Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5389-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5389-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
School of Ocean and Earth Science, University of Southampton,
Southampton, SO14 3ZH, UK
Martin Leduc
Ouranos, Montréal, Canada
Antti-Ilari Partanen
Climate System Research, Finnish Meteorological Institute, Helsinki,
Finland
H. Damon Matthews
Department of Geography, Planning and Environment, Concordia
University, Montréal, Canada
Alex Rogers
Department of Computer Science, University of Oxford, Oxford, UK
Related authors
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021, https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin C. Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Mirco Migliavacca, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter H. Verburg, and Yuki Yoshida
Biogeosciences, 22, 2425–2460, https://doi.org/10.5194/bg-22-2425-2025, https://doi.org/10.5194/bg-22-2425-2025, 2025
Short summary
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
Rebecca Chloe Evans and H. Damon Matthews
Biogeosciences, 22, 1969–1984, https://doi.org/10.5194/bg-22-1969-2025, https://doi.org/10.5194/bg-22-1969-2025, 2025
Short summary
Short summary
To mitigate our impact on the climate, we must both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated agriculture as a form of CDR under three future climate scenarios to find out how the climate responds to CDR when the carbon is not permanently stored. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low-emissions scenario and at a high rate, and it becomes less effective as removal continues.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024, https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
Philip Goodwin, Richard Williams, Paulo Ceppi, and B. B. Cael
EGUsphere, https://doi.org/10.5194/egusphere-2023-2307, https://doi.org/10.5194/egusphere-2023-2307, 2023
Preprint archived
Short summary
Short summary
Climate feedbacks are normally evaluated by considering the change over time for Earth's energy balance and surface temperatures in the climate system. However, we only have around 1 degree Celsius of temperature change to utilise. Here, climate feedbacks are instead evaluated from the change in latitude of Earth's energy balance and surface temperatures, where we have around 70 degrees Celsius of temperature change to utilise.
Étienne Guertin and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2022-961, https://doi.org/10.5194/egusphere-2022-961, 2022
Preprint archived
Short summary
Short summary
In this research project we add a wildfire model to a model that simulates global vegetation and climate. Our model is simpler and faster than most models. The model simulates wildfire with moderate accuracy but in some areas, the model is very far from reality. This shows that wildfires are highly influenced by climate and vegetation and that these need to be simulated with more accuracy to simulate wildfire. We suggest using a method that compromises between accuracy and speed of simulation.
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys., 22, 11579–11602, https://doi.org/10.5194/acp-22-11579-2022, https://doi.org/10.5194/acp-22-11579-2022, 2022
Short summary
Short summary
A climate model is used to evaluate how the radiative forcing (RF) associated with black carbon (BC) emissions depends on the latitude, longitude, and seasonality of emissions. It is found that both the direct RF (BC absorption of solar radiation in air) and snow RF (BC absorption in snow/ice) depend strongly on the emission region and season. The results suggest that, for a given mass of BC emitted, climatic impacts are likely to be largest for high-latitude emissions due to the large snow RF.
Olivier Asselin, Martin Leduc, Dominique Paquin, Katja Winger, Alejandro Di Luca, Melissa Bukovsky, Biljana Music, and Michel Giguère
EGUsphere, https://doi.org/10.5194/egusphere-2022-291, https://doi.org/10.5194/egusphere-2022-291, 2022
Preprint archived
Short summary
Short summary
Planting trees cools the climate by removing CO2 from the atmosphere, but may also cool or warm the climate by altering the albedo, roughness and evapotranspiration efficiency of the surface. To quantify these biogeophysical effects, we ran regional climate models over two idealized worlds, FOREST and GRASS, respectively representing maximum and minimum tree cover over North America and Europe. We find that these effects must be taken into account to successfully mitigate climate change.
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Kalle Nordling, Hannele Korhonen, Jouni Räisänen, Antti-Ilari Partanen, Bjørn H. Samset, and Joonas Merikanto
Atmos. Chem. Phys., 21, 14941–14958, https://doi.org/10.5194/acp-21-14941-2021, https://doi.org/10.5194/acp-21-14941-2021, 2021
Short summary
Short summary
Understanding the temperature responses to different climate forcing agents, such as greenhouse gases and aerosols, is crucial for understanding future regional climate changes. In climate models, the regional temperature responses vary for all forcing agents, but the causes of this variability are poorly understood. For all forcing agents, the main component contributing to variance in regional surface temperature responses between the climate models is the clear-sky longwave emissivity.
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021, https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Short summary
Climate sensitivityis a key measure of how sensitive Earth's climate is to human release of greenhouse gasses, such as from fossil fuels. However, there is still uncertainty as to the value of climate sensitivity, in part because different climate feedbacks operate over multiple timescales. This study assesses hundreds of millions of climate simulations against historical observations to reduce uncertainty in climate sensitivity and future climate warming.
Joonas Merikanto, Kalle Nordling, Petri Räisänen, Jouni Räisänen, Declan O'Donnell, Antti-Ilari Partanen, and Hannele Korhonen
Atmos. Chem. Phys., 21, 5865–5881, https://doi.org/10.5194/acp-21-5865-2021, https://doi.org/10.5194/acp-21-5865-2021, 2021
Short summary
Short summary
Human-induced aerosols concentrate around their emission sources, yet their climate effects span far and wide. Here, we use two climate models to robustly identify the mechanisms of how Asian anthropogenic aerosols impact temperatures across the globe. A total removal of Asian anthropogenic aerosols increases the global temperatures by 0.26 ± 0.04 °C in the models, with the strongest warming taking place over the Arctic due to increased atmospheric transport of energy towards the high north.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF
ocean reanalysis system ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161,
2013.
Brown, S., Nicholls, R., Goodwin, P., Haigh, I., Lincke, D., Vafeidis, A., and
Hinkel, J.: Quantifying Land and People Exposed to Sea-Level Rise with No
Mitigation and 1.5 and 2.0 ∘C Rise in Global Temperatures to Year
2300, Earths Future, 6, 583–600, https://doi.org/10.1002/2017EF000738, 2018.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to
2015, Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Fordham, D. A., Wigley, T. M. L., Watts, M. J., and Brook, B. W.: Strengthening
forecasts of climate change impacts with multi-model ensemble averaged
projections using MAGICC/SCENGEN 5.3, Ecography 35, 4–8,
https://doi.org/10.1111/j.1600-0587.2011.07398.x, 2012.
Frölicher, T. L., Winton, M., and Sarmiento, J. L.: Continued global
warming after CO2 emissions stoppage. Nat. Clim. Change, 4, 40–44, 2014
Giese, B. S. and Ray, S.: El Niño variability in simple ocean data
assimilation (SODA), 1871–2008, J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695, 2011.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, 2013.
Goodwin, P.: How historic simulation-observation discrepancy affects future
warming projections in a very large model ensemble, Clim. Dynam., 47, 2219–2233,
https://doi.org/10.1007/s00382-015-2960-z, 2016.
Goodwin, P., Williams, R. G., and A. Ridgwell, A.: Sensitivity of climate to
cumulative carbon emissions due to compensation of ocean heat and carbon
uptake, Nat. Geosci., 8, 29–34, 2015.
Goodwin, P., Brown, S., Haigh, I. Nicholls, R., and Matter, J.: Adjusting
Mitigation Pathways to stabilize climate at 1.5 and 2.0 ∘C rise
in global temperatures to year 2300, Earths Future, 6, 601–615,
https://doi.org/10.1002/2017EF000732, 2018a.
Goodwin. P., Katavouta, A., Roussenov, V. M., Foster, G. L., Rohling, E. J., and
Williams, R. G.: Pathways to 1.5 and 2 ∘C warming based on
observational and geological constraints, Nat. Geosci., 11, 102–107,
https://doi.org/10.1038/s41561-017-0054-8, 2018b.
Hansen, J., Ruedy, S., Sato, M., and Lo, K.: Global surface temperature
change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Herger, N., Sanderson, B. M., and Knutti, R.: Improved pattern scaling
approaches for the use in climate impact studies, Geophys. Res. Lett., 42,
3486–3494, https://doi.org/10.1002/2015GL063569, 2015.
IPCC: Climate Change 2013: The Physical Science Basis, edited by: Stocker, T. F. et al., Cambridge Univ. Press, Cambridge, 2013.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Leduc, M., Matthews, H. D., and de Elía, R.: Quantifying the limits of
a linear temperature response to cumulative CO2 emissions, J.
Climate, 28, 9955–9968, 2015.
Leduc, M., Matthews, H. D., and de Elía, R.: Regional estimates of the
transient climate response to cumulative CO2 emissions, Nat. Clim.
Change, 6, 474–478, https://doi.org/10.1038/nclimate2913, 2016.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., andZweng, M. M.: World ocean heat content and thermosteric sea level
change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, 10, https://doi.org/10.1029/2012GL051106,
2012.
Liu, L., Shawki, D., Voulgarakis, A., Kasoar, M., Samset, B. H., Myhre, G.,
Forster, P. M., Hodnebrog, Ø., Sillmann, J., Aalbergsjø, S. G., Boucher, O., Faluvegi, G., Iversen, T., Kirkevåg, A., Lamarque, J.-F.,
Olivié, D., Richardson, T., Shindell, D., and T. Takemura, T.: A PDRMIP
Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and
Regional Precipitation, J. Climate, 31, 4429–4447, https://doi.org/10.1175/JCLI-D-17-0439.1, 2018.
Matthews, H. D., Gillet, N. P., Stott, P. A., and Zickfield, K.: The
proportionality of global warming to cumulative carbon emissions, Nature,
459, 829–832, https://doi.org/10.1038/nature08047, 2009.
McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B. P., Hilaire, J., Krey, V., Marangoni, G., Mi, R., Riahi, K., Rogner, H., and Tavoni, M.: Limited impact on decadal-scale climate change from
increased use of natural gas, Nature, 514, 482–485, https://doi.org/10.1038/nature13837,
2014.
Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration, Atmos. Chem. Phys., 11, 1417–1456, https://doi.org/10.5194/acp-11-1417-2011, 2011a.
Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part
2: Applications, Atmos. Chem. Phys., 11, 1457–1471,
https://doi.org/10.5194/acp-11-1457-2011, 2011b.
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P. P.: The RCP greenhouse gas concentrations and their
extensions from 1765 to 2300, Climatic Change, 109, 213–241, 2011c.
Nicholls, R. J., Brown, S., Goodwin, P., Wahl, T., Lowe,T.J., Solan, M.,
Godbold, J. A., Haigh, I. D., Lincke, D., Hinkel, J., Wolff, C., and Merkens, J.-L.: Stabilisation of global temperature at 1.5 ∘C and
2.0 ∘C: Implications for coastal areas, Philos T. R. Soc. A, 376, 20160448, https://doi.org/10.1098/rsta.2016.0448, 2018.
PALAEOSENS project group members: Making sense of palaeoclimate sensitivity,
Nature, 491, 683–691, 2012.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of comparatively
high greenhouse gas emissions, Climatic Change, 109, 33–57, 2011.
Smith, D. M., Allan, R. P. Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, C. D., and Scaife, A. A.: Earth's energy imbalance since 1960 in observations and
CMIP5 models, Geophys. Res. Lett., 42, 1205–1213, 2015.
Smith, R. S.: The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA, Geosci. Model Dev., 5, 269–276, https://doi.org/10.5194/gmd-5-269-2012, 2012.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historical merged land–ocean surface temperature
analysis (1880–2006), J. Climate, 21, 2283–2296, 2008.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tebaldi, C. and Arblaster, J. M.: Pattern Scaling: Its Strengths and
Limitations, and an Update on the Latest Model Simulations, Climatic Change, 122,
459–471, https://doi.org/10.1007/s10584-013-1032-9, 2014.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and Edmonds, J. A.: RCP4.5: A pathway for stabilization of radiative
forcing by 2100, Climatic Change, 109, 77–94, https://doi.org/10.1007/s10584-011-0151-4, 2011.
Williams, R. G., Goodwin, P., Roussenov, V. M., and Bopp, L.: A framework to
understand the transient climate response to emissions, Environ.
Res. Lett., 11, 015003, https://doi.org/10.1088/1748-9326/11/1/015003,
2016.
Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., and Bopp, L.:
Sensitivity of global warming to carbon emissions: effects of heat and
carbon uptake in a suite of Earth system models, J. Climate, 30,
9343–9363, https://doi.org/10.1175/JCLI-D-16-0468.1, 2017a.
Williams, R. G., Roussenov, V., Frölicher, T. L., and Goodwin, P.:,
Drivers of continued surface warming after cessation of carbon emissions,
Geophys. Res. Lett., 44, 10633–10642, GRL56532,
https://doi.org/10.1002/2017GL075080, 2017b.
Williamson, D., Blaker, A. T., Hampton, C., and Salter, J.: Identifying and
removing structural biases in climate models with history matching, Clim.
Dynam., 45, 1299–1324, 2015.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and Tabeau, A.: Energy, land-use and greenhouse gas emissions
trajectories under a green growth paradigm, Global Environ. Chang., 42,
237–250, https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017.
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H. S., Daioglou, V., Doelman, J. C., Edelenbosch, O. Y., Harmsen, M., Hof, A. F., and van Sluisveld, M. A. E.: Alternative pathways to the 1.5 ∘C
target reduce the need for negative emission technologies, Nat. Clim.
Change, 8, 391–397, https://doi.org/10.1038/s41558-018-0119-8, 2018.
Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleason, B., Huang, B., Kearns, E., Lawrimore, J. H., Menne, M. J., Peterson, T. C., Reynolds, R. W., Smith, T. M., Williams Jr., C. N., and Wuertz, D. B.: NOAA's merged land–ocean surface temperature analysis,
B. Am. Meteorol. Soc., 93, 1677–1685, 2012.
Zickfeld, K., Arora, V. K., and Gillett, N. P.: Is the climate response to CO2
emissions path dependent? Geophys. Res. Lett, 39, L05703, https://doi.org/10.1029/2011GL050205,
2012.
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Numerical climate models are used to make projections of future surface warming for different...