Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Amulya Chevuturi
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Peter Cook
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Nicholas P. Klingaman
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Christopher E. Holloway
Department of Meteorology, University of Reading, Reading, UK
Related authors
No articles found.
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293, https://doi.org/10.5194/hess-2024-293, 2024
Preprint under review for HESS
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK, based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence towards a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-179, https://doi.org/10.5194/hess-2024-179, 2024
Preprint under review for HESS
Short summary
Short summary
Our research compares two techniques, Bias-Correction (BC) and Data Assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors post-simulation, showed broad improvements, while DA, adjusting model states pre-forecast, excelled in specific conditions like snowmelt and high base flows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Jennifer Saxby, Julia Crook, Simon Peatman, Cathryn Birch, Juliane Schwendike, Maria Valdivieso da Costa, Juan Manuel Castillo Sanchez, Chris Holloway, Nicholas P. Klingaman, Ashis Mitra, and Huw Lewis
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-46, https://doi.org/10.5194/wcd-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
This study assesses the ability of the new Met Office IND1 numerical model to simulate tropical cyclones and their associated hazards, such as high winds and heavy rainfall. The new system consists of both atmospheric and oceanic models coupled together, allowing us to explore the sensitivity of cyclones to important air–sea feedbacks. We find that the model can accurately simulate tropical cyclone position, structure, and intensity, which are crucial for predicting and mitigating hazards.
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915, https://doi.org/10.5194/acp-20-14903-2020, https://doi.org/10.5194/acp-20-14903-2020, 2020
Short summary
Short summary
We use a set of model simulations of the 20th century to demonstrate that the uncertainty in the cooling effect of man-made aerosol emissions has a wide range of impacts on global monsoons. For the weakest cooling, the impact of aerosol is overpowered by greenhouse gas (GHG) warming and monsoon rainfall increases in the late 20th century. For the strongest cooling, aerosol impact dominates over GHG warming, leading to reduced monsoon rainfall, particularly from 1950 to 1980.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 3215–3233, https://doi.org/10.5194/gmd-11-3215-2018, https://doi.org/10.5194/gmd-11-3215-2018, 2018
Short summary
Short summary
Summer precipitation over China in the MetUM reaches twice its observed values. Increasing the horizontal resolution of the model and adding air–sea coupling have little effect on these biases. Nevertheless, MetUM correctly simulates spatial patterns of temporally coherent precipitation and the associated large-scale processes. This suggests that the model may provide useful predictions of summer intraseasonal variability despite the substantial biases in overall intraseasonal variance.
Claudia Christine Stephan, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Liang Guo
Geosci. Model Dev., 11, 1823–1847, https://doi.org/10.5194/gmd-11-1823-2018, https://doi.org/10.5194/gmd-11-1823-2018, 2018
Short summary
Short summary
Climate simulations are evaluated for their ability to reproduce year-to-year variability of precipitation over China. Mean precipitation and variability are too high in all simulations but improve with finer resolution and coupling. Simulations reproduce the observed spatial patterns of rainfall variability. However, not all of these patterns are associated with observed mechanisms. For example, simulations do not reproduce summer rainfall along the Yangtze valley in response to El Niño.
L. C. Hirons, N. P. Klingaman, and S. J. Woolnough
Geosci. Model Dev., 8, 363–379, https://doi.org/10.5194/gmd-8-363-2015, https://doi.org/10.5194/gmd-8-363-2015, 2015
Short summary
Short summary
Atmosphere-ocean interactions are best isolated in models rather than observations, but state-of-the-art models are expensive and often simulate these interactions poorly. We present a less expensive modelling framework that resolves air-sea interactions well, and permits a more rigorous identification of these interactions' effects than previously possible. In our model, air-sea interactions improve tropical rainfall variations but have limited effects on midlatitude jet streams.
Related subject area
Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Cited articles
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.,
Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
High-Resolution Climate Simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2013.
Bombardi, R. J. and Carvalho, L. M. V: IPCC global coupled model simulations
of the South America monsoon system, Clim. Dynam., 33, 893,
https://doi.org/10.1007/s00382-008-0488-1, 2008.
Bombardi, R. J., Trenary, L., Pegion, K., Cash, B., DelSole, T., and Kinter
III, J. L.: Seasonal Predictability of Summer Rainfall over South America,
J. Climate., 31, 8181–8195, https://doi.org/10.1175/JCLI-D-18-0191.1, 2018.
Chevuturi, A.: “asop_duration” – Wet-spell and dry-spell duration, GitHub, available at: https://github.com/nick-klingaman/dubstep/tree/master/asop_duration,
last access: January 2020.
Chevuturi, A., Klingaman, N. P., and Martin, G.: nick-klingaman/dubstep: Initial DUBSTEP project release (Version v0.1), Zenodo, https://doi.org/10.5281/zenodo.3997114, 2020.
Coelho, C. A. S., de Oliveira, C. P., Ambrizzi, T., Reboita, M. S.,
Carpenedo, C. B., Campos, J. L. P. S., Tomaziello, A. C. N., Pampuch, L. A.,
Custódio, M. de S., Dutra, L. M. M., Da Rocha, R. P., and Rehbein, A.:
The 2014 southeast Brazil austral summer drought: regional scale mechanisms
and teleconnections, Clim. Dynam., 46, 3737–3752,
https://doi.org/10.1007/s00382-015-2800-1, 2016.
Cohen, J. C. P., Silva Dias, M. A. F., and Nobre, C. A.: Environmental
Conditions Associated with Amazonian Squall Lines: A Case Study, Mon.
Weather Rev., 123, 3163–3174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2, 1995.
Collins, M., Minobe, S., Barreiro, M., Bordoni, S., Kaspi, Y., Kuwano-Yoshida, A., Keenlyside, N., Manzini, E., O'Reilly, C. H., Sutton, R., Xie, S.-P. and Zolina, O.: Challenges and opportunities for improved understanding of regional climate dynamics, Nat. Clim. Chang., 8, 101–108, https://doi.org/10.1038/s41558-017-0059-8, 2018.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and
21st century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014.
Custódio, M. de S., Porfírio da Rocha, R. and Vidale, P. L.:
Analysis of precipitation climatology simulated by high resolution coupled
global models over the South America, Hydrol. Res. Lett., 6, 92–97,
https://doi.org/10.3178/hrl.6.92, 2012.
Custodio, M. de S., da Rocha, R. P., Ambrizzi, T., Vidale, P. L., and Demory,
M.-E.: Impact of increased horizontal resolution in coupled and
atmosphere-only models of the HadGEM1 family upon the climate patterns of
South America, Clim. Dynam., 48, 3341–3364, https://doi.org/10.1007/s00382-016-3271-8,
2017.
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models,
J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V, Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
DelSole, T. and Shukla, J.: Model Fidelity versus Skill in Seasonal
Forecasting, J. Climate, 23, 4794–4806, https://doi.org/10.1175/2010JCLI3164.1, 2010.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C.,
Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate
and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model,
J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2011.
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014.
De Sales, F. and Xue, Y.: Assessing the dynamic-downscaling ability over
South America using the intensity-scale verification technique, Int. J.
Climatol., 31, 1205–1221, https://doi.org/10.1002/joc.2139, 2011.
Doblas-Reyes, F. J., Andreu-Burillo, I., Chikamoto, Y., García-Serrano,
J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R. L., and van
Oldenborgh, G. J.: Initialized near-term regional climate change prediction,
Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704, 2013.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Falco, M., Carril, A. F., Menéndez, C. G., Zaninelli, P. G., and Li, L.
Z. X.: Assessment of CORDEX simulations over South America: added value on
seasonal climatology and resolution considerations, Clim. Dynam., 52,
4771–4786, https://doi.org/10.1007/s00382-018-4412-z, 2019.
Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., and Bailey, D. A.:
Improvements in a half degree atmosphere/land version of the CCSM, Clim.
Dynam., 34, 819–833, https://doi.org/10.1007/s00382-009-0614-8, 2010.
Grimm, A. M.: Madden–Julian Oscillation impacts on South American summer
monsoon season: precipitation anomalies, extreme events, teleconnections,
and role in the MJO cycle, Clim. Dynam., 53, 907–932, https://doi.org/10.1007/s00382-019-04622-6, 2019.
Grimm, A. M. and Silva Dias, P. L.: Analysis of Tropical–Extratropical
Interactions with Influence Functions of a Barotropic Model, J. Atmos. Sci.,
52, 3538–3555, https://doi.org/10.1175/1520-0469(1995)052<3538:AOTIWI>2.0.CO;2, 1995.
Grimm, A. M. and Tedeschi, R. G.: ENSO and Extreme Rainfall Events in South
America, J. Climate, 22, 1589–1609, https://doi.org/10.1175/2008JCLI2429.1, 2009.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Jia, L., Yang, X., Vecchi, G. A., Gudgel, R. G., Delworth, T. L., Rosati,
A., Stern, W. F., Wittenberg, A. T., Krishnamurthy, L., Zhang, S., Msadek,
R., Kapnick, S., Underwood, S., Zeng, F., Anderson, W. G., Balaji, V., and
Dixon, K.: Improved Seasonal Prediction of Temperature and Precipitation
over Land in a High-Resolution GFDL Climate Model, J. Climate, 28,
2044–2062, https://doi.org/10.1175/JCLI-D-14-00112.1, 2014.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier,
D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter, J. L., Marx, L.,
Stan, C., and Hodges, K. I.: High-Resolution Global Climate Simulations with
the ECMWF Model in Project Athena: Experimental Design, Model Climate, and
Seasonal Forecast Skill, J. Climate, 25, 3155–3172,
https://doi.org/10.1175/JCLI-D-11-00265.1, 2011.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., Potter, G. L., Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang,
S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II
Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kirtman, B. P., Bitz, C., Bryan, F., Collins, W., Dennis, J., Hearn, N.,
Kinter, J. L., Loft, R., Rousset, C., Siqueira, L., Stan, C., Tomas, R., and
Vertenstein, M.: Impact of ocean model resolution on CCSM climate
simulations, Clim. Dynam., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3,
2012.
Klingaman, N. P. and and Martin, G.: title: “asop” – Analysis of Scales of Precipitation, available at: https://github.com/nick-klingaman/dubstep/tree/master/asop,
last access: March 2020.
Klingaman, N. P., Martin, G. M., and Moise, A.: ASoP (v1.0): a set of methods for analyzing scales of precipitation in general circulation models, Geosci. Model Dev., 10, 57–83, https://doi.org/10.5194/gmd-10-57-2017, 2017.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706,
https://doi.org/10.1029/2006GL026242, 2006.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H.,
Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K.,
Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and
Yamada, T.: Regions of Strong Coupling Between Soil Moisture and
Precipitation, Science 305, 1138–1140,
https://doi.org/10.1126/science.1100217, 2004.
Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., and Papadimitriou, L.:
Evaluation of precipitation and temperature simulation performance of the
CMIP3 and CMIP5 historical experiments, Clim. Dynam., 47, 1881–1898,
https://doi.org/10.1007/s00382-015-2938-x, 2016.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and
Nepstad, D.: The 2010 Amazon Drought, Science, 331, p. 554,
https://doi.org/10.1126/science.1200807, 2011.
Liebmann, B. and Smith, C. A.: Description of a Complete (Interpolated)
Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77,
1275–1277,
1996.
Liebmann, B., Kiladis, G. N., Marengo, J., Ambrizzi, T., and Glick, J. D.:
Submonthly Convective Variability over South America and the South Atlantic
Convergence Zone, J. Climate, 12, 1877–1891,
https://doi.org/10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2,
1999.
Liu, W. T. and Juárez, R. I. N.: ENSO drought onset prediction in
northeast Brazil using NDVI, Int. J. Remote Sens., 22, 3483–3501,
https://doi.org/10.1080/01431160010006430, 2001.
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de
Oliveira, G., de Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F.:
The Drought of Amazonia in 2005, J. Climate, 21, 495–516,
https://doi.org/10.1175/2007JCLI1600.1, 2008.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D.
A.: The drought of 2010 in the context of historical droughts in the Amazon
region, Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436, 2011.
Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, D. A., Camargo, H.,
Riveros, M. P., and Pabló, A. D.: Two Contrasting Severe Seasonal
Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in
Northeast Brazil, J. Climate, 26, 9137–9154,
https://doi.org/10.1175/JCLI-D-12-00642.1, 2013.
Martin, G. M., Klingaman, N. P., and Moise, A. F.: Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6, Geosci. Model Dev., 10, 105–126, https://doi.org/10.5194/gmd-10-105-2017, 2017.
McClean, J. L., Bader, D. C., Bryan, F. O., Maltrud, M. E., Dennis, J. M.,
Mirin, A. A., Jones, P. W., Kim, Y. Y., Ivanova, D. P., Vertenstein, M.,
Boyle, J. S., Jacob, R. L., Norton, N., Craig, A., and Worley, P. H.: A
prototype two-decade fully-coupled fine-resolution CCSM simulation, Ocean
Model., 39, 10–30, https://doi.org/10.1016/j.ocemod.2011.02.011,
2011.
Monerie, P.-A.: Scripts we used for “Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31” [Data set], Zenodo, https://doi.org/10.5281/zenodo.3840095, 2020.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal
modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324,
https://doi.org/10.1007/s003820050284, 1999.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J.,
Vanicek, M., Ansell, T. J., and Tett, S. F. B.: Improved Analyses of Changes
and Uncertainties in Sea Surface Temperature Measured In Situ since the
Mid-Nineteenth Century: The HadSST2 Dataset, J. Climate, 19, 446–469,
https://doi.org/10.1175/JCLI3637.1, 2006.
Roberts, M.: MOHC HadGEM3-GC31-LM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1321, 2017a.
Roberts, M.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1902, 2017b.
Roberts, M.: MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.446, 2017c.
Roberts, M. J., Vidale, P. L., Senior, C., Hewitt, H. T., Bates, C.,
Berthou, S., Chang, P., Christensen, H. M., Danilov, S., Demory, M.-E.,
Griffies, S. M., Haarsma, R., Jung, T., Martin, G., Minobe, S., Ringler, T.,
Satoh, M., Schiemann, R., Scoccimarro, E., Stephens, G., and Wehner, M. F.:
The Benefits of Global High Resolution for Climate Simulation: Process
Understanding and the Enabling of Stakeholder Decisions at the Regional
Scale, B. Am. Meteorol. Soc., 99, 2341–2359,
https://doi.org/10.1175/BAMS-D-15-00320.1, 2018.
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt,
H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D.,
Schiemann, R., Seddon, J., Vannière, B. and Vidale, P. L.: Description
of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as
used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12(12),
4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019.
Sakamoto, T. T., Komuro, Y., Nishimura, T., Ishii, M., Tatebe, H., Shiogama,
H., Hasegawa, A., Toyoda, T., Mori, M., and Suzuki, T.: MIROC4h–a new
high-resolution atmosphere-ocean coupled general circulation model, J.
Meteorol. Soc. Jpn. Ser. II, 90, 325–359, 2012.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled in situ data and its role in quantifying the global water
cycle, Theor. Appl. Climatol., 115, 15–40,
https://doi.org/10.1007/s00704-013-0860-x, 2014.
Seth, A., Rojas, M., Liebmann, B., and Qian, J.-H.: Daily rainfall analysis
for South America from a regional climate model and station observations,
Geophys. Res. Lett., 31, L07213, https://doi.org/10.1029/2003GL019220, 2004.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L.,
Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E.,
Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S.,
Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New,
A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: U.K.
HiGEM: The New U.K. High-Resolution Global Environment Model–Model
Description and Basic Evaluation, J. Climate, 22, 1861–1896,
https://doi.org/10.1175/2008JCLI2508.1, 2009.
Sierra, J. P., Arias, P. A., and Vieira, S. C.: Precipitation over northern
South America and its seasonal variability as simulated by the CMIP5 models,
Adv. Meteorol., 2015, 634720, https://doi.org/10.1155/2015/634720, 2015.
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F.,
Caron, J., Dennis, J., Gent, P., Hsu, H., Jochum, M., Lawrence, D.,
Muñoz, E., DiNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.
and Vertenstein, M.: A new synoptic scale resolving global climate
simulation using the Community Earth System Model, J. Adv. Model. Earth
Sy., 6, 1065–1094, https://doi.org/10.1002/2014MS000363, 2014.
Solman, S. A. and Blázquez, J.: Multiscale precipitation variability
over South America: Analysis of the added value of CORDEX RCM simulations,
Clim. Dynam., 53, 1547–1565, https://doi.org/10.1007/s00382-019-04689-1, 2019.
Sörensson, A. A. and Menéndez, C. G.: Summer soil–precipitation
coupling in South America, Tellus A, 63, 56–68,
https://doi.org/10.1111/j.1600-0870.2010.00468.x, 2011.
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
Vannière, B., Demory, M.-E., Vidale, P. L., Schiemann, R., Roberts, M.
J., Roberts, C. D., Matsueda, M., Terray, L., Koenigk, T., and Senan, R.:
Multi-model evaluation of the sensitivity of the global energy budget and
hydrological cycle to resolution, Clim. Dyamn., 52, 6817–6846,
https://doi.org/10.1007/s00382-018-4547-y, 2019.
Vellinga, M., Roberts, M., Vidale, P. L., Mizielinski, M. S., Demory, M.-E.,
Schiemann, R., Strachan, J. and Bain, C.: Sahel decadal rainfall variability
and the role of model horizontal resolution, Geophys. Res. Lett., 43(1),
326–333, https://doi.org/10.1002/2015GL066690, 2016.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D.,
Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle,
J., Dias, P. L. S., and Zhang, C.: Toward a Unified View of the American
Monsoon Systems, J. Climate, 19, 4977–5000, https://doi.org/10.1175/JCLI3896.1, 2006.
Villamayor, J., Ambrizzi, T., and Mohino, E.: Influence of decadal sea
surface temperature variability on northern Brazil rainfall in CMIP5
simulations, Clim. Dynam., 51, 563–579, https://doi.org/10.1007/s00382-017-3941-1,
2018.
Waliser, D. E., Graham, N. E., and Gautier, C.: Comparison of the Highly
Reflective Cloud and Outgoing Longwave Radiation Datasets for Use in
Estimating Tropical Deep Convection, J. Climate, 6, 331–353,
https://doi.org/10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2,
1993.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wei, J. and Dirmeyer, P. A.: Dissecting soil moisture-precipitation
coupling, Geophys. Res. Lett., 39, L19711,
https://doi.org/10.1029/2012GL053038, 2012.
Wheeler, M. C. and Hendon, H. H.: An All-Season Real-Time Multivariate MJO
Index: Development of an Index for Monitoring and Prediction, Mon. Weather
Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert,
D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P.,
Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S.
F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey,
D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A.,
Woollings, T., and Xavier, P. K.: The Met Office Global Coupled Model 3.0 and
3.1 (GC3.0 and GC3.1) Configurations, J. Adv. Model. Earth Sy., 10,
357–380, https://doi.org/10.1002/2017MS001115, 2018.
Willmott, C. J., Matsuura, K., and Legates, D. R.: Terrestrial air
temperature and precipitation: monthly and annual time series (1950–1999),
Cent. Clim. Res. version, 1, 2001.
Yin, L., Fu, R., Shevliakova, E., and Dickinson, R. E.: How well can CMIP5
simulate precipitation and its controlling processes over tropical South
America?, Clim. Dynam., 41, 3127–3143, https://doi.org/10.1007/s00382-012-1582-y,
2013.
Zeng, N., Yoon, J.-H., Marengo, J. A., Subramaniam, A., Nobre, C. A.,
Mariotti, A., and Neelin, J. D.: Causes and impacts of the 2005 Amazon
drought, Environ. Res. Lett., 3, 14002, https://doi.org/10.1088/1748-9326/3/1/014002,
2008.
Short summary
In this study, we assess how increasing the horizontal resolution of HadGEM3-GC31 can allow simulating better tropical and subtropical South American precipitation. We compare simulations of HadGEM3-GC3.1, performed at three different horizontal resolutions. We show that increasing resolution allows decreasing precipitation biases over the Andes and northeast Brazil and improves the simulation of daily precipitation distribution.
In this study, we assess how increasing the horizontal resolution of HadGEM3-GC31 can allow...