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Abstract. Climate projections are made using a hierarchy
of models of different complexities and computational ef-
ficiencies. While the most complex climate models contain
the most detailed representations of many physical processes
within the climate system, both parameter space exploration
and integrated assessment modelling require the increased
computational efficiency of reduced-complexity models.
This study presents a computationally efficient method for
generating probabilistic projections of local warming across
the globe, using a pattern-scaling approach derived from the
Climate Model Intercomparison Project phase 5 (CMIP5) en-
semble, that can be coupled to any efficient model ensem-
ble simulation of global mean surface warming. While the
method can project local warming for arbitrary future sce-
narios, using it for scenarios with peak global mean warming
≤ 2 ◦C is problematic due to the large uncertainties involved.
First, global mean warming is projected using a 103-member
ensemble of history-matched simulations with an example
reduced complexity Earth system model: the Warming Acid-
ification and Sea-level Projector (WASP). The ensemble pro-
jection of global mean warming from this WASP ensem-
ble is then converted into local warming projections using
a pattern-scaling analysis from the CMIP5 archive, consid-
ering both the mean and uncertainty of the local to global
ratio of temperature change (LGRTC) spatial patterns from
the CMIP5 ensemble for high-end and mitigated scenarios.
The LGRTC spatial pattern is assessed for scenario depen-

dence in the CMIP5 ensemble using RCP2.6, RCP4.5 and
RCP8.5, and spatial domains are identified where the pat-
tern scaling is useful across a variety of arbitrary scenarios.
The computational efficiency of our WASP–LGRTC model
approach makes it ideal for future incorporation into an inte-
grated assessment model framework or efficient assessment
of multiple scenarios. We utilise an emergent relationship be-
tween warming and future cumulative carbon emitted in our
simulations to present an approximation tool making local
warming projections from total future carbon emitted.

1 Introduction

The dominant climate projections, used by the 5th Assess-
ment Report (AR5) of the Intergovernmental Panel on Cli-
mate Change (IPCC, 2013), are made using the Climate
Model Inter-comparison Project phase 5 (CMIP5) ensemble
(Taylor et al, 2012). However, due to their high level of com-
plexity, state-of-the-art CMIP5 Earth system models (ESMs)
are computationally demanding; thus they cannot be used on
a regular basis to inform decision makers about the impacts
of arbitrary carbon-emission scenarios.

While a couple of years separate the different genera-
tions of CMIP-like experiments, many applications rather
require climate simulations to be generated within a much
shorter time frame. For instance, impact assessments may re-
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quire climate projections for scenarios not considered by the
CMIP5 experiments, for example scenarios designed to meet
Paris Climate Agreement targets and maintain global mean
surface warming below 1.5 or 2 ◦C (e.g. van Vuuren et al.,
2018; Brown et al., 2018; Nicholls et al., 2018; Goodwin
et al., 2018a); physical climate simulations are also required
within integrated assessment models exploring the coupled
economic, societal, ecological and climate systems (e.g. van
Vuuren et al., 2018, 2017; McJeon et al., 2014).

To generate computationally efficient climate simulations,
a range of lower-complexity – but numerically more efficient
– climate models have been developed. They generally use a
reduced spatial resolution and/or a simplified representation
of processes included within the complex models (e.g. Smith,
2012; Meinshausen et al., 2011a; Goodwin et al., 2018b).

For example, the highly efficient MAGICC6 climate
model uses an upwelling-diffusion representation of the
ocean and a hemispherical averaged spatial resolution (Mein-
shausen et al., 2011a). MAGICC6 has been configured to em-
ulate an ensemble of the more complex Climate Model Inter-
comparison Project phase 3 (CMIP3) climate models (Mein-
shausen et al., 2011a, b) but at a fraction of the computational
expense. To generate spatial projections using MAGICC, a
pattern-scaling approach (e.g. Herger et al., 2015) is applied
to emulate the spatial climate patterns from the CMIP3 mod-
els (e.g. Fordham et al., 2012): the regional climate SCENar-
ioGENerator (SCENGEN). This MAGICC6 (and combined
MAGICC6–SCENGEN) climate model is computationally
efficient enough to usefully couple into integrated assessment
model (IAM) frameworks, including the IMAGE and MES-
SAGE frameworks (van Vuuren et al., 2017; McJeon et al.,
2014). A key goal of IAMs is to explore consequences of the
coupled human–climate system, through coupling represen-
tations of the physical climate system with the biosphere and
human–society interactions, often including energy genera-
tion and land-use changes.

A recent study (Goodwin et al., 2018b) takes a different
approach to making future projections of global mean sur-
face warming, using the computationally efficient Warming
Acidification and Sea-level Projector (WASP) climate model
(Goodwin, 2016). In Goodwin et al. (2018b) the efficient
WASP model is configured, not by tuning the parameters to
emulate existing complex climate models (e.g. Meinshausen
et al., 2011a, b) but instead by history-matching (Williamson
et al., 2015) the efficient model to real-world data. Good-
win et al. (2018b) first generate 100 million (108) simu-
lations using WASP, by varying the model properties with
a Monte Carlo approach. This includes an input distribu-
tion for climate sensitivity drawn from geological evidence
(PALAEOSENS, 2012). These 108 simulations are then in-
tegrated from year 1765 to 2017, and each of them is checked
against a set of historic observational reconstructions of sur-
face warming (Hansen et al., 2010; Smith et al., 2008; Vose
et al., 2012), ocean heat uptake (Levitus et al., 2012; Giese
et al., 2011; Balmaseda et al., 2013; Good et al., 2013; Smith

et al., 2015; Cheng et al., 2017) and carbon fluxes (IPCC,
2013; Le Quéré et al., 2016). Only those WASP simulations
that are consistent with the observational constraints are ex-
tracted to form the final history-matched ensemble of around
3× 104 simulations (Goodwin et al., 2018b; see Table S3
in the Supplement). This final history-matched ensemble is
then used to make future projections (Goodwin et al., 2018b).
Note that the WASP ensemble is not configured to emulate
the performance of more complex models but to be consis-
tent with observations of the real climate system.

The WASP model (Goodwin, 2016) produces projections
for global mean surface warming only (Goodwin et al.,
2018b), so to gain information to calculate local warming we
here apply a pattern-scaling tool. Leduc et al. (2016) have
recently shown that the spatial pattern of warming across
CMIP5 models is relatively robust even though the aver-
age warming varies widely between ensemble members. Us-
ing the well-known pattern-scaling approach (Tebaldi and
Arblaster, 2014), Leduc et al. (2016) calculated the spatial
pattern of the local to global ratio of temperature change
(LGRTC) that represented the CMIP5 ensemble, including
both the mean and standard deviation in this spatial pattern.

Globally, the near-linear sensitivity of mean surface warm-
ing to cumulative carbon emissions is expressed via the tran-
sient climate response to cumulative CO2 emissions (TCRE
in ◦C (1000PgC)−1), which is estimated to be in the range
0.8 to 2.5 ◦C (1000PgC)−1 (IPCC, 2013; Matthews et al.
2009). One approach to generating local warming projections
from carbon emission scenarios is to simply multiply the
LGRTC characteristic of the CMIP5 ensemble (Leduc et al.
2016) by the estimated range for the TCRE and by the cumu-
lative carbon emissions. However, this approach cannot be
used to investigate or simulate several phenomena of poten-
tial interest. Firstly, the effective TCRE depends on the ratio
of CO2 to non-CO2 radiative forcing (Williams et al., 2016,
2017a). Therefore, while the efficient climate models can be
applied to investigate future warming for arbitrary scenarios,
the TCRE cannot be applied unless it is for a scenario for
which the TCRE is already estimated (e.g. Matthews et al.,
2009; Williams et al., 2017a), for example the defined Rep-
resentative Concentration Pathway (RCP) scenarios (Mein-
shausen et al., 2011c) or an idealised scenario with 1% per
year increase in CO2 concentration (1 % CO2; Taylor et al.
2012) and no other forcing. Secondly, studies indicate that
there can be a period of continued surface warming follow-
ing cessation of annual carbon emissions (Frölicher et al.,
2014; Williams et al., 2017b). This phenomenon cannot be
explored using the TCRE alone but is represented within effi-
cient climate models such as WASP (Williams et al., 2017b).
Thirdly, there is evidence that in some circumstances there
is a path dependence of surface warming from cumulative
emissions (Zickfield et al. 2012), for example where cooling
following negative emissions may not re-trace the previous
warming pathway. Again, this phenomenon is not captured
within a constant TCRE framework but may be explored

Geosci. Model Dev., 13, 5389–5399, 2020 https://doi.org/10.5194/gmd-13-5389-2020



P. Goodwin et al.: Efficient local warming projections 5391

with climate models. Thus a TCRE framework is applicable
for certain situations, including idealised scenarios where the
TCRE has already been established, but in the general case a
time-dependent Earth system model is required.

In this study, we present a new method for combining the
LGRTC approach with an arbitrary efficient Earth system
model to generate computationally efficient local warming
projections for arbitrary forcing scenarios. Using the WASP
model as our example efficient Earth system model, the com-
bined WASP–LGRTC model makes local warming projec-
tions that are history-matched to constrain the global mean
surface warming (Goodwin et al., 2018b) and pattern scaled
to the CMIP5 ensemble to generate the local information
(Leduc et al., 2016). Our efficient method of ensemble gen-
eration is able to produce warming projections to year 2100
for arbitrary future carbon-emission scenarios in a matter of
seconds on a standard desktop computer (with the compu-
tational efficiency of the particular, WASP, efficient model
used). An approximation tool is also presented making lo-
cal warming projections based on future cumulative carbon
emitted, for idealised scenarios where the TCRE has been
pre-established.

Section 2 describes the spatial warming patterns analysed
for RCP4.5 (Thomson et al., 2011) and RCP8.5 (Riahi et al.,
2011) scenarios in 22 CMIP5 models, following the method-
ology of Leduc et al. (2016). Section 3 describes our methods
for producing an ensemble of warming projections for any
locality using the combined WASP–LGRTC Earth system
model, while Sect. 4 presents the approximation approach for
cases when the TCRE is pre-established. Section 5 discusses
the wider implications of this study.

2 Spatial warming patterns in the CMIP5 ensemble for
RCP2.6, RCP4.5 and RCP8.5

Leduc et al. (2016) demonstrated the utility of considering
the spatial warming over time as a product of the global mean
warming,1T (t), and the spatial pattern of the local to global
ratio of temperature change, LGRTC(x,y), in the CMIP5 en-
semble,

1T (x,y, t)=1T (t)×LGRTC(x,y). (1)

The mean and standard deviation in LGRTC were analysed
across 12 CMIP5 models (Leduc et al. 2016), under a 1% per
year increase in atmospheric CO2 concentration (1 % CO2;
Taylor et al. 2012). To first order, for scenarios that do not
reach peak warming before 2100, the mean LGRTC can be
treated as being independent of time and emission scenarios
(Leduc et al. 2016, 2015).

Here, the spatial warming patterns in 22 CMIP5 models
(see Table S1) are examined for RCP4.5 (Thomson et al.,
2011) and RCP8.5 (Riahi et al., 2011) scenarios that contain
also non-CO2 forcings from for example anthropogenic non-
CO2 greenhouse gas and aerosol emissions. We evaluated the

LGRTC comparing mean global temperature between years
2006–2025 and 2079–2098. RCP2.6 data were not avail-
able for models CESM1-BGC, inmcm4 and IPSL-CM5B-
LR. For the other 19 models, we calculated the RCP2.6
LGRTC for the temperature peak period, defined as a 20-
year time window with the maximum time-average global
mean surface air temperature. Different models had the peak
temperature at different times, so we identified the peak in-
dividually for each model run. For most models, the peak in
20-year running-mean global temperature was around year
2070. For MIROC-ESM, CSIRO-Mk3-6-0, CCSM4, MRI-
CGCM3 and CSIRO-Mk3-6-0, the period with the highest
mean temperature was the years 2079–2098. The same ref-
erence period (2006–2025) was used as with the calculation
of LGRTC using the end-of-the-century period for RCPs 4.5
and 8.5. Note that for RCP2.6 the LGRTC was calculated us-
ing the peak temperature period, rather than 2079–2098, be-
cause the 2078–2098 period had a temperature similar to or
colder than 2006–2025 in some models, making the calcula-
tion of LGRTC impractical since the denominator of the cal-
culation (the global mean temperature change) was too small
or negative.

Figure 1 shows the multi-model mean LGRTC (µLGRTC)
and multi-model standard deviation in LGRTC (σLGRTC) for
the RCP4.5, RCP8.5 and RCP2.6 scenarios. With the excep-
tion of oceanic regions where non-linear processes have im-
portant impacts on the climate sensitivity, such as the sea-ice
albedo feedback in the Arctic and the meridional overturning
circulation in the North Atlantic (Leduc et al., 2016), LGRTC
is very similar in the RCP4.5 and RCP8.5 scenarios (Fig. 1b
and c). The uncertainty of the warming patterns within each
scenario, defined as standard deviation of LGRTC within the
model ensemble (σLGRTC), was largest in the Arctic Ocean
and in the Southern Ocean for RCP4.5 and RCP8.5 (Fig. 1e
and f). The spatial average of the multi-model standard de-
viation was larger in the RCP4.5 than in RCP8.5 over most
areas of the globe. Over continents, it was around 0.15–0.45
in RCP4.5 and mostly below 0.3 in RCP8.5. The RCP2.6
scenario shows greater multi-model mean LGRTC at low
latitudes (Fig. 1a–c) and has more inter-model variation in
the LGRTC at high latitudes (Fig. 1d–f), compared to the
RCP4.5 and RCP8.5 scenarios.

The difference in LGRTC between two scenarios, rela-
tive to the multi-model variation within a scenario, is ex-
pressed via a spatially averaged ratio of |µLGRTC,i(x,y)−

µLGRTC,j (x,y)|/σLGRTC,i(x,y), where i signifies the refer-
ence scenario and j the scenario for comparison. Table 1 ex-
presses how many multi-model standard deviations each of
the three scenarios multi-model mean LGRTC lies relative
to the other scenarios. Considering the mid-range scenario
(RCP4.5) as the reference, the LGRTC for RCP8.5 lies a
spatial average of just 0.17 standard deviations away from
RCP4.5 (Table 1), indicating that the variation in LGRTC
between models within the RCP4.5 scenario is more signif-
icant than the variation between RCP4.5 and RCP8.5 sce-
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Figure 1. The LGRTC in RCP2.6, RCP4.5 and RCP8.5 scenarios analysed from a multi-model ensemble of CMIP5 simulations. Panels (a–c)
show the multi-model mean LGRTC, µLGRTC, while (d–f) show the multi-model standard deviation in LGRTC, µLGRTC, for each scenario.

Table 1. The difference between one scenario LGRTC and another,
expressed as the spatially averaged number of multi-model standard
deviations in LGRTC. The multi-model mean LGRTC is from the
second scenario relative to the first:

∫
|
µj−µi
σi
|dA/

∫
dA, where A

is surface area, µj and µi are the mean LGRTC of scenarios i and
j , and σi is the standard deviation in LGRTC for scenario i.

Reference scenario RCP2.6 RCP4.5 RCP8.5

RCP2.6 – 0.78 0.75
RCP4.5 2.83 – 0.17
RCP8.5 2.15 0.41 –

narios. In contrast, the LGRTC for the RCP2.6 scenario lies
2.8 standard deviations away from RCP4.5 (Table 1). The
multi-model-mean LGRTC for RCP4.5 and RCP8.5 scenar-
ios lie a spatial average of 0.78 and 0.75 standard deviations
away from the RCP2.6 scenario respectively (Table 1). Note
that the asymmetry in Table 1, with lower difference when
RCP2.6 is used as the reference scenario, reflects the larger
values of σLGRTC in the RCP2.6 scenario (Fig. 1d–f).

3 Local warming projections in the pattern-scaled
WASP–LGRTC ensemble

The aim here is to generate computationally efficient fu-
ture projections of local warming across the globe, includ-
ing a measure of the uncertainty in those local warming pro-
jections. This is distinct from generating a spatial warming
projection that is internally physically consistent, maintain-
ing physically plausible teleconnections between warming at
different locations. Each CMIP5 model simulation creates a

unique, internally physically consistent spatial warming pat-
tern for the prescribed forcing. When projecting local warm-
ing, including a measure of uncertainty, one method is to
use information on the average and variation in the LGRTC
information from multiple CMIP5 models (Figs. 1 and 2).
However, as soon as the information from multiple CMIP5
models is combined, the averaged result may not be inter-
nally physically consistent in terms of the spatial pattern of
warming.

Section 3.1 describes how an observation-constrained pro-
jection of global mean surface warming is generated, includ-
ing uncertainty. Section 3.2 then combines this global mean
projection with the LGRTC information from the CMIP5
models (Sect. 2, above) to generate local warming projec-
tions.

3.1 Generating global mean warming projections

The WASP Earth system model comprises an eight-box
representation of carbon and heat fluxes between the at-
mosphere, ocean and terrestrial systems (Goodwin, 2016),
with surface warming solved via a functional equation link-
ing warming to cumulative carbon emitted (Goodwin et al.
2015). For the terrestrial system, carbon uptake by photosyn-
thesis is dependent on temperature and CO2, while carbon
release via respiration is temperature dependent. Heat and
carbon initially enter the ocean at the surface ocean mixed
layer. Once in the surface ocean mixed layer, heat and car-
bon are exchanged with the subsurface ocean regions over e-
folding timescales that vary between each simulation in the
ensemble.

Here, the WASP model configuration of Goodwin
et al. (2018b) is used. First, WASP is used to generate 3×106
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Figure 2. The LGRTC in the arbitrary, generic≤ 2◦C and generic≥ 2◦C scenarios. Panels (a–c) show the scenario mean LGRTC. Panels
(d–f) show the scenario standard deviation in LGRTC. Panels (g–i) show the ratio of the maximum absolute discrepancy in the mean LGRTC
from the underlying RCP scenarios, 1µ, to the standard deviation in the LGRTC, σ , in the combined scenario: 1µ/σ .

initial simulations in a Monte Carlo approach, each one in-
tegrated from years 1765 to 2017. A history-matching ap-
proach (Williamson et al., 2015) is then adopted to assess
these initial 3× 106 simulations for observational consis-
tency against historic warming, ocean heat uptake and carbon
fluxes (Table S2 in the Supplement; and see Goodwin et al.,
2018b for how the history-matching approach is applied to
the WASP model). A total of 1×103 simulations are found to
be observationally consistent such that their simulated values
of surface warming, ocean heat uptake and carbon fluxes are
consistent within observational uncertainty (Table S2; Good-
win et al., 2018b).

The 1× 103 observation-consistent simulations are ex-
tracted to form the final history-matched ensemble. This en-
semble is then integrated into the future to generate the dis-
tribution of global mean surface warming over time (Fig. 3).
The distributions of global mean surface warming, 1T i(t),
projected by this configuration and history-matching ap-
proach using the WASP ensemble are similar to the CMIP5
projections from highly complex ESMs for the four RCP sce-
narios (Goodwin et al., 2018b; see Fig. 2 therein). However,
possibly because the WASP projections are more tightly con-
strained to observations, they show reduced ensemble spread
in future warming compared to the CMIP5 ensemble.

3.2 Generating local warming projections

We now utilise projected distributions from the same con-
figuration of the WASP model to calculate distributions of

local warming across the globe using the LGRTC pattern-
scaling approach of Leduc et al. (2016). The aim is to gen-
erate an ensemble of projections of local warming at time t
for some scenario,1Ti(x,y, t), by using the history-matched
WASP projections of1T i(t), and the mean and standard de-
viation of the LGRTC for the CMIP5 models, µLGRTC(x,y)

and σLGRTC(x,y) respectively (Figs. 2 and 3).

3.2.1 Constructing the LGRTC suitable for a range of
non-RCP scenarios

The aim here is to apply a LGRTC calculation that will likely
apply for multiple potential future scenarios, not just the
three RCP scenarios evaluated (Fig. 1). To achieve this, we
now combine the LGRTC fields for the different RCP scenar-
ios to find aggregated LGRTC fields, considering the spatial
domain over which this is likely to be feasible. The mean
and standard deviations for the LGRTC at location x,y, in
the new combined scenarios are calculated from the underly-
ing RCP scenarios, using

µLGRTC(x,y)=

n∑
i=1

µi(x,y)/n (2)

and

σLGRTC(x,y)=

√√√√ n∑
i=1
(σi(x,y))2, (3)

where n is the number of underlying RCP scenarios used.
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Figure 3. Projections of global mean surface warming from the
history-matched WASP ensemble for different future carbon emis-
sion sizes. (a) Frequency distributions of projected warming in the
WASP ensemble for different future carbon emission sizes after the
start of 2018. (b) Ensemble-mean global warming as future cumu-
lative carbon emitted increases. (c) Ensemble standard deviation
in global warming as future carbon emitted increases. Panels (b)
and (c) show the RCP8.5 (blue), RCP6.0 (red), RCP4.5 (orange)
and RCP2.6 (purple) scenarios. A quadratic approximation, Eq. (3)
for (b) and Eq. (4) for (c), is a good fit to the RCP8.5 scenario
(thin black line). All panels show warming calculated relative to the
1850–1900 average.

The domain of the LGRTC in the new combined sce-
narios is assumed valid where the variation in LGRTC be-
tween underlying RCP scenarios is less than the variation
ascribed within the new scenario, σLGRTC(x,y). This is cal-
culated such that µLGRTC(x,y) exists where the variation be-
tween the mean of the LGRTC from the different scenarios
is less than the combined standard deviation in the LGRTC
|µj −µk|/σLGRTC < 1.0, for all combinations of two under-
lying RCP scenarios j and k.

This method (Eqs. 2 and 3) is used to generate LGRTC
fields for three potential generic scenarios (Fig. 2). First, a
scenario for any arbitrary future warming scenario (arbitrary
scenario) is constructed by combining all three RCP scenar-
ios (RCP2.6, RCP4.5 and RCP8.5) (Fig. 2a, d and g). Second,
a LGRTC scenario for warming consistent with Paris Climate
Agreement targets of 1.5 and 2 ◦C (generic≤ 2 ◦C scenario)
is constructed by combining RCP2.6 and RCP4.5 (Fig. 2b,
e and h), the two RCP scenarios containing (at least some)
model simulations that do comply with the Paris Agreement.

Lastly, a LGRTC scenario for future warming that is likely to
exceed the Paris Climate Agreement targets (generic≥ 2 ◦C
scenario) is constructed using RCP4.5 and RCP8.5 (Fig. 2c,
f and i), the scenarios where most (RCP4.5) or all (RCP8.5)
simulations exceed 2 ◦C.

The arbitrary and generic ≤ 2 ◦C LGRTC scenarios are
problematic to use in practice. Firstly, the large values
of σLGRTC(x,y) across many regions, especially over land
(Fig. 2d and e), make any local warming projection highly
uncertain. The high σLGRTC(x,y) values arise from the high
inter-model variation in the LGRTC in the RCP2.6 scenario
(Fig. 1b, Eqs. 2 and 3). Secondly, both arbitrary and ≤ 2 ◦C
generic scenarios have regions that fail the validity criteria,
|µj−µk|/σLGRTC < 1.0, and so are outside of the prescribed
LGRTC domains (Fig. 2a and b, white regions). The largest
of these regions lie in the low-latitude oceans, with most
areas outside the valid domain being marine. Most densely
populated areas on land are within the valid domain, and so
the LGRTC approach can be applied to project future local
warming. Areas outside the applicable domain (Fig. 2a and
b) are generally where inter-model variation, σLGRTC(x,y),
is small (Figs. 2d, e and 1d–f), rather than where inter-RCP
scenario variation, µj −µk , is large (Fig. 1a–c).

The generic≥ 2 ◦C LGRTC pattern, a combination of
RCP4.5 and RCP8.5 (Eqs. 2 and 3), is usable in practice for
more generic future warming scenarios. The generic≥ 2 ◦C
LGRTC pattern retains a small σLGRTC(x,y) (Fig. 2: com-
pare f to d and e) and, due to the similarities between LGRTC
fields for RCP4.5 and RCP8.5 scenarios (Fig. 1, Table 1),
the LGRTC pattern for the generic ≥ 2 ◦C scenario remains
within the validity criteria for the entire globe (Fig. 2c, f, and
i). The generic≥ 2 ◦C LGRTC pattern (Fig. 2) assumes ide-
alised future pathways within the range of the RCP4.5 and
RCP8.5 scenarios (Fig. 3b and c), including a similar ratio
of CO2 to non-CO2 radiative forcing and spatial emissions
of anthropogenic aerosols. This generic≥ 2 ◦C LGRTC field
should not be used for extreme scenarios that differ widely
from the underlying societal assumptions of the RCP scenar-
ios, for example in their spatial aerosol forcing (e.g. see Liu
et al., 2018).

3.2.2 Combining the LGRTC patterns with a
probabilistic ensemble for global mean warming

Here, we combine LGRTC patterns (Figs. 1 and 2) with
global mean warming projections from an efficient Earth sys-
tem model. While we use the WASP model here, other effi-
cient models could be used. For the ith ensemble member of
this history-matched WASP ensemble, the WASP–LGRTC
projection of local warming at location x,y,1Ti(x,y, t) is
constructed using both the mean and standard deviation in
the LGRTC from the CMIP5 models,

1Ti(x,y, t)=1T i(t)×
[
µLGRTC(x,y)+ ziσLGRTC(x,y)

]
,

(4)
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Figure 4. Projected warming for the period 2081–2100 relative to
the 1850–1900 average from 1× 103 history-matched simulations
of the ultra-fast WASP–LGRTC ensemble. Panels (a–c) is for the
RCP4.5 scenario and (d–e) is for the RCP8.5 scenario. Panels (a, d),
(b, e) and (c, f) represent the mean, 83rd percentile and 17th per-
centile of the model ensemble.

where zi is randomly chosen from a standard normal distri-
bution. This distribution of local warming at time t (Eq. 4)
includes both the uncertainty in global mean warming in the
WASP ensemble (Fig. 3; Goodwin et al., 2018b) and uncer-
tainty in the spatial pattern of warming, σLGRTC, which is
statistically derived from the CMIP5 ensemble (Fig. 2; Leduc
et al. 2016). Note that Eq. (2) does not assume that the distri-
bution of global mean temperature projections,1T i(t), from
the efficient Earth system model is Gaussian. The distribution
of 1T i(t) may not be Gaussian if, for example, the assumed
climate sensitivity distribution has a long tail of high values
(e.g. see Knutti et al., 2017). Thus, this method for gener-
ating the local warming distribution, Eq. (2), can be applied
to any arbitrary distribution of global mean surface warm-
ing from any arbitrary efficient climate model. If, however,
the distribution of global mean surface temperature, 1T i(t),
were known in advance to be Gaussian, then it may be prefer-
able to generate the local warming distribution, 1Ti(x,y, t),
by multiplying the Gaussian distributions for global warm-
ing and LGRTC directly, rather than applying Eq. (2), which
multiplies the individual values within each distribution.

The full WASP–LGRTC-ensemble local warming projec-
tions for RCP 4.5 and RCP 8.5 are given in Fig. 4, which
shows the mean, 17th percentile and 83rd percentile of the
warming across the globe from the 1× 103 WASP–LGRTC
ensemble members. To generate the local projections (Eq. 4)
for RCP4.5 and RCP8.5, we apply the pattern scaling anal-
ysed from the CMIP5 models for the appropriate scenario
(Fig. 2). In both scenarios, there is more uncertainty (i.e. a
higher range of responses between the 17th and 83th per-
centiles) in local warming at high northern latitudes (Fig. 4),

consistent with this area showing a larger ensemble spread
between CMIP5 models (Fig. 1).

The radiative forcing from aerosols can be highly lo-
calised, and so the ensemble mean and variation of lo-
cal warming, µLGRTC(x,y) and σLGRTC(x,y) in Eq. (4),
depend on how the CO2 and non-CO2 agents evolve
in the scenario. For that reason, we include local
warming patterns for the 1 % CO2 scenario as well as
the RCP4.5, RCP8.5 and generic≥ 2 ◦C scenarios in
the pattern scaling for the WASP–LGRTC model code
(https://doi.org/10.5281/zenodo.4001523). This allows fu-
ture users to choose the spatial pattern scaling that is most
suitable for their scenario. The next section utilises the
generic≥ 2 ◦C LGRTC pattern (Fig. 2c) to project spatial
warming patterns for scenarios where the cumulative carbon
emission is specified.

4 Approximation for arbitrary cumulative carbon
emission scenarios

This section explores further increasing the computational
efficiency for making spatial warming projections for ide-
alised future scenarios, by approximating to the history-
matched WASP ensemble projections of global mean surface
warming as a function of cumulative carbon emitted after
2018, Iem in PgC.

The distribution of global mean surface warming in the
WASP–LGRTC ensemble is approximately normally dis-
tributed for the RCP scenarios (Fig. 3a). The history-matched
ensemble mean and standard deviation, µ1T and σ1T re-
spectively, are both well approximated by second-order poly-
nomials in cumulative carbon emitted (Fig. 3b and c). The
ensemble mean warming projections is given by

µ1T (Iem)= a1I
2
em+ b1Iem+ c1, (5)

and the ensemble standard deviation by

σ1T (Iem)= a2I
2
em+ b2Iem+ c2, (6)

where a1 = 3.50257× 10−7, b1 = 2.50924× 10−3, c1 =

1.02159, a2 = 2.14129× 10−8, b2 = 2.28077× 10−4 and
c2 = 8.79361× 10−2 for RCP8.5. Both the RCP4.5 and
RCP2.6 scenarios see very similar warming per unit future
carbon emitted to RCP8.5, while the RCP6.0 scenario sees
only slightly less warming per unit future carbon emitted
(Fig. 3b and c).

Therefore, for emission scenarios over the 21st century in
which the ratio of radiative forcing from sources other than
CO2 to cumulative carbon emitted during the 21st century
lies within the range of the RCP scenarios, the distribution
of global mean surface warming from the history-matched
WASP ensemble can be approximated by quadratics in future
carbon emitted (Eqs. 5 and 6; Fig. 3)

The mean warming at location x,y is calculated by simply
multiplying the mean of the 1× 103 WASP ensemble mem-
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Figure 5. Warming projections when future emissions reach
500 PgC from the start of 2018. (a) The spatial distribution of the
central warming projection. (b) The probability distributions of lo-
cal warming for seven locations (solid colour lines) and the global
surface average (black dashed line). All warming projections given
relative to the average temperature from 1850 to 1900. Global mean
warming projected from the quadratic approximation to the history-
matched WASP ensemble (Eqs. 3 to 6) using the generic ≥ 2 ◦C
spatial pattern.

bers of the global average warming by the CMIP5 mean of
the LGRTC,

µ1T (x,y,Iem)= µ1T (Iem)×µLGRTC(x,y). (7)

The standard deviation in local warming at location x,y after
cumulative emissions Iem, σ1T (x,y,Iem) is then calculated
from the standard deviation in the global average warming in
the i ensemble members, σ1T (Iem), and the standard devia-
tion in the LGRTC, σLGRTC(x,y), using

σ1T (x,y,Iem)= µ1T (x,y,Iem)

×

√(
σ1T (Iem)

µ1T (Iem)

)2

+

(
σLGRTC(x,y)

µLGRTC(x,y)

)2

.

(8)

Note that in this approximation tool the uncertainty in lo-
cal warming is calculated directly by multiplying the as-
sumed Gaussian distributions of LGRTC and global mean
warming, Eq. (8). This is unlike the uncertainty calcula-
tion for the generic method, Eq. (4), which does not as-
sume a Gaussian distribution for global mean warming. Ap-
plying Eqs. (7) and (8) provides a method to approximate
local warming projections as a function of the future car-
bon emitted after the start of 2018 (Fig. 5a; code avail-
able at https://doi.org/10.5281/zenodo.4001523), including

uncertainty in the warming at any location (Fig. 5b). This
method assumes idealised future pathways within the ranges
of the RCP4.5 and RCP8.5 scenarios (Fig. 3b and c), in-
cluding a similar ratio of CO2 to non-CO2 radiative forcing.
The generic≥ 2 ◦C scenario LGRTC field (Fig. 2) is applied
(Fig. 4), and as such the approximation tool should be utilised
for cumulative carbon emission values that give a best esti-
mate for global mean warming of 2 ◦C or more. While this
approximation tool (Fig. 5; Eqs. 5–8) is not as general as
the full WASP–LGRTC Earth system model in its potential
applications, we anticipate it will still be a useful tool for
back-of-the-envelope approximations and pedagogical appli-
cations.

5 Discussion

A highly computationally efficient Earth system model has
been presented for projecting local warming projections,
based on a history-matched global mean warming projec-
tion using an efficient ESM (Goodwin, 2016; Goodwin et al.,
2018b) and pattern scaling of the CMIP5 ensemble (Leduc
et al., 2016): the WASP–LGRTC model. Along with the full
WASP–LGRTC model is an easy-to-use normal error propa-
gation approximation variant producing projected ranges of
both global mean warming and the spatial distribution of
warming for future cumulative carbon-emission values.

The WASP–LGRTC model presented here is an alterna-
tive to existing efficient climate models. For example, the
MAGICC6–SCENGEN efficient model is often configured
as an “emulator” of the CMIP3 ensemble (Meinshausen
et al. 2001): the MAGICC6–SCENGEN model parameters
are tuned such that the ensemble members emulate the prop-
erties of the more complex CMIP3 models in both global
mean warming and spatial warming patterns. However, even
the most complex of climate model ensembles show discrep-
ancy to observations (Goodwin et al. 2018b), and this dis-
crepancy will be reproduced by an emulating ensemble. In
contrast, the WASP–LGRTC model is not tuned to emulate
more complex models. Instead the WASP model parameters
are empirically constrained using the observed histories of
warming, heat uptake and carbon fluxes to generate global
mean surface warming projections (Goodwin et al. 2018b).
Meanwhile, the LGRTC spatial pattern applies the mean and
standard deviation in the spatial warming from across the
CMIP5 ensemble (Leduc et al. 2016) but does not seek to em-
ulate any specific CMIP5 model within any specific WASP–
LGRTC ensemble member.

At present, the WASP model requires prescribed radia-
tive forcing from greenhouse gases and agents other than
CO2, for example methane or aerosols (Goodwin, 2016;
Goodwin et al. 2018b). Future work will seek to imple-
ment an emission-based representation of other significant
greenhouse gases and aerosols, allowing the WASP–LGRTC
model to explore a wider range of future scenarios.
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Both the WASP–LGRTC model and the quadratic approx-
imation to WASP–LGRTC model are easy to use. The full
WASP–LGRTC model can quickly generate output for arbi-
trary future scenarios, while the approximated model makes
projections for different future cumulative emissions assum-
ing that the relative CO2 and non-CO2 radiative forcing is
in the range of the RCP8.5, RCP4.5 or RCP2.6 scenarios
(Fig. 3b and c: compare black dashed line to red, orange and
purple).

We anticipate that our full and approximated models will
be beneficial both for scientific and pedagogical applications,
where available computational resources or climate-model
expertise exclude the use of highly complex models

Code availability. Versions of the WASP model is available from
the public GitHub repository at https://github.com/WASP-ESM/
WASP_Earth_System_Model, last access: 26 August 2020.
The specific code for both the WASP–LGRTC combined
model approach used in this study and the local warm-
ing projection approximation tool are archived on Zenodo
(https://doi.org/10.5281/zenodo.4001523).
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