Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4869-2020
https://doi.org/10.5194/gmd-13-4869-2020
Model description paper
 | 
12 Oct 2020
Model description paper |  | 12 Oct 2020

Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0

Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Hiroshi Yamashita on behalf of the Authors (29 Jun 2020)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (04 Jul 2020) by Slimane Bekki
AR by Hiroshi Yamashita on behalf of the Authors (06 Jul 2020)  Author's response    Manuscript
ED: Publish as is (24 Jul 2020) by Slimane Bekki
Download
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.