10.5194/gmd-2021-236, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model-data eco-informatics system, and its application for the development of a proof-of-concept carbon "reanalysis" product that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Onur Kerimoglu, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 14, 6025–6047, https://doi.org/10.5194/gmd-14-6025-2021, https://doi.org/10.5194/gmd-14-6025-2021, 2021
Short summary
Short summary
In large-scale models, variations in cellular composition of phytoplankton are often insufficiently represented. Detailed modeling approaches exist, but they require additional state variables that increase the computational costs. In this study, we test an instantaneous acclimation model in a spatially explicit setup and show that its behavior is mostly similar to that of a variant with an additional state variable but different from that of a fixed composition variant.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-287, https://doi.org/10.5194/gmd-2021-287, 2021
Preprint under review for GMD
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyze these across European forests. We find that uncertainties are dominantly induced by parameters related to water and mortality and climate with increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty, but also modifies uncertainties in other ecosystem processes.
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021, https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Short summary
In the data-rich era, data assimilation is widely used to integrate abundant observations into models to reduce uncertainty in ecological forecasting. However, applications of data assimilation are restricted by highly technical requirements. To alleviate this technical burden, we developed a model-independent data assimilation (MIDA) module which is friendly to ecologists with limited programming skills. MIDA also supports a flexible switch of different models or observations in DA analysis.
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021, https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
Short summary
The Baltic Sea is heavily impacted by surrounding land. Therefore, the concentration of colored dissolved organic matter (CDOM) of terrestrial origin is relatively high and impacts the light penetration depth. Estimating a correct light climate is essential for ecosystem models. In this study, a method is developed to derive riverine CDOM from Earth observation methods. The data are used as boundary conditions for an ecosystem model, and the advantage over former approaches is shown.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Hisashi Sato and Takeshi Ise
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-271, https://doi.org/10.5194/gmd-2021-271, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021, https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary
Short summary
SolveSAPHE (Munhoven, 2013) was the first package to calculate pH reliably from any physically sensible pair of total alkalinity (AlkT) and dissolved inorganic carbon (CT) data and to do so in an autonomous and efficient way. Here, we extend it to use CO2, HCO3 or CO3 instead of CT. For each one of these pairs, the new SolveSAPHE calculates all of the possible pH values (0, 1, or 2), again without any prior knowledge of the solutions.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Lauric Cécillon, François Baudin, Claire Chenu, Bent T. Christensen, Uwe Franko, Sabine Houot, Eva Kanari, Thomas Kätterer, Ines Merbach, Folkert van Oort, Christopher Poeplau, Juan Carlos Quezada, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Geosci. Model Dev., 14, 3879–3898, https://doi.org/10.5194/gmd-14-3879-2021, https://doi.org/10.5194/gmd-14-3879-2021, 2021
Short summary
Short summary
Partitioning soil organic carbon (SOC) into fractions that are stable or active on a century scale is key for more accurate models of the carbon cycle. Here, we describe the second version of a machine-learning model, named PARTYsoc, which reliably predicts the proportion of the centennially stable SOC fraction at its northwestern European validation sites with Cambisols and Luvisols, the two dominant soil groups in this region, fostering modelling works of SOC dynamics.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Short summary
Airborne and satellite images are a great resource for calibrating and evaluating computer models of ecosystems. Typically, researchers derive ecosystem properties from these images and then compare models against these derived properties. Here, we present an alternative approach where we modify a model to predict what the satellite would see more directly. We then show how this approach can be used to calibrate model parameters using airborne data from forest sites in the northeastern US.
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021, https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
Short summary
We developed a model to simulate and track the age of ecosystems on Earth. We found that the effect of ecosystem age on net primary production and ecosystem respiration is as important as climate in large areas of every vegetated continent. The LPJ-wsl v2.0 age-class model simulates dynamic age-class distributions on Earth and represents another step forward towards understanding the role of demography in global ecosystems.
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021, https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
Short summary
This study evaluates how well the CLASSIC land surface model reproduces the energy, water, and carbon cycle when compared against a wide range of global observations. Special attention is paid to how uncertainties in the data used to drive and evaluate the model affect model skill. Our results show the importance of incorporating uncertainties when evaluating land surface models and that failing to do so may potentially misguide future model development.
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021, https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary
Short summary
We investigated different methods to reconstruct spatiotemporal distribution of the fraction of diffuse radiation (Fdf) to qualify the aerosol impacts on GPP using the ORCHIDEE_DF land surface model. We find that climatological-averaging methods which dampen the variability of Fdf can cause significant bias in the modeled diffuse radiation impacts on GPP. Better methods to reconstruct Fdf are recommended.
Guillaume Le Gland, Sergio M. Vallina, S. Lan Smith, and Pedro Cermeño
Geosci. Model Dev., 14, 1949–1985, https://doi.org/10.5194/gmd-14-1949-2021, https://doi.org/10.5194/gmd-14-1949-2021, 2021
Short summary
Short summary
We present an ecological model called SPEAD wherein various phytoplankton compete for nutrients. Phytoplankton in SPEAD are characterized by two continuously distributed traits: optimal temperature and nutrient half-saturation. Trait diversity is sustained by allowing the traits to mutate at each generation. We show that SPEAD agrees well with a more classical discrete model for only a fraction of the cost. We also identify realistic values for the mutation rates to be used in future models.
Magnus Dahler Norling, Leah Amber Jackson-Blake, José-Luis Guerrero Calidonio, and James Edward Sample
Geosci. Model Dev., 14, 1885–1897, https://doi.org/10.5194/gmd-14-1885-2021, https://doi.org/10.5194/gmd-14-1885-2021, 2021
Short summary
Short summary
In order to allow researchers to quickly prototype and build models of natural systems, we have created the Mobius framework. Such models can, for instance, be used to ask questions about what the impacts of land-use changes are to water quality in a river or lake, or the response of biogeochemical systems to climate change. The Mobius framework makes it quick to build models that run fast, which enables the user to explore many different scenarios and model formulations.
Bruno Ringeval, Christoph Müller, Thomas A. M. Pugh, Nathaniel D. Mueller, Philippe Ciais, Christian Folberth, Wenfeng Liu, Philippe Debaeke, and Sylvain Pellerin
Geosci. Model Dev., 14, 1639–1656, https://doi.org/10.5194/gmd-14-1639-2021, https://doi.org/10.5194/gmd-14-1639-2021, 2021
Short summary
Short summary
We assess how and why global gridded crop models (GGCMs) differ in their simulation of potential yield. We build a GCCM emulator based on generic formalism and fit its parameters against aboveground biomass and yield at harvest simulated by eight GGCMs. Despite huge differences between GGCMs, we show that the calibration of a few key parameters allows the emulator to reproduce the GGCM simulations. Our simple but mechanistic model could help to improve the global simulation of potential yield.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Hongxing He, Per-Erik Jansson, and Annemieke I. Gärdenäs
Geosci. Model Dev., 14, 735–761, https://doi.org/10.5194/gmd-14-735-2021, https://doi.org/10.5194/gmd-14-735-2021, 2021
Short summary
Short summary
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled C, N, and P dynamics for terrestrial ecosystems. Simulations from the new Coup-CNP model provide strong evidence that P fluxes need to be further considered in studies of how ecosystems and C turnover react to climate change.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Kazuyuki Saito, Hirokazu Machiya, Go Iwahana, Tokuta Yokohata, and Hiroshi Ohno
Geosci. Model Dev., 14, 521–542, https://doi.org/10.5194/gmd-14-521-2021, https://doi.org/10.5194/gmd-14-521-2021, 2021
Short summary
Short summary
Soil organic carbon (SOC) and ground ice (ICE) are essential but under-documented information to assess the circum-Arctic permafrost degradation impacts. A simple numerical model of essential SOC and ICE dynamics, developed and integrated north of 50° N for 125,000 years since the last interglacial, reconstructed the history and 1° distribution of SOC and ICE consistent with current knowledge, together with successful demonstration of climatic and topographical controls on SOC evolution.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Cited articles
Achat, D. L., Fortin, M., Landmann, G., Ringeval, B., and Augusto, L.: Forest soil carbon is threatened by intensive biomass harvesting, Sci. Rep.-UK, 5, 15991, https://doi.org/10.1038/srep15991, 2015.
Achat, D. L., Martel, S., Picart, D., Moisy, C., Augusto, L., Bakker, M. R., and Loustau, D.: Modelling the nutrient cost of biomass harvesting under different silvicultural and climate scenarios in production forests, Forest Ecol. Manag., 429, 642–653, https://doi.org/10.1016/j.foreco.2018.06.047, 2018.
Ahlswede, B. J. and Thomas, R. Q.: Community earth system model simulations reveal the relative importance of afforestation and forest management to surface temperature in Eastern North America, Forests, 8, 499, https://doi.org/10.3390/f8120499, 2017.
Arrouays, D. and Pelissier, P.: Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France, Plant Soil, 160, 215–223, 1994.
Atkin, O. K. and Tjoelker, M. G.: Thermal acclimation and the dynamic response of plant respiration to temperature, Trends Plant Sci., 8, 343–351, https://doi.org/10.1016/s1360-1385(03)00136-5, 2003.
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., and Mirin, A.: Combined climate and carbon-cycle effects of large-scale deforestation, P. Natl. Acad. Sci. USA., 104, 6550–6555, https://doi.org/10.1073/pnas.0608998104, 2007.
Balesdent, J., Besnard, E., Arrouays, D., and Chenu, C.: The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence, Plant Soil, 201, 49–57, 1998.
Bellassen, V., Le Maire, G., Dhôte, J. F., Ciais, P., and Viovy, N.: Modelling forest management within a global vegetation model – Part 1: Model structure and general behaviour, Ecol. Modell., 221, 2458–2474, https://doi.org/10.1016/j.ecolmodel.2010.07.008, 2010.
Bellassen, V., le Maire, G., Guin, O., Dhôte, J. F., Ciais, P., and Viovy, N.: Modelling forest management within a global vegetation model – Part 2: Model validation from a tree to a continental scale, Ecol. Modell., 222, 57–75, 2011.
Berbigier, P. and Bonnefond, J. M.: Measurement and Modeling of Radiation Transmission within a Stand of Maritime Pine (Pinus-Pinaster Ait), Ann. For. Sci., 52, 23–42, 1995.
Berbigier, P. and Loustau, D.: FLUXNET2015 FR-LBr Le Bray, Dataset, https://doi.org/10.18140/FLX/1440163, 1996–2008.
Berbigier, P., Bonnefond, J. M., and Mellmann, P.: CO2 and water vapour fluxes for 2 years above Euroflux forest site, Agric. For. Meteorol., 108, 183–197, 2001.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187–190, https://doi.org/10.1038/35041545, 2000.
Bloomfield, K. J., Cernusak, L. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Wright, I. J., Boer, M. M., Bradford, M. G., Cale, P., Cleverly, J., Egerton, J. J. G., Evans, B. J., Hayes, L. S., Hutchinson, M. F., Liddell, M. J., Macfarlane, C., Meyer, W. S., Prober, S. M., Togashi, H. F., Wardlaw, T., Zhu, L. L., and Atkin, O. K.: A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons, Funct. Ecol., 32, 1492–1506, 2018.
Borys, A., Suckow, F., Reyer, C., Gutsch, M., and Lasch-Born, P.: The impact of climate change under different thinning regimes on carbon sequestration in a German forest district, Mitig. Adapt. Strat. Gl., 21, 861–881, https://doi.org/10.1007/s11027-014-9628-6, 2016.
Breda, N. J. J.: Ground-based measurements of leaf area index: a review of methods, instruments and current controversies, J. Exp. Bot., 54, 2403–2417, 2003.
Bright, R. M., Cherubini, F., and Strømman, A. H.: Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment, Environ. Impact Assess. Rev., 37, 2–11, https://doi.org/10.1016/j.eiar.2012.01.002, 2012.
Bright, R. M., Davin, E., O'Halloran, T., Pongratz, J., Zhao, K. G., and Cescatti, A.: Local temperature response to land cover and management change driven by non-radiative processes, Nat. Clim. Change, 7, 296, https://doi.org/10.1038/nclimate3250, 2017.
Campolongo, F. and Saltelli, A.: Sensitivity analysis of an environmental model an application of different analysis methods, Reliab. Eng. Syst. Safe., 57, 49–69, 1997.
Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martinez-Yrizar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees, Global Change Biol., 20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014.
Chen, C. R., Xu, Z. H., and Mathers, N. J.: Soil carbon pools in adjacent natural and plantation forests of subtropical Australia, Soil Sci. Soc. Am. J., 8, 282–291, https://doi.org/10.2136/sssaj2004.2820, 2004.
Chen, Y., Ryder, J., Bastrikov, V., McGrath, M. J., Naudts, K., Otto, J., Ottlé, C., Peylin, P., Polcher, J., Valade, A., Black, A., Elbers, J. A., Moors, E., Foken, T., van Gorsel, E., Haverd, V., Heinesch, B., Tiedemann, F., Knohl, A., Launiainen, S., Loustau, D., Ogée, J., Vessala, T., and Luyssaert, S.: Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme, Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, 2016.
Ciais, P., Loustau, D., Bosc, A., Ogée, J., Dufrêne, E., François, C., Viovy, N., and Delage, F.: How will the production of French forests respond to climate change? An integrated analysis from site to country scale, in: Forests, carbon cycle and climate change, edited by: Loustau, D., Quae, Paris, 2010.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Coleman K. and Jenkinson, D. D.: RothC – 26.3 – A model for the turnover of carbon in soil, in: Evaluation of soil organic matter models using existing, long-term dataset, edited by: Powlson, D. S., Smith, P., and Smith, J. U., NATO ASI Series I, Springer Verlag, Heidelberg, Germany, 237–246, 1996.
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., D'Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., and Santini, M.: Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites, Geosci. Model Dev., 9, 479–504, https://doi.org/10.5194/gmd-9-479-2016, 2016.
Davi, H., Dufrene, E., Granier, A., Le Dantec, V., Barbaroux, C., Francois, C., and Breda, N.: Modelling carbon and water cycles in a beech forest Part II: Validation of the main processes from organ to stand scale, Ecol. Modell., 185, 387–405, 2005.
Davi, H., Dufrêne, E., Francois, C., Le Maire, G., Loustau, D., Bosc, A., Rambal, S., Granier, A., and Moors, E.: Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems, Agr. Forest. Meteorol., 141, 35–56, https://doi.org/10.1016/j.agrformet.2006.09.003, 2006.
Deckmyn, G., Verbeeck, H., de Beeck, M. O., Vansteenkiste, D., Steppe, K., and Ceulemans, R.: ANAFORE: A stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees, Ecol. Modell., 215, 345–368, https://doi.org/10.1016/j.ecolmodel.2008.04.007, 2008.
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., and François, C.: Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France, Agr. Forest. Meteorol., 149, 938–948, https://doi.org/10.1016/j.agrformet.2008.11.014, 2009.
Delpierre, N., Soudani, K., Francois, C., Le Maire, G., Bernhofer, C., Kutsch, W., Misson, L., Rambal, S., Vesala, T., and Dufrene, E.: Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling, Agr. Forest Meteorol., 154, 99–112, https://doi.org/10.1016/j.agrformet.2011.10.010, 2012.
Delzon, S. and Loustau, D.: Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence, Agr. Forest Meteorol., 129, 105–119, https://doi.org/10.1016/j.agrformet.2005.01.002, 2005.
Delzon, S., Sartore, M., Burlett, R., Dewar, R., and Loustau, D.: Hydraulic responses to height growth in maritime pine trees, Plant Cell Environ., 27, 1077–1087, 2004.
de Pury, D. G. G. and Farquhar, G. D.: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant Cell Environ., 20, 537–557, 1997.
Dobarco, M. R., Cousin, I., Le Bas, C., and Martin, M. P.: Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty, Geoderma, 336, 81–95, 2019.
Dondini, M., Jones, E. O., Richards, M., Pogson, M., Rowe, R. L., Keith, A. M., Perks, M. P., McNamara, N. P., Smith, J. U., and Smith, P.: Evaluation of the ECOSSE model for simulating soil carbon under short rotation forestry energy crops in Britain, GCB Bioenergy, 7, 527–540, https://doi.org/10.1111/gcbb.12154, 2015.
Dufrene, E., Davi, H., Francois, C., le Maire, G., Le Dantec, V., and Granier, A.: Modelling carbon and water cycles in a beech forest Part I: Model description and uncertainty analysis on modelled NEE, Ecol. Modell., 185, 407–436, 2005.
Ellsworth, D. S., Crous, K. Y., Lambers, H., and Cooke, J.: Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species, Plant Cell Environ., 38, 1142–1156, 2015.
Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., Pongratz, J., Thurner, M., and Luyssaert, S.: Unexpectedly large impact of forest management and grazing on global vegetation biomass, Nature, 553, 73–76, 2017.
Fajardo, A. and Siefert, A.: Phenological variation of leaf functional traits within species, Oecologia, 180, 951–959, 2016.
Farquhar, G. D., von Caemmerer, S., and Berry, J.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Felzer, B. S. and Jiang, M.: Effect of Land Use and Land Cover Change in Context of Growth Enhancements in the United States Since 1700: Net Source or Sink?, J. Geophys. Res.-Biogeo., 123, 3439–3457, 2018.
Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., and Sileshi, G. W.: Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate, Forest Ecol. Manag., 396, 160–175, https://doi.org/10.1016/j.foreco.2017.04.011, 2017.
Garcia, M., Ozdogan, M., and Townsend, P. A.: Impacts of forest harvest on cold season land surface conditions and land-atmosphere interactions in northern Great Lakes states, J. Adv. Model. Earth Sy., 6, 923–937, https://doi.org/10.1002/2014ms000317, 2014.
Gash, J. H. C.: Analytical model of rainfall interception by forests, Q. J. Roy. Meteor. Soc., 105, 43–55, https://doi.org/10.1002/qj.49710544304, 1979.
Gbondo-Tugbawa, S. S., Driscoll, C. T., Aber, J. D., and Likens, G. E.: Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem, Water Resour. Res., 37, 1057–1070, https://doi.org/10.1029/2000WR900375, 2001.
Ghanbarian-Alavijeh, B., Liaghat, A., Huang, G.-H., and Van Genuchten, M. T.: Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data, Pedosphere, 20, 456–465, 2010.
Gholz, H. L.: Limits on aboveground net primary production, leaf area, and biomass in vegetational zones of the Pacific Northwest, Dissertation, Oregon State University, Corvallis, Oregon, USA, 1979.
Gottschalk, P., Bellarby, J., Chenu, C., Foereid, B., Smith, P., Wattenbach, M., Zingore, S., and Smith, J.: Simulation of soil organic carbon response at forest cultivation sequences using C-13 measurements, Org. Geochem., 41, 41–54, https://doi.org/10.1016/j.orggeochem.2009.04.017, 2010.
Granier, A. and Bréda, N.: Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements, Ann. For. Sci., 53, 537–546, 1996.
Granier, A. and Loustau, D.: Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agr. Forest. Meteorol., 71, 61–81, 1994.
Granier, A., Ceschia, E., Damesin, C., Dufrene, E., Epron, D., Gross, P., Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., Lucot, E., Ottorini, J. M., Pontailler, J. Y., and Saugier, B.: The carbon balance of a young Beech forest, Funct. Ecol., 14, 312–325, 2000a.
Granier, A., Loustau, D., and Bréda, N.: A generic model of forest canopy conductance dependent of climate, soil water availability and leaf area index, Ann. For. Sci., 57, 755–765, 2000b.
Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and Penman, J.: The key role of forests in meeting climate targets requires science for credible mitigation, Nat. Clim. Change, 7, 220–226, 2017.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamaki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA., 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017.
Guillemot, J., Delpierre, N., Vallet, P., François, C., Martin-StPaul, N. K., Soudani, K., Nicolas, M., Badeau, V., and Dufrêne, E.: Assessing the effects of management on forest growth across France: insights from a new functional–structural model, Ann. Bot., 114, 779–793, https://doi.org/10.1093/aob/mcu059, 2014.
Gutsch, M., Lasch, P., Suckow, F., and Reyer, C.: Management of mixed oak-pine forests under climate scenario uncertainty, Forest Syst., 20, 453–463, https://doi.org/10.5424/fs/20112003-11073, 2011.
Hamada, S., Kumagai, T., Kochi, K., Kobayashi, N., Hiyama, T., and Miyazawa, Y.: Spatial and temporal variations in photosynthetic capacity of a temperate deciduous-evergreen forest, Trees-Structure and Function, 30, 1083–1093, 2016.
Harley, P. C. and Baldocchi, D. D.: Scaling carbon-dioxide and water-vapour exchange from leaf to canopy in a deciduous forest .1. Leaf model parameterization, Plant. Cell Environ., 18, 1146–1156, https://doi.org/10.1111/j.1365-3040.1995.tb00625.x, 1995.
Harper, A. B., Wiltshire, A. J., Cox, P. M., Friedlingstein, P., Jones, C. D., Mercado, L. M., Sitch, S., Williams, K., and Duran-Rojas, C.: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types, Geosci. Model Dev., 11, 2857–2873, https://doi.org/10.5194/gmd-11-2857-2018, 2018.
Hassika, P., Berbigier, P., and Bonnefond, J. M.: Measurement and modelling of the photosynthetically active radiation transmitted in a canopy of maritime pine, Ann. For. Sci., 54, 715–730, 1997.
Huang, L., Zhai, J., Liu, J. Y., and Sun, C. Y.: The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China, Agr. Forest. Meteorol., 260, 193–203, https://doi.org/10.1016/j.agrformet.2018.05.020, 2018.
Humphreys, E. R., Black, T. A., Morgenstern, K., Cai, T., Drewitt, G. B., Nesic, Z., and Trofymow, J. A.: Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting, Agr. Forest Meteorol., 140, 6–22, 2006.
Ibrom, A. and Pilegaard, K.: FLUXNET2015 DK-Sor Soroe, Dataset, https://doi.org/10.18140/FLX/1440155, 1996–2014.
IPCC: Climate Change and Land. An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, available at: https://www.ipcc.ch/srccl-report-download-page/, last access: 19 September 2019.
Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Gudmundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., and Valentini, R.: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biol., 7, 269–278, https://doi.org/10.1046/j.1365-2486.2001.00412.x, 2001.
Jarvis, P. G.: The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. R. Soc. B, 273, 593–610, 1976.
Jolivet, C.: Le carbone organique des sols des Landes de Gascogne variabilité spatiale et effets des pratiques sylvicoles et agricoles, PhD Thesis, Université de Bourgogne, Dijon, 306 pp., 2000.
Jones, H. G.: Plants and microclimate: a quantitative approach to environmental plant physiology, Cambridge University Press, Cambridge, 1992.
Jurevics, A., Peichl, M., Olsson, B. A., Stromgren, M., and Egnell, G.: Slash and stump harvest have no general impact on soil and tree biomass C pools after 32–39 years, Forest Ecol. Manag., 371, 33–41, https://doi.org/10.1016/j.foreco.2016.01.008, 2016.
Karjalainen, T., Pussinen, A., Liski, J., Nabuurs, G. J., Eggers, T., Lapvetelainen, T., and Kaipainen, T.: Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget, Forest Policy Econ, 5, 141–155, 2003.
Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-term sensitivity of soil carbon turnover to warming, Nature, 433, 298–301, https://doi.org/10.1038/nature03226, 2005.
Kurz, W. A., Dymond, C. C., White, T. M., Stinson, G., Shaw, C. H., Rampley, G. J., Smyth, C., Simpson, B. N., Neilson, E. T., Tyofymow, J. A., Metsaranta, J., and Apps, M. J.: CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards, Ecol. Modell., 220, 480–504, 2009.
Kuusinen, N., Lukes, P., Stenberg, P., Levula, J., Nikinmaa, E., and Berninger, F.: Measured and modelled albedos in Finnish boreal forest stands of different species, structure and understory, Ecol. Modell., 284, 10–18, https://doi.org/10.1016/j.ecolmodel.2014.04.007, 2014.
Landsberg, J. J. and Waring, R. H.: A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, Forest Ecol. Manag., 95, 209–228, 1997.
Lebourgeois, F., Pierrat, J.-C., Perez, V., Piedallu, C., Cecchini, S., Ulrich, E.: Phenological timing in French temperate forests – a study on stands in the renecofor network, Revue Forestiere Française, 60, 323–343, 2008.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L. H., Katul, G., Kolb, T., Law, B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Kyaw, T. P. U., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.: Observed increase in local cooling effect of deforestation at higher latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011.
Le Moguedec, G. and Dhôte, J. F.: Fagacees: a tree-centered growth and yield model for sessile oak (Quercus petraea L.) and common beech (Fagus sylvatica L.), Ann. For. Sci., 69, 257–269, 2012.
Lindner, M., Bugmann, H., Lasch, P., Flechsig, M., and Cramer, W.: Regional impacts of Clim. Change on forests in the state of Brandenburg, Germany, Agr. Forest. Meteorol., 84, 123–135, 10.1016/s0168-1923(96)02381-7, 1997.
Loustau, D. and Cochard, H.: Use of a portable transpiration chamber for estimating evapotranspiration in the Molinia caerulea understorey of a maritime pine stand, Ann. For. Sci., 48, 29–45, 1991.
Loustau, D., Berbigier, P., Roumagnac, P., Ferreira, M. I., Pereira, J. S., Arruda-Pacheco, C., David, J. S., and Tavares, R.: Transpiration of a 64-year-old maritime pine stand in Portugal. I: Seasonal course of water flux through maritime pine, Oecologia, 107, 33–42, 1996.
Loustau, D., Domec, J. C., and Bosc, A.: Interpreting the variations in xylem sap flux density within the trunk of maritime pine (Pinus pinaster Ait.): application of a model for calculating water flows at tree and stand levels, Ann. For. Sci., 55, 29–46, 1998.
Loustau, D., Bosc, A., Colin, A., Ogee, J., Davi, H., Francois, C., Dufrene, E., Deque, M., Cloppet, E., Arrouays, D., Le Bas, C., Saby, N., Pignard, G., Hamza, N., Granier, A., Breda, N., Ciais, P., Viovy, N., and Delage, F.: Modeling climate change effects on the potential production of French plains forests at the sub-regional level, Tree Physiol., 25, 813–823, 2005.
Loustau, D., Moisy, C., Bosc, A., Figuères, S., Martel, S., Moreaux, V., and Picart-Deshors, D.: GO+ v3.0 model code, Portail Data INRAE, V2, https://doi.org/10.15454/5K9HCS, 2020.
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grunwald, T., Houghton, R. A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C., Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M., and Dolman, A. J.: Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Change, 4, 389–393, https://doi.org/10.1038/nclimate2196, 2014.
Luyssaert, S., Marie, G., Valade, A., Chen, Y.-Y., Njakou Djomo, S., Ryder, J., Otto, J., Naudts, K., Lansø, A. S., Ghattas, J., and McGrath, M. J.: Trade-offs in using European forests to meet climate objectives, Nature, 562, 259–262, https://doi.org/10.1038/s41586-018-0577-1, 2018.
Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., Pussinen, A., de Jong, B. H. J., and Mohren, G. M. J.: Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach, Ecol. Modell., 164, 177–199, 2003.
Matteucci, G.: FLUXNET2015 IT-Col Collelongo, Dataset, https://doi.org/10.18140/FLX/1440167, 1996–2014.
Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomaki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K., Curtis, P. S., and Jarvis, P. G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis, New Phytol., 149, 247–264, 2001.
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K., and Loustau, D.: Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data, Plant Cell Environ., 25, 1167–1179, 2002.
Medlyn, B. E., Berbigier, P., Clement, R., Grelle, A., Loustau, D., Linder, S., Wingate, L., Jarvis, P. G., Sigurdsson, B. D., and McMurtrie, R. E.: Carbon balance of coniferous forests growing in contrasting climates: Model-based analysis, Agric. Forest Meteorol., 131, 97–124, 2005.
Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J., and Hölttä, T.: Coordination of physiological traits involved in drought-induced mortality of woody plants, New Phytol., 208, 396–409, https://doi.org/10.1111/nph.13461, 2015.
Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D. F., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agric. Forest Meteorol., 147, 209–232, 2007.
Moreaux, V.: Observation et modélisation des échanges d'énergie et de masse de jeunes peuplements forestiers du Sud-Ouest de la France, PhD thesis, Ecole Doctorale 304 “Sciences et Environnements”, Thématique “Physique de l'Environnement”, Université de Bordeaux-1, Bordeaux, 262 pp., 2012.
Moreaux, V., Lamaud, E., Bosc, A., Bonnefond, J.-M., Medlyn, B. E., and Loustau, D.: Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth, Tree Physiol., 31, 903–921, 2011.
Moreaux, V., Longdoz, B., Berveiller, D., Delpierre, N., Dufrêne, E., Bonnefond, J.-M., Chipeaux, C., Joffre, R., Limousin, J.-M., Ourcival, J.-M., Klumpp, K., Darsonville, O., Brut, A., Tallec, T., Ceschia, E., Panthou, G., and Loustau, D.: Environmental control of land-atmosphere CO2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types, Tellus B, 72, 1–25, 2020.
Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., and Gash, J. H. C.: A review of rainfall interception modelling, J. Hydrol., 370, 191–206, https://doi.org/10.1016/j.jhydrol.2009.02.058, 2009.
Nakai, T., Sumida, A., Daikoku, K. I., Matsumoto, K., van der Molen, M. K., Kodama, Y., Kononov, A. V., Maximov, T. C., Dolman, A. J., Yabuki, H., Hara, T., and Ohta, T.: Parameterisation of aerodynamic roughness over boreal, cool- and warm-temperate forests, Agr. For. Meteorol., 148, 1916–1925, https://doi.org/10.1016/j.agrformet.2008.03.009, 2008.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Naudts, K., Chen, Y. Y., McGrath, M. J., Ryder, J., Valade, A., Otto, J., and Luyssaert, S.: Europe's forest management did not mitigate climate warming, Science, 351, 597–600, https://doi.org/10.1126/science.aad7270, 2016.
Otto, J., Berveiller, D., Bréon, F.-M., Delpierre, N., Geppert, G., Granier, A., Jans, W., Knohl, A., Kuusk, A., Longdoz, B., Moors, E., Mund, M., Pinty, B., Schelhaas, M.-J., and Luyssaert, S.: Forest summer albedo is sensitive to species and thinning: how should we account for this in Earth system models?, Biogeosciences, 11, 2411–2427, https://doi.org/10.5194/bg-11-2411-2014, 2014.
Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., Rautiainen, A., Sitch, S., and Hayes, D.: A large and persistent carbon sink in the world's forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Penning De Vries, F. W., Brunsting, A. H., and Van Laar, H. H.: Products, requirements and efficiency of biosynthesis – Quantitative approach, J. Theor. Biol., 45, 339–377, 1974.
Pichancourt, J. B., Manso, R., Ningre, F., and Fortin, M.: A carbon accounting tool for complex and uncertain greenhouse gas emission life cycles, Environ. Modell. Softw., 107, 158–174, 2018.
Pilegaard, K., Ibrom, A. Courtney, M. S., Hummelshøj, P., Jensen, N. O.: Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009, Agr. Forest Meteorol., 151, 934–946, https://doi.org/10.1016/j.agrformet.2011.02.013, 2011.
Pilli, R., Grassi, G., Kurz, W. A., Fiorese, G., and Cescatti, A.: The European forest sector: past and future carbon budget and fluxes under different management scenarios, Biogeosciences, 14, 2387–2405, https://doi.org/10.5194/bg-14-2387-2017, 2017.
Pourmokhtarian, A., Driscoll, C. T., Campbell, J. L., and Hayhoe, K.: Modeling potential hydrochemical responses to climate change and increasing CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC), Water Resour. Res., 48, W07514, https://doi.org/10.1029/2011WR011228, 2012.
Rasche, L., Fahse, L., and Bugmann, H.: Key factors affecting the future provision of tree-based forest ecosystem goods and services, Clim. Change, 118, 579–593, https://doi.org/10.1007/s10584-012-0664-5, 2013.
Rayment, M. B., Loustau, D., and Jarvis, P. G.: Measuring and modeling conductances of black spruce at three organizational scales: shoot, branch and canopy, Tree Physiol., 20, 713–723, 2000.
Rayment, M. B., Loustau, D., and Jarvis, P. J.: Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy, Tree Physiol., 22, 219–229, 2002.
Reineke, L. H.: Perfecting a stand-density index for even-aged forests, J. Agric. Res., 46, 627–638, 1933.
Reyer, C., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., and Pilz, T.: Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide, Ann. For. Sci., 71, 211–225, 2014.
Reyer, C., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., Matteucci, G., Collalti, A., D'Andrea, E., Foltýnová, L., Krejza, J., Ibrom, A., Pilegaard, K., Loustau, D., Bonnefond, J.-M., Berbigier, P., Picart, D., Lafont, S., Dietze, M., Cameron, D., Vieno, M., Tian, H., Palacios-Orueta, A., Cicuendez, V., Recuero, L., Wiese, K., Büchner, M., Lange, S., Volkholz, J., Kim, H., Weedon, G., Sheffield, J., Vega del Valle, I., Suckow, F., Horemans, J., Martel, S., Bohn, F., Steinkamp, J., Chikalanov, A., and Frieler, K.: The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests, V. 0.1.12, GFZ Data Services, https://doi.org/10.5880/PIK.2019.008, 2019.
Romanya, J., Cortina, J., Falloon, P., Coleman, K., and Smith, P.: Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils, Eur. J. Soil Sci., 51, 627–641, 2000.
Ryan, M. G.: Effects of climate change on plant respiration, Ecol. Appl., 1, 157–167, 1991.
Sathre, R. and O'Connor, J.: Meta-analysis of greenhouse gas displacement factors of wood product substitution, Environ. Sci. Policy, 13, 104–114, https://doi.org/10.1016/j.envsci.2009.12.005, 2010.
Scartazza, A., Moscatello, S., Matteucci, G., Battistelli, A., and Brugnoli, E.: Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest, Tree Physiol., 33, 730–742, 2013.
Schlamadinger, B. and Marland, G.: The role of forest and bioenergy strategies in the global carbon cycle, Biomass Bioenerg., 10, 275–300, https://doi.org/10.1016/0961-9534(95)00113-1, 1996.
Shaiek, O., Loustau, D., Trichet, P., Meredieu, C., Bachtobji, B., Garchi, S., and El Aouni, M. H.: Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments, Ann. For. Sci., 68, 443–452, 2011.
Smith, P., Smith, J., Wattenbach, M., Meyer, J., Lindner, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M., Reginster, I., and Kankaanpaa, S.: Projected changes in mineral soil carbon of European forests, 1990–2100, Can. J. Soil Sci., 86, 159–169, 2006.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J. Y., McCarthy, H. R., Kim, H. S., Oishi, A. C., and Oren, R.: Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis, Tree Physiol., 25, 887–902, https://doi.org/10.1093/treephys/25.7.887, 2005.
Stoy, P. C., Richardson, A. D., Baldocchi, D. D., Katul, G. G., Stanovick, J., Mahecha, M. D., Reichstein, M., Detto, M., Law, B. E., Wohlfahrt, G., Arriga, N., Campos, J., McCaughey, J. H., Montagnani, L., Paw U, K. T., Sevanto, S., and Williams, M.: Biosphere–atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales, Biogeosciences, 6, 2297–2312, https://doi.org/10.5194/bg-6-2297-2009, 2009.
Stromgren, M., Egnell, G., and Olsson, B. A.: Carbon stocks in four forest stands in Sweden 25 years after harvesting of slash and stumps, Forest Ecol. Manag., 290, 59–66, https://doi.org/10.1016/j.foreco.2012.06.052, 2013.
Subedi, P., Jokela, E. J., Vogel, J. G., and Martin, T. A.: Inter-rotational effects of fertilization and weed control on juvenile loblolly pine productivity and nutrient dynamics, Soil Sci. Soc. Am. J., 78, S152–S167, https://doi.org/10.2136/sssaj2013.08.0345nafsc, 2014.
Thum, T., MacBean, N., Peylin, P., Bacour, C., Santaren, D., Longdoz, B., Loustau, D., and Ciais, P.: The potential benefit of using forest biomass data in addition to carbon and water flux measurements to constrain ecosystem model parameters: Case studies at two temperate forest sites, Agr. Forest Meteorol., 234–235, 48–65, https://doi.org/10.1016/j.agrformet.2016.12.004, 2017.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Van Wijk, M. T., Dekker, S. C., Bouten, W., Bosveld, F. C., Kohsiek, W., Kramer, K., and Mohren, G. M. J.: Modeling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function, Tree Physiol., 20, 115–122, 2000.
Wallach, D. and Goffinet, B.: Mean squared error of prediction as a criterion for evaluating and comparing system models, Ecol. Modell., 44, 299–306, https://doi.org/10.1016/0304-3800(89)90035-5, 1989.
Wang, Y. X., Zhu, X. D., Bai, S. B., Zhu, T. T., Qiu, W. T., You, Y. J., Wu, M. J., Berninger, F., Sun, Z. B., Zhang, H., and Zhang, X. H.: Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China, J. Environ. Manage., 212, 332–339, https://doi.org/10.1016/j.jenvman.2018.02.038, 2018.
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, 1999.
Wutzler, T., Wirth, C., and Schumacher, J.: Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty, Can. J. For. Res., 38, 1661–1675, https://doi.org/10.1139/x07-194, 2008.
Yousefpour, R., Augustynczik, A. L. D., Reyer, C. P. O., Lasch-Born, P., Suckow, F., and Hanewinkel, M.: Realizing mitigation efficiency of European commercial forests by climate smart forestry, Sci. Rep.-UK, 8, 345, https://doi.org/10.1038/s41598-017-18778-w, 2018.
Zhang, X. Z., Guan, D. X., Li, W. B., Sun, D., Jin, C. J., Yuan, F. H., Wang, A. Z., and Wu, J. B.: The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis, Forest Ecol. Manag., 429, 36–43, https://doi.org/10.1016/j.foreco.2018.06.027, 2018.
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
The model GO+ describes the functioning of managed forests based upon biophysical and...