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Abstract. Aviation contributes to climate change and the climate impact of aviation is expected to increase further. Adaptions

of aircraft routings in order to reduce the climate impact are an important climate change mitigation measure. The air traffic

simulator AirTraf, as a submodel of the ECHAM/MESSy Atmospheric Chemistry (EMAC) model, enables the evaluation of

such measures. For the first version of the submodel AirTraf, we concentrated on the general set-up of the model, including

departure and arrival, performance and emissions, and technical aspects such as the parallelization of the aircraft trajectory5

calculation with only a limited set of optimization possibilities (time and distance). Here, in the second version of AirTraf,

we focus on enlarging the objective functions by seven new options to enable assessing operational improvements in many

more aspects including economic costs, contrail occurrence and climate impact. We verify that the AirTraf set-up, e.g. in

terms of number and choice of design variables for the genetic algorithm, allows finding solutions even with highly structured

fields such as contrail occurrence. This is shown by example simulations of the new routing options, including around 10010

north-Atlantic flights of an Airbus A330 aircraft for a typical winter day. The results clearly show that AirTraf 2.0 can find the

different families of optimum flight trajectories (three-dimensional) for specific routing options; those trajectories minimize the

corresponding objective functions successfully. The minimum cost option lies between the minimum time and the minimum

fuel options. Thus, aircraft operating costs are minimized by taking the best compromise between flight time and fuel use. The

aircraft routings for contrail avoidance and minimum climate impact reduce the potential climate impact, which is estimated15

by using algorithmic Climate Change Functions, whereas these two routings increase the aircraft operating costs. A trade-off

between the aircraft operating costs and the climate impact is confirmed. The simulation results are compared with literature

data and the consistency of the submodel AirTraf 2.0 is verified.

1 Introduction

Climate impact due to aviation emissions is an important issue. Nowadays the global aviation contributes only about 5 % to20

the anthropogenic climate impact (Skeie et al., 2009; Lee et al., 2009, 2010). However, the aviation’s contribution to climate

impact is expected to increase further, because global air traffic strongly grows in terms of Revenue Passenger Kilometres

(RPK) by 7.4 % in 2016 compared to 2015 (ICAO, 2017). The aviation climate impact consists of carbon dioxide (CO2)
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emissions and of non-CO2 effects. The non-CO2 effects comprise nitrogen oxides (NOx) leading to concentration changes

of ozone and methane, water vapor (H2O), hydrocarbons (HC), carbon monoxide (CO), sulfur oxides (SOx), non-volatile

particulate matter such as black carbon (BC), persistent linear contrails, and contrail-induced cirrus clouds (Wuebbles et al.,

2007; Lee et al., 2009; Brasseur et al., 2016). These effects change the radiative balance of the Earth’s climate system and cause

radiative impact. The radiative impact potentially drives the climate system into a new state of equilibrium through temperature5

changes. Lee et al. (2009) stated that the CO2 emission has the main impact and that the estimated radiative forcing (RF) of

aviation CO2 in 2005 was 28.0 mWm−2 (15.2−40.8 mWm−2, 90 % likelihood range). The non-CO2 emissions and the

induced clouds also have a large effect on RFs; for example, the estimated RFs in 2005 for total NOx and for persistent linear

contrails were 12.6 mWm−2 (3.8−15.7 mWm−2, 90 % likelihood range) and 11.8 mWm−2 (5.4−25.6 mWm−2, 90 %

likelihood range), respectively (Lee et al., 2009). In particular, the radiative impact of contrails remains uncertain and recent10

studies report higher RF. Burkhardt and Kärcher (2011) estimated the contrail cirrus RF of 37.5 mWm−2 for the year 2002;

Schumann et al. (2015) reported the RF of 63 mWm−2 for the year 2006; and Bock and Burkhardt (2016) estimated the RF

of 56 mWm−2 for the year 2006. As for time scales of their impacts, the emitted CO2 becomes uniformly mixed in the whole

atmosphere and its perturbation remains for millennia. In contrast, the non-CO2 effects occur on short time scales, e.g., the

emitted NOx remains for a few days to months; the contrails last several hours. Thus, the non-CO2 effects depend strongly on15

the ambient (local) atmospheric conditions (Fichter et al., 2005; Mannstein et al., 2005; Gauss et al., 2006; Grewe and Stenke,

2008; Frömming et al., 2012; Brasseur et al., 2016; Lund et al., 2017). To investigate measures for reducing the aviation climate

impact, the impact of both, CO2 and non-CO2 effects, must be considered; therefore, geographic location, altitude, the time of

released non-CO2 emissions and induced clouds, and corresponding local atmospheric conditions need to be considered.

In recent years, Grewe et al. (2017a, b) and Matthes et al. (2012, 2017) have proposed a climate-optimized routing as an20

important operational measure for reducing the aviation climate impact. This routing allows a significant reduction of the

climate impact by optimizing flight routes to avoid regions, where released emissions (including contrails) have a large climate

impact. The climate-optimized routing is immediately applicable to present airline fleets, whereas other, more technological

measures (e.g., efficient engines, blended wing-body configurations, and laminar flow controls; Green, 2005) require several

years before implementation. Moreover, the routing can be used in addition to the technological measures for reducing the25

aviation climate impact.

Benefits of the climate-optimized routing have been examined before (Gierens et al., 2008; Schumann et al., 2011; Sridhar et al.,

2013; Søvde et al., 2014; Lührs et al., 2016); for example, Frömming et al. (2013) and Grewe et al. (2014b) developed Climate

Cost Functions (CCFs) for the climate-optimized routing. They calculated global-average RFs resulting from local unit emis-

sions (CO2, NOx, H2O and contrails) over the north-Atlantic for typical weather patterns by using the ECHAM/MESSy30

Atmospheric Chemistry (EMAC) model (Jöckel et al., 2010, 2016). Those RFs were used to calculate the global and temporal

average near-surface temperature response over 20 years, which describe the climate impacts (i.e. future temperature changes)

caused by those emissions on a per unit basis. The resulting data set is called the CCFs. The CCFs describe the climate impact

which is induced by aviation’s CO2 and non-CO2 effects (H2O, ozone, methane, ozone originating from methane changes,

and contrails including the spread into contrail-cirrus); and the CCFs of those effects except CO2 are a function of geographic35
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location, altitude and time. Because of the long residence time of CO2, its impact is the same regardless of location, altitude

and time of emission. The obtained CCFs can be used as a measure of the climate impact of aviation and form the basis for the

climate-optimized routing. Grewe et al. (2014a) calculated the CCFs for a winter day and optimized one-day trans-Atlantic air

traffic (391 eastbound and 394 westbound flights) using the CCFs in the system for traffic assignment and analysis at macro-

scopic level (SAAM; Eurocontrol, 2012). They reported that the climate impact decreased by up to 25 % with a small increase5

in economic costs of less than 0.5 %. This revealed a great potential for the climate-optimized routing. On the other hand, a

trade-off between climate impact and economic cost existed, i.e., the climate-optimized and the cost-optimized routings were

conflicting strategies. Grewe et al. (2017b) extended this study and investigated the feasibility of the climate-optimized routing

for realistic conditions. Similar trans-Atlantic air traffic simulations (about 800 flights) were performed for five representative

winter and three representative summer days, taking safety aspects into account. They found that a decrease in potential climate10

impact of 10 % was achieved by a cost increase of only 1 %.

The benefits of the climate-optimized routing were investigated by using different climate metrics. Ng et al. (2014) optimized

flight trajectories for a total climate cost which was calculated by the absolute global temperature change potential (pulse AGTP

values for three time horizons; Shine et al., 2005) due to CO2 emission and contrails. A total of 960 trans-Atlantic flights (482

eastbound and 478 westbound flights) was analyzed for a specific summer day. They reported that the climate-optimized routing15

reduced the total AGTP (for the medium-term climate goal of 50 years) by 38 % with an additional flight time of 3.1 % and

with extra fuel use of 3.1 % for the eastbound flights, whereas the routing reduced the total AGTP by 20 % with an additional

flight time of 3.0 % and with extra fuel use of 3.7 % for the westbound flights. Generally, aircraft operating costs depend on

time and on fuel. Thus, those results indicate the aforementioned trade-off between climate impact and economic cost; this

trade-off was also found for the short-term (25 years) and long-term (100 years) climate goals. Grewe et al. (2014a) compared20

the trade-off between economic costs and climate impact from the one-day trans-Atlantic air traffic simulations described

above with respect to three climate metrics: the average temperature response with future increasing emissions (F-ATR20)

and the absolute global warming potential with pulse emissions at a 20 year time horizon (P-AGWP20) for short-term climate

impacts, and P-AGWP100 (time horizon of 100 years) for long-term climate impacts. The trade-offs obtained with the three

metrics were very similar. Although many studies show the benefit of the climate-optimized routing, this routing is not used25

for the today’s flight planning: today’s aircraft routing focuses on minimum economic cost. However, if additional costs, such

as environmental taxes, for aviation climate impact of CO2 and non-CO2 effects are included in the operating costs, a cost

increase due to the climate-optimized routing is possibly compensated (Grewe et al., 2017b). This inclusion can change the

current routing strategy, and incentivize airlines to introduce a climate-optimized flight planning.

Here, we present an air traffic simulation model which serves as a basis for the following ultimate two aims: to investigate30

an eco-efficient aircraft routing strategy that reduces the climate impact of global air traffic over the next few decades, and to

estimate its mitigation gain for different aircraft routing strategies. For these aims, the submodel AirTraf (version 1.0) has been

developed as one of the submodels of EMAC (Yamashita et al., 2015, 2016). AirTraf can simulate global air traffic in EMAC

(online) for various aircraft routing strategies (options). Every flight trajectory is optimized for a selected routing option under
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daily changing local atmospheric conditions. AirTraf can take into account where and when aviation emissions are released or

contrails form. The road map for our overall study has been shown elsewhere (Grewe et al., 2017b; Matthes et al., 2017).

This paper presents a technical description of the new version of the submodel AirTraf 2.0. The simple aircraft routing

options of great circle (minimum flight distance) and flight time (minimum time) were developed in the previous version of

AirTraf 1.0 (Yamashita et al., 2016). In AirTraf 2.0, seven new aircraft routing options have been introduced: fuel use, NOx5

emission, H2O emission, contrail formation, simple operating cost (SOC), cash operating cost (COC), and climate impact

estimated by the algorithmic Climate Change Functions (aCCFs; Van Manen, 2017; Yin et al., 2018b; Van Manen and Grewe,

2019; Yin et al. (manuscript in preparation, 2020); the Climate Change Functions were previously referred to as the Climate

Cost Functions mentioned above). These options represent the objects to be minimized. Overall the nine options have been

integrated in AirTraf 2.0, which enable air traffic simulations for the ultimate aims of our study (hereinafter the aircraft routing10

options are referred to simply as, e.g. the “fuel option”). Thus, the development described in this paper is an indispensable

update. Moreover, this paper provides example applications of AirTraf 2.0. Some simulations of the nine routing options were

carried out for trans-Atlantic routes for a typical winter day. Optimum flight trajectories and characteristics of the routing

options were analyzed.

Here, we mention the importance of the variety of the routing options. Various routing options have been made available in15

AirTraf 2.0, because not only the climate and the cost options, but also the other options are important subjects for air traffic

routing studies. The time option is useful for delay recovery. Because delays cause costs to airlines, pilots are often forced

to temporarily use the time option during a flight to maintain flight schedules, although the use of this option increases fuel

costs (Cook et al., 2009). The NOx (Mulder and Ruijgrok, 2008) and contrail options (Fichter et al., 2005; Mannstein et al.,

2005; Gierens et al., 2008; Sridhar et al., 2011; Schumann et al., 2011; Rosenow et al., 2017) have been examined as a routing20

strategy towards climate impact reduction. Moreover, conflicting scenarios (trade-offs) between different routing strategies

have been studied; for example, avoiding contrail formation generally increases fuel use and CO2 emissions. Irvine et al.

(2014) assessed the trade-off between contrail avoidance and increased CO2 emission (∼ increased fuel use) for a single flight.

AirTraf 2.0 enables analyzing those subjects all at once, because all the options are integrated. Normally, one or two specific

routing options are available for a flight trajectory optimization in other models. Another aspect to be emphasized compared to25

other models is that AirTraf performs air traffic simulations not under International Standard Atmospheric (ISA) conditions, not

under a fixed atmospheric condition for a specific day, but under comprehensive atmospheric conditions which are calculated

by EMAC; that is, AirTraf can simulate air traffic for long-term periods in EMAC, which enables one to examine effects of

aircraft routing strategies on climate impact on a long time scale. Last but not least, the aCCFs are new proxies for the climate-

optimized routing. An important aim of the AirTraf development is to verify the aCCFs themselves and the routing strategy30

based on the aCCFs (i.e., the climate option) in multi-annual (long-term) simulations (Yin et al., 2018b).

This paper is organized as follows. Section 2 describes an overview of AirTraf 2.0. Particularly, key changes in the model

components are stated. Section 3 presents the results and discussion for the example applications of AirTraf 2.0 using the nine

routing options. Section 4 verifies the consistency of the results with literature data. Finally, Sect. 5 concludes this study.
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2 Overview of AirTraf 2.0

2.1 Chemistry-climate model EMAC

The EMAC model is a numerical chemistry and climate simulation system that includes submodels describing tropospheric

and middle atmosphere processes and their interaction with oceans, land, and influences coming from anthropogenic emis-

sions (Jöckel et al., 2010, 2016). It uses the second version of the Modular Earth Submodel System (MESSy2) to link multi-5

institutional computer codes. The core atmospheric model is the 5th generation European Centre Hamburg general circulation

model (ECHAM5; Roeckner et al., 2006). For the present study, we applied EMAC (ECHAM5 version 5.3.02 and MESSy

version 2.53 updated from the version 2.41 for AirTraf 1.0) in the T42L31ECMWF resolution, i.e. with a spherical truncation

of T42 (corresponding to a quadratic Gaussian grid of approximately 2.8◦ by 2.8◦ in latitude and longitude) with 31 vertical

hybrid pressure levels up to 10 hPa (middle of the uppermost layer). The namelist setup for ECHAM5 simulations (referred to10

the E5 setup, no chemistry) was employed. Moreover, the submodel AirTraf was coupled to the submodel CONTRAIL (ver-

sion 1.0; Frömming et al., 2014) for the contrail option, and to the submodel ACCF (version 1.0) for the climate option, using

the MESSy interfaces. Further information about MESSy, including the EMAC model system, is available from the MESSy

Consortium Website (http://www.messy-interface.org).

2.2 Model components of submodel AirTraf15

Figure 1 shows the flowchart of the submodel AirTraf 2.0. The present version is based on the model components of AirTraf

1.0, and thus, this section outlines them (updates from AirTraf 1.0 are highlighted in Fig. 1). First, air traffic data and AirTraf

parameters are read in the main entry point messy_initialize (Fig. 1, dark blue). They consist of a one-day flight plan

(including departure and arrival airport pairs, latitude and longitude of the airports, and departure time), Eurocontrol’s Base of

Aircraft Data (BADA Revision 3.9; Eurocontrol, 2011), ICAO engine performance data (ICAO, 2005), a load factor, jet fuel20

price, an aircraft routing option, etc. Any arbitrary number of flight plans is applicable and is reused for AirTraf simulations

longer than two days. Table 1 lists the relevant data of an A330-301 aircraft and constant parameters used in AirTraf 2.0 (the

new parameters are listed in Table 1). Second, all the entries are distributed in parallel by the message passing interface (MPI)

standard (called for the main entry point messy_init_memory; Fig. 1, blue). Third, the air traffic simulation (called the

AirTraf integration; Fig. 1, light blue) is called in the main entry point messy_global_end, considering local atmospheric25

conditions for every flight route. The AirTraf integration uses three modules: the aircraft routing module (Fig. 1, light green),

the fuel-emissions-cost-climate calculation module (Fig. 1, light orange), and the flight trajectory optimization module (Fig.

1, dark green). The first module calculates flight trajectories corresponding to a selected routing option. The second module

comprises a total energy model based on the BADA methodology (Eurocontrol, 2011; Schaefer, 2012) and the DLR fuel

flow method (Deidewig et al., 1996). The third module consists of the Adaptive Range Multi-Objective Genetic Algorithm30

(ARMOGA version 1.2.0; Sasaki et al., 2002; Sasaki and Obayashi, 2004, 2005). Finally, simulation results are gathered from

the MPI tasks. Optimum flight trajectories and global fields of flight properties (four-dimensional Gaussian grid; Fig. 1, rose

red) are output. The same assumptions made in AirTraf 1.0 are applied in AirTraf 2.0, e.g., only the cruise flight phase is
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considered; trajectory conflicts and operating constraints (e.g., military air space) are neglected. Further details of the model

components have been reported by Yamashita et al. (2016).

2.3 Calculation procedures of the AirTraf integration

AirTraf 2.0 follows the calculation procedures of AirTraf 1.0 described in detail in Sect. 2.4 of Yamashita et al. (2016). This

section reviews the procedures of the AirTraf integration (Fig. 1, light blue) with emphasis on changes by introducing the new5

routing options.

A one-day flight plan includes departure time for every flight. A flight moves to the flying process (dashed box in Fig. 1,

light blue) according to individual departure time in the time loop of EMAC. The flying process comprises four steps: flight

trajectory calculation, fuel-emissions-cost-climate calculation, aircraft position calculation, and gathering global emissions

(bold-black boxes in Fig. 1, light blue). The first step finds an optimum flight trajectory for a selected routing option by10

using the aircraft routing module (Fig. 1, light green), in which the seven new routing options are introduced in AirTraf 2.0.

The flight trajectory optimization module (Fig. 1, dark green) executes the flight trajectory optimization under atmospheric

conditions at the departure day and time of the flight. Thus, the optimum flight trajectory varies day by day. Note that the

three-dimensional wind components (u, v, w) are considered in the flight trajectory optimization for all routing options. The

resulting optimum flight trajectory consists of waypoints (i= 1,2, · · · ,nwp) and flight segments (i= 1,2, · · · ,nwp−1), where15

i is the index arranged from the departure (i= 1) to the arrival (i= nwp), and nwp is the number of waypoints (see Fig. 3 of

Yamashita et al., 2016). Table 2 lists flight properties calculated for the waypoints, the flight segments, and the whole trajectory.

In AirTraf 2.0, 15 new properties are calculated, as highlighted in Table 2.

The second step, which is linked to the fuel-emissions-cost-climate calculation module (Fig. 1, light orange), calculates the

flight properties of fuel, NOx emission, COC, etc. under the atmospheric conditions (Table 2, third group). This calculation is20

performed once at the departure time of the flight. The methodologies of the fuel-emissions calculation module developed in

AirTraf 1.0 are expanded in AirTraf 2.0. Details of the fuel-emissions calculation module and its reliability have been reported

in Sects. 2.5, 2.6, and 5 of Yamashita et al. (2016).

The third step moves the aircraft to a new position along the optimum flight trajectory corresponding to the time steps of

EMAC, by referring to the estimated time when the aircraft passes through the waypoints (called the estimated time over ETO,25

Table 2).

At the fourth step, the individual flight properties corresponding to a flight path for one time step of EMAC are gathered

into the aforementioned global fields: NOx emission, H2O emission, fuel use, flight distance, contrail distance (PCCdist), and

average temperature responses for the time horizon of 20 years (ATR20s of ozone, methane, water vapor, CO2, contrails, and

total; see Sect. 2.5.7) are gathered along the flight segments (Table 2); the global fields of PCCdist and ATR20s are newly30

calculated by AirTraf 2.0. If the aircraft reaches the last waypoint in the time loop of EMAC, the aircraft has landed (i.e., the

flight quits) and the flying process ends for this flight.
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2.4 Flight trajectory optimization

The flight trajectory optimization methodologies described by Yamashita et al. (2016) are also used for the new routing options

and are outlined in this section. The flight trajectory optimization module (Fig. 1, dark green) executes the optimization. The

module consists of ARMOGA (version 1.2.0; Sasaki et al., 2002; Sasaki and Obayashi, 2004, 2005), which is a stochastic

optimization algorithm.5

A solution x (the term is synonymous with the flight trajectory) is a vector of ndv design variables: x= (x1,x2, · · · ,xndv
)T ,

here ndv = 11. With the design variable index j (j = 1,2, · · · ,ndv), xj(j = 1,2, · · · ,6) indicate longitudes and latitudes, and

xj(j = 7,8, · · · ,11) indicate altitudes. The jth design variable varies between lower and upper bounds [xl
j ,x

u
j ]. The bounds

of [xl
j ,x

u
j ] (j = 1,2, · · · ,6) are automatically set for a given airport pair, whereas those of [xl

j ,x
u
j ] (j = 7,8, · · · ,11) are set as

[xl
j ,x

u
j ] = [FL290, FL410] (flight levels; FL290 and FL410 denote 29 000 and 41 000 ft, respectively). Geographic locations10

of the airport pair are set according to the flight plan; altitudes of the airport pair are set to FL290. Given values of xj(j =

1,2, · · · ,ndv), a three-dimensional flight trajectory is represented by a B-spline curve (third-order) between the airport pair (an

illustration is given in Fig. 6 of Yamashita et al., 2016).

The initial population operator (Fig. 1, dark green) generates initial values of xj(j = 1,2, · · · ,ndv) at random within the

lower and upper bounds, and creates an initial “population,” which represents a random set of solutions. The population size is15

set by np and ARMOGA starts its search with the solutions. An evaluation function f (called an objective function) is defined,

depending on a selected routing option (see Sect. 2.5), and a single-objective optimization problem can be written as follows:

Minimize f

Subject to xl
j ≤ xj ≤ xu

j , j = 1,2, · · · ,ndv

 , (1)

where no constraint function is used. The ARMOGA solves the optimization problem by the following genetic operators:

evaluation, selection, crossover, and mutation (Fig. 1, dark green; Holand, 1975; Goldberg, 1989). A value of f is calculated for20

each of the solutions by the evaluation operator. In this study, good solutions were identified in the population by the Fonseca-

Fleming Pareto ranking method (Fonseca et al., 1993); the stochastic universal sampling selection (Baker, 1985) was used for

the selection operator to pick two solutions (parent solutions) from the population; the Blend crossover operator (BLX-alpha;

Eshelman, 1993) was applied to the parent solutions to create new solutions (child solutions); the revised polynomial mutation

operator (Deb and Agrawal, 1999) was used to add a disturbance to the child solutions. When those processes are iterated25

for a number of generations (the term “generation” represents one iteration of ARMOGA; this is set by ng), the population

of solutions is improved by reducing f , and another superior population is created in subsequent generations. Finally, the

ARMOGA finds the best solution (one optimum flight trajectory) with the minimum value of f through the whole generations;

the flight properties of the solution are stored, as shown in Table 2. The flight trajectory optimization stated above is executed

for every airport pair. Detailed descriptions of the optimization methodologies, appropriate ARMOGA parameter settings, and30

the accuracy of the optimization module have been presented in Sect. 3.2 of Yamashita et al. (2016).
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2.5 Formulations of objective functions for new aircraft routing options

In AirTraf 2.0, seven new objective functions were developed for the new aircraft routing options. The following subsections

describe formulations of the objective function f for those options. To calculate f , the fuel-emissions-cost-climate calculation

module (Fig. 1, light orange) is used as necessary by the evaluation operator (Fig. 1, dark green) in the flight trajectory

optimization.5

2.5.1 Fuel use

The objective function for the fuel option represents the sum of fuel use kg(fuel) of a flight:

f =

nwp−1∑
i=1

FUELi, (2)

where FUELi is the fuel use of the ith flight segment (Table 2).

2.5.2 NOx emission10

The objective function for the NOx option represents the sum of NOx emission g(NOx) of a flight:

f =

nwp−1∑
i=1

NOx,i =

nwp−1∑
i=1

(FUELiEINOx,a,i), (3)

where NOx,i is the NOx emission of the ith flight segment; EINOx,a,i is the NOx emission index under actual flight condi-

tions at the ith waypoint (Table 2) and is calculated using the ICAO engine performance data (ICAO, 2005; see Sect. 2.6 of

Yamashita et al., 2016).15

2.5.3 H2O emission

The objective function for the H2O option represents the sum of H2O emission g(H2O) of a flight:

f =

nwp−1∑
i=1

H2Oi = EIH2O

nwp−1∑
i=1

FUELi, (4)

where H2Oi is the H2O emission of the ith flight segment (Table 2); EIH2O is the emission index of H2O and was set as EIH2O

= 1230 g(H2O)(kg(fuel))−1 (Table 1). The H2O emission is proportional to the fuel use by assuming an ideal combustion of20

jet fuel. Thus, this option yields the same results as the fuel option in AirTraf 2.0. If an alternative fuel option is introduced,

the H2O option probably differs from the fuel option, because the emission index may not be constant.

2.5.4 Contrail formation

Yin et al. (2018a) developed the routing option to avoid contrail formations by using the submodel CONTRAIL (version

1.0; Frömming et al., 2014), which calculates the potential persistent contrail cirrus coverage Potcov (Ponater et al., 2002;25
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Burkhardt et al., 2008; Burkhardt and Kärcher, 2009; Grewe et al., 2014b) within an EMAC grid box. The Potcov represents

the fraction of the grid box, which can be maximally covered by contrails under the simulated atmospheric condition. The

threshold for contrail formation is determined from a parameterization scheme based on the thermodynamic theory of contrails,

i.e., the Schmidt-Appleman theory (Schmidt, 1941; Appleman, 1953; Schumann, 1996). In the CONTRAIL submodel, Potcov

indicates the difference between the maximum possible coverage of both, contrails and cirrus, and the coverage of natural5

cirrus alone; values of Potcov along the waypoints are taken from the nearest grid box (Table 2). With that, we define a

contrail distance (PCCdist) in km(contrail) as Potcov multiplied by the flight distance in km. The corresponding routing

option minimizes the total contrail distance of a flight and thus the objective function is formulated as:

f =

nwp−1∑
i=1

PCCdist,i = 10−3

nwp−1∑
i=1

(Potcovidi), (5)

where PCCdist,i is the contrail distance of the ith flight segment; Potcovi is the potential persistent contrail cirrus coverage at10

the ith waypoint; and di is the flight distance of the ith flight segment (Table 2). Note that the objective function is formulated

in the simple form to consider only the contrail distance. Thus, further physical processes such as contrail spreading, changes

in contrail coverage area, contrail lifetime, and the contrail radiative forcing are not included.

2.5.5 Simple operating cost (SOC)

The cost index (CI) is set during a real flight to manage airline operation costs and is defined as the ratio of time cost to fuel cost15

(CI = time cost/fuel cost). A low CI value causes an aircraft to minimize fuel use with a sacrifice of flight time, which enables

a long-range flight. Conversely, a high CI value causes the aircraft to minimize flight time with an extra fuel use. Generally, the

operating costs are a function of flight time and fuel. Thus, the minimum cost solution lies in a trade-off between flight time

and fuel (Cook et al., 2009; Marla et al., 2016). Here, the objective function simply represents the sum of the time and the fuel

costs on the basis of the CI features:20

f = SOC= ct

nwp−1∑
i=1

di
Vground,i

+ cf

nwp−1∑
i=1

FUELi, (6)

where ct and cf are the unit costs of time and fuel, respectively (Table 1); Vground,i is the ground speed at the ith waypoint

(Table 2). Note that the ct includes the cost elements for flight crew, cabin crew, and maintenances for both, airframe and

engines.

2.5.6 Cash operating cost (COC)25

The COC is a comprehensive economic criterion for evaluating airline operation costs (Liebeck et al., 1995). The COC in-

cludes the cost elements for flight crew, cabin crew, landing fee, navigation fee, fuel, and maintenances for both, airframe

and engines (no costs for depreciation, insurance, and interest are included). The COC calculation method for international

flights (Liebeck et al., 1995) was employed. Those cost elements were calculated on the basis of the price in 1993 and were

scaled to 2015 by the average U.S. inflation rate of average consumer prices rinf (Table 1; IMF, 2016). Only the fuel cost was30
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directly calculated with the current jet fuel price JFP (Table 1; IATA, 2017). A block time and a block fuel originally used in

the method were replaced by the total flight time FT and the fuel use of
∑nwp−1

i=1 FUELi in AirTraf 2.0, respectively (Table

2). The objective function can be written as:

f =COC= Cflightcrew +Ccabincrew +Clanding +Cnavigation +Cfuel +Cairframe +Cengine, (7)

where C denotes a cost. A detailed description of the COC calculation method has been reported in Liebeck et al. (1995).5

Given the parameters and variables listed in Tables 1 and 2, Eq. (7) becomes a function of the flight time and the fuel.

2.5.7 Climate impact

The climate-optimized routing was carried out by using the aCCFs (Van Manen, 2017; Yin et al., 2018b; Van Manen and Grewe,

2019; Yin et al. (manuscript in preparation, 2020)) calculated by the submodel ACCF. The aCCFs are approximation functions

based on regression analyses for the CCFs data set, which was obtained from detailed EMAC model simulations including ra-10

diative impacts (see Sect. 1); the CCFs data set for contrails was exceptionally obtained from contrail RF calculations based

on the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) data (Dee et al.,

2011) and contrail trajectory data (Yin et al. (manuscript in preparation, 2020); the definition of the aCCFs is provided in the

Appendix and examples are shown in Fig. S1 in the Supplementary material). The aCCFs represent a correlation of meteo-

rological variables at the time of flight with anticipated climate impacts, i.e., ATR20s of ozone, methane, water vapour, CO2,15

and contrails are estimated on a per unit basis by

ATR20O3,i = aCCFO3,i ×NOx,i × 10−3, (8)

ATR20CH4,i = aCCFCH4,i ×NOx,i × 10−3, (9)

ATR20H2O,i = aCCFH2O,i ×FUELi, (10)

ATR20CO2,i = aCCFCO2 ×FUELi, (11)20

ATR20contrail,i = aCCFcontrail,i ×PCCdist,i, (12)

where the respective aCCF values of ozone, methane, water vapour, CO2, and contrails are given as flight properties at the

ith waypoint. These five ATR20s are calculated for flight segments (Table 2) and are combined into an objective function to

represent an anticipated climate impact of a flight (in K):

ATR20total,i =ATR20O3,i +ATR20CH4,i +ATR20H2O,i +ATR20CO2,i +ATR20contrail,i, (13)25

f =

nwp−1∑
i=1

ATR20total,i, (14)

where ATR20contrail,i can take positive and negative values, because the aCCFcontrail consists of two formulas for the day-

time and night-time contrail effects (see Eq. (A5) in the Appendix). We acknowledge the large uncertainties in the global

temperature response, especially from contrails (ATR20contrail) due to uncertainties in the efficacy of the contrail forcing
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(Hansen et al., 2005; Ponater et al., 2005). In addition, the aCCFs are derived based on the CCFs data of the north-Atlantic

region and are applicable to the northern and high latitudes. Further details of the aCCFs have been reported in the literature

mentioned above.

3 Example application: one-day simulation with new aircraft routing options

3.1 Simulation setup5

Nine one-day simulations were carried out for a demonstration of AirTraf 2.0. Table 3 lists the simulation setups. The same

setups that we used for the consistency check for AirTraf 1.0 simulations (Yamashita et al., 2016) were employed; only the

simulation period was changed into a recent day, which showed a typical weather condition in winter with a strong jet stream

(see Fig. S2 in the Supplementary material). The flight altitude for the great circle option was set to FL350; the altitude for the

other options was calculated in the trajectory optimization within [FL290, FL410], as mentioned in Sect. 2.4. The trans-Atlantic10

flight plan (103 flights) of an Airbus A330 aircraft was provided by Grewe et al. (2014a) and REACT4C (2014). The setups

for the optimization parameters were determined by the benchmark tests (Yamashita et al., 2016).

3.2 Optimized flight trajectories and global fields

To demonstrate the simulation output, the obtained optimized trajectories and global fields for the contrail, the COC, and

the climate options are shown. Figure 2 shows the optimized trajectories for those options (optimized trajectories for other15

options are shown in Supplement Fig. S3). Obviously, the optimum trajectories vary with the routing options. Figures 2c

and 2d show that the COC optimum trajectories of the eastbound flights leap up over the North Atlantic Ocean, whereas the

trajectories of the westbound flights are shifted northward. As the jet stream is located at around 50◦W and 40◦N (see Fig.

S2 in the Supplementary material), the eastbound trajectories are optimized to benefit from tailwinds of the jet stream and the

westbound trajectories avoid headwinds of the jet by detouring northward. In addition, most of those trajectories are located at20

high flight altitudes (∼FL410, 12.5 km). Figure 3 shows the mean fuel consumption (in kg(fuel)min−1) vs. mean flight altitude

(in km) for individual flights for the three routing options. Because fuel consumption decreases as a result of aerodynamic drag

reduction at high altitudes (Fichter et al., 2005; Schumann et al., 2011; Yamashita et al., 2016), the COC optimum trajectories

select the high flight altitudes, as shown in Fig. 3. We acknowledge that limitations of BADA 3 affect the selection of the flight

altitudes (the same applies to the fuel, the NOx, the H2O and the SOC options; see Fig. S3 in the Supplementary material).25

According to Nuic et al. (2010), BADA 3 has a tendency to underestimate aircraft fuel consumption at high altitudes and Mach

numbers, as the compressibility effect and wave drag are not modeled. These effects will cause differences in the selection

of the flight altitudes. In contrast, the contrail and the climate options show complex shaped trajectories with various flight

altitude changes (see Figs. 2a, 2b, 2e and 2f).

The global fields of fuel use, contrail distance, and climate impact indicated by ATR20total for the three options are shown30

in Fig. 4, where distributions represent sum of all the flights during the day. We see from Figs. 4b, 4e and 4h that the contrail
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option certainly decreases the contrail formation, which is mostly located over northwest Europe and over the east coast of

the U.S. Comparison of Figs. 4a, 4d and 4g shows that the COC option produces a narrower fuel distribution than that of

the contrail and climate options. In addition, Figs. 4c, 4f and 4i show that the climate option decreases the positive values

of ATR20total (warming effects) over northwest Europe and over the east coast of the U.S., and produces regionally negative

values (cooling effects) near Iceland and over eastern Canada, which result in the net climate impact reduction. A comprehesive5

analysis of the optimized trajectories for the calculated fields is beyond the scope of this paper. However, it is apparent from

Fig. 4 that the optimized trajectories successfully decrease the respective objects (target measures) which should be minimized

(this point is discussed quantitatively in Sect. 3.3).

3.3 Characteristics of aircraft routing options

To examine the characteristics of the routing options, Table 4 lists a summary of nine performance measures of the one-day air10

traffic (total 103 flights) for specific routing options (bar charts are given in Supplement Fig. S4). Relative changes (in %) to

the COC option are also listed in Table 4, considering this option as a reference (the COC option is assumed to be the current

aircraft routing strategy). Table 4 shows that individual options successfully minimize their own object (target measure; see

measures marked with an asterisk in Table 4). These results confirm that the new routing options work correctly in AirTraf 2.0,

since we solve a single-objective minimization problem defined by Eq. (1) for each routing option.15

The individual routing options are now discussed in turn. We see from Table 4 that the great circle option has the minimum

flight distance of 660.3 × 103km, whereas this option increases the other measures. The time option shows the minimum

flight time of 739.4 h with a large penalty on fuel use, NOx emission, H2O emission, SOC, COC, and ATR20total (further

discussion in Sect. 4). The fuel option shows the minimum fuel use of 3758.5 ton. Of the nine routing options, the fuel

(and also the H2O), the NOx, the SOC, and the COC options obtain similar values on all the measures (see also Supplement20

Fig. S4): these options show decreased fuel use, NOx and H2O emissions, SOC, and COC, whereas contrail distance and

ATR20total increase. The difference among these options is considered significant for airline operations and thus is discussed

in more detail in Sect. 4. The contrail option shows the minimum contrail distance of 26.3 × 103km and the second-lowest

ATR20total of 3.45 × 10−7K, whereas the other measures increase considerably. This option allows aircraft to widely detour

the potential contrail regions (because no constraint function is used in Eqs. (1) and (5); see below for more discussion).25

Thus, the flight distance, the flight time and the fuel use increase drastically, which results in the increase of NOx and H2O

emissions, SOC, and COC. In particular, the contrail option shows the highest COC of 5.99 Mil.USD of the nine routing

options. Comparing the contrail option with the COC option indicates that the contrail distance decreases with an additional

fuel use of 8.3 kg(fuel)(km(contrail))−1 (i.e., the additional COC of 6.20 USD(km(contrail))−1). The SOC and the COC

options are comparable. The two options show similar values for all the measures and have the same minimum SOC of30

3.96 Mil.USD and COC of 5.35 Mil.USD. In fact, the obtained optimum trajectories for those options are approximately

the same (see Figs. 2c, 2d and Supplement Figs. S3k and S3l). This is because the objective function of the two options

is a function of flight time and fuel, as defined in Eqs. (6) and (7). An interesting aspect of their performance measures is

that both options do not correspond to the minimum flight time and fuel use (see further discussion in Sect. 4). The climate
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option achieves the minimum ATR20total of 1.96 × 10−7K and shows the second-shortest contrail distance of 92.6 × 103km,

whereas the other measures increase, particularly this option shows the second-highest COC of 5.87 Mil.USD. The present

results indicate that the contrail and the climate options considerably reduce the climate impact indicated by ATR20total;

however, these options increase COC. The cost-benefit performance (i.e., the COC increment per ATR20total reduction) for

the contrail and the climate options are 0.24 and 0.13 Mil.USD(10−7K)−1, respectively. Thus, the climate option seems to5

be a more cost-effective option. Note that this performance is a narrow result obtained using AirTraf 2.0 under the specific

conditions (e.g., the simulations were carried out with the 103 north-Atlantic flights on December 1, 2015, as shown in Table

3). Figure 5 shows the contrail distance (in 103km) vs. ATR20contrail (in 10−7K) for individual flights for the contrail, the

COC, and the climate options. We see that the contrail option decreases the contrail distance drastically and shows the positive

values of ATR20contrail for almost all the flights. On the other hand, the climate option has the longer contrail distances than10

those of the contrail option (although the climate option achieves the second-shortest total contrail distance, as shown in Table

4) and shows the negative values of ATR20contrail for many flights. These results imply that the contrail option minimizes the

overall contrail distance at all times, whereas the climate option actively forms cooling contrails during the day and avoids the

formation of warming contrails during the day and night. Finally, we believe that the climate benefits described above are most

likely an upper limit, because airspace congestion and air traffic management could reduce the flexibility for flights to perform15

these trajectory optimizations.

4 Discussion: verification of the one-day AirTraf simulation results

This paper presents the extended version of the submodel AirTraf, which offers additional aircraft routing options for defining

overall target functions for the flight trajectory optimization. To confirm the consistency of AirTraf simulations, the relative

changes in the performance measures among the routing options (listed in Table 4 in parentheses) are compared with previous20

studies. The quantitative values of the changes in the performance measures vary, depending on different methodologies,

atmospheric conditions, simulation periods, flight plans, aircraft/engine types, cost/climate impact metrics, etc. Thus, a direct

comparison in magnitude of our results with published studies is difficult; the sign of the relative changes in the measures is

compared. Note that the great circle and the time options have been verified before (Yamashita et al., 2016). In addition, the

H2O option yields the same results as the fuel option (see Sect. 2.5.3 and Table 4); the SOC option is comparable to the COC25

option (see Sect. 3.3 and Table 4). Thus, we omit any discussion of the H2O and the SOC options here.

First, the time, the fuel, and the COC options are analyzed. As defined in Sect. 2.5.6, COC is a combined function of flight

time and fuel. To minimize COC, one may attempt to reduce both factors simultaneously; however, a trade-off between the

flight time and the fuel generally exists. Table 4 shows that the time penalty of flying minimum fuel trajectories is 2.4 percentage

points (%pt), whereas the fuel penalty of flying minimum time trajectories is 20.3 %pt. A similar trade-off was reported by30

two published studies. Celis et al. (2014) addressed a single-objective flight trajectory optimization on total flight time and

fuel use, respectively, under ISA conditions. A typical single-aisle aircraft (150 passengers) with twin turbofan engines was

assumed; the aircraft speed and the flight altitude in eight flight segments were optimized for a given flight trajectory (a quasi-
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full flight profile optimization). Compared to the minimum time trajectory, the fuel optimum trajectory decreased the fuel use

by 31.7 %pt with increasing flight time by 14.0 %pt. Rosenow and Fricke (2016) compared performances for the minimum

time and the minimum fuel trajectories for a flight from Frankfurt (Main) to Dubai for a Boeing B777 freighter on February 2,

2016, at 12 a.m. The comparison showed that the fuel optimum trajectory decreased fuel use by 8.0 % with increasing time by

3.7 %. These studies imply that the minimum COC solution lies between the minimum time and the minimum fuel solutions.5

In fact, Table 4 shows that the COC option has more flight time than that of the time option, and that the COC option consumes

more fuel than that of the fuel option. The COC option yields the values of compromise (i.e. not minimum) of flight time and

fuel. Nonetheless, this option achieves the minimum COC. The submodel AirTraf 2.0 can consistently differentiate those three

solutions.

To support the discussion above, the fuel and the COC options are compared in detail. Erzberger and Lee (1980) compared10

the minimum fuel and the minimum direct operating cost (DOC) trajectories for a short-haul route for a Boeing 727-100 aircraft

on the basis of optimum control theory (Bryson and Ho, 1969) under U.S. Standard Atmospheric conditions. They showed that

flying “minimum fuel” reduced fuel use by 6.9 %, whereas the time and the DOC penalties of the trajectory were 23 and 6 %,

respectively (constrained thrust case). Our results in Table 4 show that the fuel option reduces fuel use by 0.1 %, whereas the

time and the COC penalties of the option are 0.1 and 0.03 %, compared to those measures of the COC option. The signs of15

these relative changes obtained from our results agree with those shown by Erzberger and Lee (1980). In addition, the time and

the COC options are compared in a perspective of airline operating economics. Although the time option increases fuel use,

NOx emission, H2O emission, SOC, COC, and ATR20total (fuel use and COC increase by 20.2 and by 6.1 %, respectively),

the option decreases flight time by 2.3 %, compared to that of the COC option. In other words, the time option reduces flight

time with the extra cost of 19 034.74 USDh−1 (= 269.66 EURmin−1; converted by 1 USD = 0.85 EUR on September 18,20

2018 (European Central Bank, 2018)). In a context of delay recovery, this extra cost is the same order of magnitude to flight

delay costs. If the flight delay costs exceed the extra cost due to the time option, operators would determine to fly faster by

using the time option to recover the delay. Cook et al. (2004, 2009) reported that the flight delay costs, which are associated

with delayed passengers, additional fuel use, flight crew, cabin crew, and marginal maintenance costs, reached several hundred

Euros per minute. The extra cost calculated from our results agrees well with this report.25

Compared to the COC option, the NOx option decreases the NOx emission by 0.5 %, leading to a COC increase of 0.2 %.

Mulder and Ruijgrok (2008) analyzed effects of varying cruise conditions on NOx emission and on DOC from the cruise

NOx simulation model (Bremmers, 1999) by assuming a cruise range of 5800 km with a Boeing 747-400 aircraft under ISA

conditions. They clearly concluded that a reduction of NOx emission caused a cost increase. Our results agree well with this

conclusion. Moreover, the NOx option differs from the fuel option, because the amount of NOx emission depends not only30

on fuel use, but also on the NOx emission index, as defined in Eq. (3). The emission index depends strongly on the ambient

atmospheric conditions at every waypoint (see Sect. 2.6 of Yamashita et al., 2016). Table 4 shows that the NOx option decreases

the NOx emission by 0.3 %pt, whereas this option increases flight time by 0.2 %pt and fuel use by 0.2 %pt, compared to those

measures of the fuel option. Celis et al. (2014) addressed a single-objective flight trajectory optimization on total fuel use and

on NOx emission, respectively, with the same simulation setup described above. Compared to the minimum fuel trajectory, the35
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minimum NOx trajectory decreased NOx emission by 10.4 %pt, whereas the trajectory increased time by 1.0 %pt and fuel use

by 3.9 %pt. The signs of the relative changes obtained from our results are in good agreement with those shown by Celis et al.

(2014).

The contrail option drastically decreases contrail distance by 79.8 % and ATR20total by 43.4 %, whereas this option in-

creases fuel use by 23.0 % and COC by 12.0 %, compared to those measures of the COC option. The contrail option is effective5

in order to reduce the climate impact, as pointed out by previous studies introduced in Sect. 1. Here, those relative changes

in the measures are compared with two published studies. Rosenow et al. (2017) performed a one-day European’s air traffic

optimization on July 25, 2016. The total number of 13 584 flights over Europe (containing 16 aircraft types) was employed;

their three dimensional flight profiles were optimized for airline costs (termed as the cost performance indicators CPI) and en-

vironmental impacts (termed as the ecological performance indicators EPI). They revealed that an additional contrail avoidance10

intent decreased contrail costs by 31.5 % (contrail formations were converted into a monetary value) and EPI by 5.2 %, whereas

the intent increased fuel use by 0.05 % and CPI by 0.5 % over those of the minimum cost strategy. The signs of the relative

changes obtained from our simulations are consistent with those shown by Rosenow et al. (2017). Furthermore, Sridhar et al.

(2013) applied a contrail reducing strategy to aircraft flying between 12 airport pairs (287 flights) in the United States on April

12, 2010. The three-dimensional contrail reducing strategy showed a trade-off between contrail formation time (time spent in15

traveling through contrail formation regions) and fuel consumption. Representative points on the trade-off curve showed that

the contrail formation time decreased by 4415 and by 5301 min with an additional fuel use of 20 000 and of 131 000 kg(fuel),

respectively, over those of a wind-optimal strategy (this strategy is regarded as an economically optimal strategy; see Sect. 2.4

of Yamashita et al., 2016). This study clearly indicated the fuel increase by avoiding contrail formations. Our results agree well

with the finding of Sridhar et al. (2013).20

Table 4 clearly shows a trade-off between economic cost and climate impact (see also Supplement Fig. S4). Compared to

the COC option, the climate option decreases ATR20total by 67.9 % with an additional COC of 9.8 %. A similar trade-off

certainly exists between the minimum COC and the minimum climate impact trajectories for each airport pair. The trade-off

obtained from our results agrees with that indicated by many studies (see Sect. 1). Moreover, Niklaß et al. (2017) performed an

aircraft trajectory optimization for nine north-Atlantic flight routes varying weighting factors on average temperature response25

over 100 years (ATR100) and on COC under ISA conditions. They showed a clear trade-off between the cost and the climate

impact. The minimum climate impact trajectories, on average, reduced ATR100 by 28.4 % with an additional COC of 7.1 %,

compared to those measures of the minimum COC trajectories. Our results agree with those shown by Niklaß et al. (2017). As

discussed above, the many previous studies corroborate the consistency of the AirTraf simulations.

5 Conclusions30

We introduced updates to the air traffic simulation model AirTraf in the chemistry-climate model EMAC. The submodel AirTraf

2.0 was developed according to the MESSy standard and was described in detail in this paper. This submodel introduces seven

new aircraft routing options for air traffic simulations: the fuel use, the NOx emission, the H2O emission, the contrail formation,
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the simple operating cost, the cash operating cost, and the climate impact options. Our flight trajectory optimization methodol-

ogy consists of genetic algorithms; the methodology was similarly used and was validated beforehand (Yamashita et al., 2016).

The particular strength of AirTraf is to enable a flight trajectory optimization for a global flight movement set in the atmosphere

which is comprehensively described by EMAC. The novel routing option, i.e., the climate impact option, has been integrated

in AirTraf 2.0. This option uses meteorological variables in terms of (spatially and temporally varying) aviation climate impact5

estimated by the aCCFs, and optimizes flight trajectories by minimizing their anticipated climate impact. As the aCCFs are

new proxies for the climate-optimized routing, AirTraf takes a role in verifying the aCCFs themselves and the climate impact

option based on the aCCFs in multi-annual (long-term) simulations.

To demonstrate the submodel AirTraf 2.0, example simulations were carried out with 103 north-Atlantic flights of an Airbus

A330 aircraft for a typical winter day. AirTraf 2.0 simulates the one-day air traffic successfully for the newly developed10

routing option concerning different optimization objectives, e.g., contrail avoidance, cash operating cost, and climate impact

(represented by average temperature response over 20 years), and finds the different families of optimum flight trajectories,

which minimize the corresponding objective functions. The characteristics of these routing options include that aircraft is flown

as the minimum economic cost with both, the SOC and the COC options. These options are comparably effective for economic

cost indices. AirTraf 2.0 differentiates the minimum time, the minimum fuel, and the minimum COC options. The COC option15

lies between the minimum time and the minimum fuel options, and thus minimizes COC by taking the best compromise

between the flight time and the fuel use into account. The NOx option minimizes NOx emission; this option differs from the

fuel and the COC options. The contrail and the climate options decrease the climate impact (indicated by ATR20total), which

causes extra operating costs. A trade-off between the cost and the climate impact certainly exists. Compared to the COC option,

the climate and the contrail options decrease ATR20total by 67.9 and by 43.4 % with an increase of COC by 9.8 and by 12.0 %,20

respectively. Thus, the climate option seems to be more effective on the cost-benefit performance than the contrail option. We

believe that these climate benefits are most likely an upper limit. The simulation results were compared with literature data.

The relative changes in the performance measures among the various routing options agree well in sign with those shown by

many previous studies. This comparison has limitations because of different methodologies, different atmospheric conditions,

etc. Nonetheless, the many literature data offer evidence to indicate the consistency of the AirTraf simulations.25

The integration of AirTraf into EMAC allows one to optimize flight trajectories and to study aircraft routings under his-

torical, present-day and future conditions of the climate system. We acknowledge that the simulation results depend on the

atmospheric conditions of the target day. Thus, it is important to examine whether the findings, e.g., the trade-off between

the cost and the climate impact, are common under any atmospheric conditions. Recently, Yamashita et al. (2020) examined

this for representative weather types over the North Atlantic by using EMAC with AirTraf 2.0. Furthermore, the integrated30

aircraft routing options could be extended to conflicting scenarios. Yin et al. (2018a) investigated a trade-off between flight

time and contrail formation for trans-Atlantic flights, by combining the time and the contrail options. Another option could

easily be created by adding a corresponding objective function. The AirTraf development presented in this paper leads to a

further detailed understanding of characteristics of various aircraft routing strategies.
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Appendix A: The algorithmic Climate Change Functions

The aCCFs are calculated by the submodel ACCF (version 1.0). The derivation and validation of the aCCFs of ozone, methane,

water vapour have been published by Van Manen (2017), Yin et al. (2018b), and Van Manen and Grewe (2019); the aCCF of

contrails is described by Yin et al. (manuscript in preparation, 2020). The aCCFs for ozone, methane, water vapour, CO2 and

contrails are formulated as follows:5

aCCFO3
=

−5.20× 10−11 +2.30× 10−13T +4.85× 10−16Φ− 2.04× 10−18TΦ, if aCCFO3
> 0,

0, if aCCFO3 ≤ 0,
(A1)

aCCFCH4
=

−9.83× 10−13 +1.99× 10−18Φ− 6.32× 10−16Fin +6.12× 10−21ΦFin, if aCCFCH4
≤ 0,

0, if aCCFCH4 > 0,
(A2)

aCCFH2O = 4.05× 10−16 +1.48× 10−16|PV |, (A3)10

aCCFCO2 = 6.35× 10−15, (A4)

aCCFcontrail =


1.0× 10−10(0.0073× (100.0107T − 1.03))× 0.114, if Potcov > 0 .and. nighttime,

1.0× 10−10(−1.7− 0.0088OLR)× 0.114, if Potcov > 0 .and. daytime,

0, if Potcov ≤ 0,

(A5)

where T is the atmospheric temperature in K, Φ is the geopotential in m2s−2, Fin is the incoming solar radiation at the top of15

atmosphere in Wm−2, PV is the potential vorticity in PVU (1 PVU = 10−6Km2kg−1s−1), and OLR is the outgoing long-

wave radiation in Wm−2. Given values of these meteorological variables, Eqs. (A1) and (A2) yield aCCFO3 and aCCFCH4

in K(kg(NO2))
−1; Eqs. (A3) and (A4) yield aCCFH2O and aCCFCO2

in K(kg(fuel))−1; and Eq. (A5) yields aCCFcontrail

in K(km(contrail))−1. The aCCFCO2
is the sole constant value (Dahlmann, 2018). The aCCFCO2

is calculated by using

the non-linear climate-chemistry response model AirClim (Grewe and Stenke, 2008; Dahlmann, 2012; Dahlmann et al., 2016),20

assuming a 1 Tg fuel use in 2010 with the annual growth rate according to the future global aircraft scenario Fa1 (Penner et al.,

1999). The aCCFCO2 is the averaged temperature response of CO2 for the period 2010−2029 (in K per kilogram of fuel) cal-

culated by AirClim. The aCCFcontrail for the night-time contrails takes positive values; if the temperature is less than 201 K,

aCCFcontrail for the night-time contrails is set to zero. The aCCFcontrail for the day-time contrails can take positive and neg-

ative values, depending on the OLR (the threshold is −193.18 Wm−2). As for the time boundaries of day and night, the local25

time and solar zenith angle are calculated for locations where contrails could form (Potcov > 0). For locations in darkness, the

time of sunrise is then calculated. If the time between the local time and sunrise is greater than six hours, the aCCFcontrail for

the night-time contrails is applied. If the contrail forms in daylight, or in darkness but with less than six hours before sunrise,

the aCCFcontrail for the day-time contrails is applied. These calculations are performed online in EMAC by the submodel
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ACCF. In AirTraf 2.0, those five aCCFs are calculated as flight properties for waypoints and then the corresponding ATR20s

are calculated for flight segments (see Table 2).

Code and data availability. AirTraf is implemented as a submodel of the Modular Earth Submodel System (MESSy). MESSy is continu-

ously further developed and applied by a consortium of institutions. The usage of MESSy and access to the source code is licenced to all

affiliates of institutions which are members of the MESSy Consortium. Institutions can become a member of the MESSy Consortium by5

signing the MESSy Memorandum of Understanding. More information can be found on the MESSy Consortium Website (http://www.messy-

interface.org). The submodel AirTraf 2.0 presented here has been developed on the basis of MESSy version 2.53 and is available since the

official release of MESSy version 2.54. The status information for AirTraf including the license conditions is available on the website. The

data from the simulations will be provided by the authors on request.
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Figure 1. Updated flowchart of the MESSy submodel AirTraf 2.0 (updates from AirTraf 1.0 are highlighted by red texts and arrows).

MESSy as part of EMAC provides interfaces (yellow) to couple various submodels for data exchange, run control and data input/output.

AirTraf 2.0 is coupled to the submodel CONTRAIL (version 1.0; Frömming et al., 2014) and the submodel ACCF (version 1.0). Air traffic

data and AirTraf parameters are imported in the initialization phase (messy_initialize, dark blue). AirTraf includes the flying process

in messy_global_end (dashed box, light blue), which comprises four main computation procedures (bold-black boxes). AirTraf uses

three modules: the aircraft routing module (light green), the fuel-emissions-cost-climate calculation module (light orange), and the flight

trajectory optimization module (dark green). Resulting optimum flight trajectories and global fields of flight properties are output (rose red).
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Figure 2. Optimized flight trajectories from a one-day AirTraf simulation (52 eastbound and 51 westbound flights) for the contrail formation

(a, b), the COC (c, d), and the climate impact routing options (e, f). For each figure, the trajectories are shown in the vertical cross-section

(top) and projected on the ground (bottom).
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Figure 3. Mean fuel consumption vs. mean flight altitude for 103 individual flights obtained by the contrail formation, the COC and the

climate impact routing options.
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Figure 4. Vertically integrated distribution of fuel use, contrail distance, and climate impact indicated by ATR20total during the day (from

December 1, 2015 00:00:00 to December 2, 2015 00:00:00 UTC). Top: contrail formation option. Middle: COC option. Bottom: climate

impact option. These distributions were obtained with the optimized flight trajectories shown in Fig. 2 (sum of 103 flights).
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Table 1. Relevant data of an Airbus A330-301 aircraft and constant parameters applied for AirTraf 2.0. The column “New in V2.0” denotes

parameters newly introduced in AirTraf 2.0.

Parameter Value Unit New in V2.0 Description

AFW 103 070 kg x Airframe weight estimated by AFW=MEW−NengEDW

ct 0.75 (USDollar)s−1 x Unit time costsa

cf 0.51 (USDollar)kg−1 x Unit fuel costsa

CD0 0.019805 − Parasitic drag coef. (cruise)b

CD2 0.031875 − Induced drag coef. (cruise)b

Cf1 0.61503 kg min−1kN−1 First thrust specific fuel consumption (TSFC) coef. (jet engines)b

Cf2 919.03 kt Second TSFC coef.b

Cfcr 0.93655 − Cruise fuel flow correction coef.b

EDW 5091.62 kg x Engine dry weight. CF6-80E1A2 enginec

EINOx,ref 4.88; 12.66; 22.01; 28.72 g(NOx)(kg(fuel))
−1 Reference NOx emission index at take off, climb out, approach

and idle conditions (sea level). CF6-80E1A2 (2GE051)d

EIH2O 1230 g(H2O)(kg(fuel))−1 H2O emission indexe

fref 0.228; 0.724; 2.245; 2.767 kg(fuel)s−1 Reference fuel flow at take off, climb out, approach and idle

conditions (sea level). CF6-80E1A2 (2GE051)d

g 9.8 ms−2 Gravity acceleration

JFD 0.804 kgl−1 x Jet fuel density at 15◦C (Jet A-1)

JFP 0.41 (USDollar)l−1 x Jet fuel pricef

M 0.82 − Cruise Mach numberb

MEW 113 253 kg x Baseline manufactures empty weight. MEW= 0.9053OEWg

MPL 47 900 kg Maximum payloadb

MTOGW 212 000 kg x Maximum take-off weighth

Nseat 295 − x Number of seats (3-class)i

Neng 2 − x Number of enginesh

OEW 125 100 kg Operational empty weightb

OLF 0.62 − ICAO overall (passenger/freight/mail) weight load factor in 2008j

P0 101 325 Pa Reference pressure (sea level)

rinf 2.28 % x Ave. U.S. inflation rate (1994-2014)k

R 287.05 JK−1kg−1 Gas constant for dry air

S 361.6 m2 Reference wing surface areab

SLST 268.7 kN x Thrust per engine (maximum continuous). CF6-80E1A2h

SPD 86 400 sday−1 Time (Julian date) × SPD = Time (s)

T0 288.15 K Reference temperature (sea level)

Ypre 2015 year x Present year for COC calculation

Yref 1993 year x Reference year for COC calculation

γ 1.4 − Adiabatic gas constant

a Michael A. (2015);b Eurocontrol (2011);c EASA (2011);d ICAO (2005);e Penner et al. (1999);f IATA (2017);g MEW was estimated, because the exact value was unavailable;

h EASA (2013);i Aircraft Commerce (2008);j Anthony (2009);k IMF (2016)
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Table 2. Properties assigned to a resulting flight trajectory. The properties of the three groups (divided by rows) are obtained from the

nearest grid box of EMAC at departure time of the flight, the flight trajectory calculation (Fig. 1), and the fuel-emissions-cost-climate

calculation (Fig. 1; some properties are calculated in flight trajectory optimizations depending on a selected routing option), respectively.

The attribute type indicates where the values of properties are allocated. “W”, “S” and “T” stand for waypoints (i= 1,2, · · · ,nwp), flight

segments (i= 1,2, · · · ,nwp − 1), and a whole flight trajectory in column 3, respectively. The column “New in V2.0” denotes properties

newly introduced in AirTraf 2.0.

Property Unit Attribute type New in V2.0 Description

aCCFO3 K(kg(NO2))
−1 W x Algorithmic Climate Change Function of ozoneab. See Eq. (A1)

aCCFCH4 K(kg(NO2))
−1 W x Algorithmic Climate Change Function of methaneab. See Eq. (A2)

aCCFH2O K(kg(fuel))−1 W x Algorithmic Climate Change Function of water vaporab. See Eq. (A3)

aCCFCO2 K(kg(fuel))−1 W x Algorithmic Climate Change Function of CO2
c. See Eq. (A4)

aCCFcontrail K(km(contrail))−1 W x Algorithmic Climate Change Function of contrailsd. See Eq. (A5)

Potcov fraction W x Potential persistent contrail cirrus coveragee

P Pa W Pressure

T K W Temperature

ρ kgm−3 W Air density

u,v,w ms−1 W Three dimensional wind components

a ms−1 W Speed of sound

ATR20O3 K S x Anticipated climate impact of ozone. See Eq. (8)

ATR20CH4 K S x Anticipated climate impact of methane. See Eq. (9)

ATR20H2O K S x Anticipated climate impact of water vapor. See Eq. (10)

ATR20CO2 K S x Anticipated climate impact of CO2. See Eq. (11)

ATR20contrail K S x Anticipated climate impact of contrails. See Eq. (12)

ATR20total K S x Anticipated climate impact (total). See Eq. (13)

d m S Flight distance

ETO Julian date W Estimated time over

FT s T Flight time. FT = (ETOnwp− ETO1)× SPD

h m W Flight altitude

h m T Mean flight altitude. h= 1/nwp

∑nwp

i=1 hi with waypoint number nwp.

PCCdist km(contrail) S x Contrail distancef

VTAS ms−1 W True air speed

Vground ms−1 W Ground speed

λ deg W Longitude

ϕ deg W Latitude

COC USDollar T x Cash operating costg

EINOx,a g(NOx)(kg(fuel))
−1 W NOx emission index

Fcr kg(fuel)s−1 W Fuel flow of an aircraft (cruise)

FUEL kg S Fuel use

H2O g(H2O) S H2O emission

m kg W Aircraft weight

NOx g(NOx) S NOx emission

SOC USDollar T x Simple operating cost

a Van Manen (2017);b Van Manen and Grewe (2019);c Dahlmann (2018);d Yin et al. (manuscript in preparation, 2020);e Frömming et al. (2014);f Yin et al. (2018a);g Liebeck et al. (1995)
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Table 3. Setup for AirTraf one-day simulations. The setups of the two groups (divided by rows) are used for AirTraf/EMAC and for AR-

MOGA (Sasaki et al., 2002; Sasaki and Obayashi, 2004, 2005), respectively. α is an user-specified crossover parameter; rm is a mutation

rate; and ηm is an parameter controlling the shape of a probability distribution. Details of these parameters are described in Yamashita et al.

(2016).

Parameter Description

ECHAM5 resolution T42L31ECMWF (2.8◦ by 2.8◦)

Simulation period December 1, 2015 00:00:00 − December 2, 2015 00:00:00 UTC

Time step of EMAC 12 min

Flight plan 103 trans-Atlantic flights (eastbound 52/westbound 51)a

Aircraft type A330-301

Engine type CF6-80E1A2, 2GE051 (with 1862M39 combustor)

Flight altitude changes [FL290, FL410] (fixed at FL350 for the great circle option)

Mach number 0.82

Number of waypoints, nwp 101

Design variable, ndv 11 (6 locations and 5 altitudes)

Population size, np 100

Number of generations, ng 100

Selection Stochastic universal sampling

Crossover Blend crossover BLX-0.2 (α= 0.2)

Mutation Revised polynomial mutation (rm = 0.1; ηm = 5.0)

a Grewe et al. (2014a) and REACT4C (2014)
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Table 4. The nine performance measures obtained from the one-day AirTraf simulations with different aircraft routing options (the values

indicate the sum of 103 flights). The minimum values of each performance measure are marked with an asterisk; changes (in %) relative to

the COC option are given in parentheses. Bar charts of the same data are given in Fig. S4 in the Supplementary material.

Routing option Flight distance Flight time Fuel use NOx emission H2O emission Contrail distance SOC COC ATR20total

103km h ton ton ton 103km Mil.USD Mil.USD 10−7K

Great circle 660.3∗ (−0.4) 757.4 (+0.1) 3979.1 (+5.8) 44.6 (+5.5) 4894.2 (+5.8) 154.9 (+19.1) 4.072 (+2.9) 5.463 (+2.1) 6.85 (+12.5)

Flight time 663.2 (+0.02) 739.4∗ (−2.3) 4521.9 (+20.2) 57.8 (+36.8) 5562.0 (+20.2) 127.7 (−1.9) 4.299 (+8.6) 5.673 (+6.1) 10.44 (+71.5)

Fuel use 663.3 (+0.03) 757.3 (+0.1) 3758.5∗ (−0.1) 42.2 (−0.2) 4623.0 (−0.1) 128.5 (−1.2) 3.960 (+0.03) 5.351 (+0.03) 5.85 (−3.9)

NOx emission 664.5 (+0.2) 758.8 (+0.3) 3766.8 (+0.1) 42.1∗ (−0.5) 4633.1 (+0.1) 131.8 (+1.3) 3.968 (+0.2) 5.360 (+0.2) 5.83 (−4.2)

H2O emission 663.3 (+0.03) 757.3 (+0.1) 3758.5 (−0.1) 42.2 (−0.2) 4623.0∗ (−0.1) 128.5 (−1.2) 3.960 (+0.03) 5.351 (+0.03) 5.85 (−3.9)

Contrail formation 717.4 (+8.2) 812.3 (+7.4) 4625.5 (+23.0) 57.0 (+34.9) 5689.3 (+23.0) 26.3∗ (−79.8) 4.549 (+14.9) 5.990 (+12.0) 3.45 (−43.4)

SOC 663.2 (+0.02) 756.6 (+0.03) 3760.4 (−0.02) 42.2 (−0.1) 4625.3 (−0.02) 130.2 (+0.1) 3.959∗ (0.0) 5.349 (0.0) 6.02 (−1.1)

COC 663.1 756.4 3761.1 42.3 4626.2 130.1 3.959 5.349∗ 6.09

Climate impact 703.2 (+6.0) 801.4 (+5.9) 4474.0 (+19.0) 52.3 (+23.8) 5503.1 (+19.0) 92.6 (−28.8) 4.443 (+12.2) 5.874 (+9.8) 1.96∗ (−67.9)
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