Articles | Volume 13, issue 11
Geosci. Model Dev., 13, 5389–5399, 2020
https://doi.org/10.5194/gmd-13-5389-2020
Geosci. Model Dev., 13, 5389–5399, 2020
https://doi.org/10.5194/gmd-13-5389-2020
Model description paper
09 Nov 2020
Model description paper | 09 Nov 2020

A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0

Philip Goodwin et al.

Related authors

Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets
Philip Goodwin and B. B. Cael
Earth Syst. Dynam., 12, 709–723, https://doi.org/10.5194/esd-12-709-2021,https://doi.org/10.5194/esd-12-709-2021, 2021
Short summary
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020,https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera
Rosanna Greenop, Mathis P. Hain, Sindia M. Sosdian, Kevin I. C. Oliver, Philip Goodwin, Thomas B. Chalk, Caroline H. Lear, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017,https://doi.org/10.5194/cp-13-149-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
MIdASv0.2.1 – MultI-scale bias AdjuStment
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022,https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022,https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022,https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022,https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022,https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary

Cited articles

Balmaseda, M. A., Mogensen, K., and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4, Q. J. Roy. Meteor. Soc., 139, 1132–1161, 2013. 
Brown, S., Nicholls, R., Goodwin, P., Haigh, I., Lincke, D., Vafeidis, A., and Hinkel, J.: Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5 and 2.0 C Rise in Global Temperatures to Year 2300, Earths Future, 6, 583–600, https://doi.org/10.1002/2017EF000738, 2018. 
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017. 
Fordham, D. A., Wigley, T. M. L., Watts, M. J., and Brook, B. W.: Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3, Ecography 35, 4–8, https://doi.org/10.1111/j.1600-0587.2011.07398.x, 2012. 
Frölicher, T. L., Winton, M., and Sarmiento, J. L.: Continued global warming after CO2 emissions stoppage. Nat. Clim. Change, 4, 40–44, 2014 
Download
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.