Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Amulya Chevuturi
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Peter Cook
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Nicholas P. Klingaman
Department of Meteorology, National Centre for Atmospheric Science
(NCAS), University of Reading, Reading, UK
Christopher E. Holloway
Department of Meteorology, University of Reading, Reading, UK
Related authors
No articles found.
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci., 29, 4371–4394, https://doi.org/10.5194/hess-29-4371-2025, https://doi.org/10.5194/hess-29-4371-2025, 2025
Short summary
Short summary
This extended review asks whether hydrological (river flow) droughts have become more severe over time in the UK based on literature review and original analyses. The UK is a good international exemplar, given the richness of available data. We find that there is little compelling evidence for a trend towards worsening river flow droughts, at odds with future climate change projections. We outline reasons for this discrepancy and make recommendations to guide researchers and policymakers.
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 29, 1587–1614, https://doi.org/10.5194/hess-29-1587-2025, https://doi.org/10.5194/hess-29-1587-2025, 2025
Short summary
Short summary
Our research compares two techniques, bias correction (BC) and data assimilation (DA), for improving river flow forecasts across 316 UK catchments. BC, which corrects errors after simulation, showed broad improvements, while DA, adjusting model states before forecast, excelled under specific conditions like snowmelt and high baseflows. Each method's unique strengths suit different scenarios. These insights can enhance forecasting systems, offering reliable and user-friendly hydrological predictions.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Ambrogio Volonté, Andrew G. Turner, Reinhard Schiemann, Pier Luigi Vidale, and Nicholas P. Klingaman
Weather Clim. Dynam., 3, 575–599, https://doi.org/10.5194/wcd-3-575-2022, https://doi.org/10.5194/wcd-3-575-2022, 2022
Short summary
Short summary
In this study we analyse the complex seasonal evolution of the East Asian summer monsoon. Using reanalysis data, we show the importance of the interaction between tropical and extratropical air masses converging at the monsoon front, particularly during its northward progression. The upper-level flow pattern (e.g. the westerly jet) controls the balance between the airstreams and thus the associated rainfall. This framework provides a basis for studies of extreme events and climate variability.
Jennifer Saxby, Julia Crook, Simon Peatman, Cathryn Birch, Juliane Schwendike, Maria Valdivieso da Costa, Juan Manuel Castillo Sanchez, Chris Holloway, Nicholas P. Klingaman, Ashis Mitra, and Huw Lewis
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-46, https://doi.org/10.5194/wcd-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
This study assesses the ability of the new Met Office IND1 numerical model to simulate tropical cyclones and their associated hazards, such as high winds and heavy rainfall. The new system consists of both atmospheric and oceanic models coupled together, allowing us to explore the sensitivity of cyclones to important air–sea feedbacks. We find that the model can accurately simulate tropical cyclone position, structure, and intensity, which are crucial for predicting and mitigating hazards.
Jonathan K. P. Shonk, Andrew G. Turner, Amulya Chevuturi, Laura J. Wilcox, Andrea J. Dittus, and Ed Hawkins
Atmos. Chem. Phys., 20, 14903–14915, https://doi.org/10.5194/acp-20-14903-2020, https://doi.org/10.5194/acp-20-14903-2020, 2020
Short summary
Short summary
We use a set of model simulations of the 20th century to demonstrate that the uncertainty in the cooling effect of man-made aerosol emissions has a wide range of impacts on global monsoons. For the weakest cooling, the impact of aerosol is overpowered by greenhouse gas (GHG) warming and monsoon rainfall increases in the late 20th century. For the strongest cooling, aerosol impact dominates over GHG warming, leading to reduced monsoon rainfall, particularly from 1950 to 1980.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Cited articles
Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C.,
Lauritzen, P. H., Caron, J. M., and Truesdale, J. E.: Exploratory
High-Resolution Climate Simulations using the Community Atmosphere Model
(CAM), J. Climate, 27, 3073–3099, https://doi.org/10.1175/JCLI-D-13-00387.1, 2013.
Bombardi, R. J. and Carvalho, L. M. V: IPCC global coupled model simulations
of the South America monsoon system, Clim. Dynam., 33, 893,
https://doi.org/10.1007/s00382-008-0488-1, 2008.
Bombardi, R. J., Trenary, L., Pegion, K., Cash, B., DelSole, T., and Kinter
III, J. L.: Seasonal Predictability of Summer Rainfall over South America,
J. Climate., 31, 8181–8195, https://doi.org/10.1175/JCLI-D-18-0191.1, 2018.
Chevuturi, A.: “asop_duration” – Wet-spell and dry-spell duration, GitHub, available at: https://github.com/nick-klingaman/dubstep/tree/master/asop_duration,
last access: January 2020.
Chevuturi, A., Klingaman, N. P., and Martin, G.: nick-klingaman/dubstep: Initial DUBSTEP project release (Version v0.1), Zenodo, https://doi.org/10.5281/zenodo.3997114, 2020.
Coelho, C. A. S., de Oliveira, C. P., Ambrizzi, T., Reboita, M. S.,
Carpenedo, C. B., Campos, J. L. P. S., Tomaziello, A. C. N., Pampuch, L. A.,
Custódio, M. de S., Dutra, L. M. M., Da Rocha, R. P., and Rehbein, A.:
The 2014 southeast Brazil austral summer drought: regional scale mechanisms
and teleconnections, Clim. Dynam., 46, 3737–3752,
https://doi.org/10.1007/s00382-015-2800-1, 2016.
Cohen, J. C. P., Silva Dias, M. A. F., and Nobre, C. A.: Environmental
Conditions Associated with Amazonian Squall Lines: A Case Study, Mon.
Weather Rev., 123, 3163–3174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2, 1995.
Collins, M., Minobe, S., Barreiro, M., Bordoni, S., Kaspi, Y., Kuwano-Yoshida, A., Keenlyside, N., Manzini, E., O'Reilly, C. H., Sutton, R., Xie, S.-P. and Zolina, O.: Challenges and opportunities for improved understanding of regional climate dynamics, Nat. Clim. Chang., 8, 101–108, https://doi.org/10.1038/s41558-017-0059-8, 2018.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and
21st century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014.
Custódio, M. de S., Porfírio da Rocha, R. and Vidale, P. L.:
Analysis of precipitation climatology simulated by high resolution coupled
global models over the South America, Hydrol. Res. Lett., 6, 92–97,
https://doi.org/10.3178/hrl.6.92, 2012.
Custodio, M. de S., da Rocha, R. P., Ambrizzi, T., Vidale, P. L., and Demory,
M.-E.: Impact of increased horizontal resolution in coupled and
atmosphere-only models of the HadGEM1 family upon the climate patterns of
South America, Clim. Dynam., 48, 3341–3364, https://doi.org/10.1007/s00382-016-3271-8,
2017.
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models,
J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V, Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
DelSole, T. and Shukla, J.: Model Fidelity versus Skill in Seasonal
Forecasting, J. Climate, 23, 4794–4806, https://doi.org/10.1175/2010JCLI3164.1, 2010.
Delworth, T. L., Rosati, A., Anderson, W., Adcroft, A. J., Balaji, V.,
Benson, R., Dixon, K., Griffies, S. M., Lee, H.-C., Pacanowski, R. C.,
Vecchi, G. A., Wittenberg, A. T., Zeng, F., and Zhang, R.: Simulated Climate
and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model,
J. Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1, 2011.
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014.
De Sales, F. and Xue, Y.: Assessing the dynamic-downscaling ability over
South America using the intensity-scale verification technique, Int. J.
Climatol., 31, 1205–1221, https://doi.org/10.1002/joc.2139, 2011.
Doblas-Reyes, F. J., Andreu-Burillo, I., Chikamoto, Y., García-Serrano,
J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R. L., and van
Oldenborgh, G. J.: Initialized near-term regional climate change prediction,
Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704, 2013.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Falco, M., Carril, A. F., Menéndez, C. G., Zaninelli, P. G., and Li, L.
Z. X.: Assessment of CORDEX simulations over South America: added value on
seasonal climatology and resolution considerations, Clim. Dynam., 52,
4771–4786, https://doi.org/10.1007/s00382-018-4412-z, 2019.
Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., and Bailey, D. A.:
Improvements in a half degree atmosphere/land version of the CCSM, Clim.
Dynam., 34, 819–833, https://doi.org/10.1007/s00382-009-0614-8, 2010.
Grimm, A. M.: Madden–Julian Oscillation impacts on South American summer
monsoon season: precipitation anomalies, extreme events, teleconnections,
and role in the MJO cycle, Clim. Dynam., 53, 907–932, https://doi.org/10.1007/s00382-019-04622-6, 2019.
Grimm, A. M. and Silva Dias, P. L.: Analysis of Tropical–Extratropical
Interactions with Influence Functions of a Barotropic Model, J. Atmos. Sci.,
52, 3538–3555, https://doi.org/10.1175/1520-0469(1995)052<3538:AOTIWI>2.0.CO;2, 1995.
Grimm, A. M. and Tedeschi, R. G.: ENSO and Extreme Rainfall Events in South
America, J. Climate, 22, 1589–1609, https://doi.org/10.1175/2008JCLI2429.1, 2009.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Jia, L., Yang, X., Vecchi, G. A., Gudgel, R. G., Delworth, T. L., Rosati,
A., Stern, W. F., Wittenberg, A. T., Krishnamurthy, L., Zhang, S., Msadek,
R., Kapnick, S., Underwood, S., Zeng, F., Anderson, W. G., Balaji, V., and
Dixon, K.: Improved Seasonal Prediction of Temperature and Precipitation
over Land in a High-Resolution GFDL Climate Model, J. Climate, 28,
2044–2062, https://doi.org/10.1175/JCLI-D-14-00112.1, 2014.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method
that Produces Global Precipitation Estimates from Passive Microwave and
Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier,
D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter, J. L., Marx, L.,
Stan, C., and Hodges, K. I.: High-Resolution Global Climate Simulations with
the ECMWF Model in Project Athena: Experimental Design, Model Climate, and
Seasonal Forecast Skill, J. Climate, 25, 3155–3172,
https://doi.org/10.1175/JCLI-D-11-00265.1, 2011.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J.,
Fiorino, M., Potter, G. L., Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang,
S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II
Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kirtman, B. P., Bitz, C., Bryan, F., Collins, W., Dennis, J., Hearn, N.,
Kinter, J. L., Loft, R., Rousset, C., Siqueira, L., Stan, C., Tomas, R., and
Vertenstein, M.: Impact of ocean model resolution on CCSM climate
simulations, Clim. Dynam., 39, 1303–1328, https://doi.org/10.1007/s00382-012-1500-3,
2012.
Klingaman, N. P. and and Martin, G.: title: “asop” – Analysis of Scales of Precipitation, available at: https://github.com/nick-klingaman/dubstep/tree/master/asop,
last access: March 2020.
Klingaman, N. P., Martin, G. M., and Moise, A.: ASoP (v1.0): a set of methods for analyzing scales of precipitation in general circulation models, Geosci. Model Dev., 10, 57–83, https://doi.org/10.5194/gmd-10-57-2017, 2017.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, L17706,
https://doi.org/10.1029/2006GL026242, 2006.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H.,
Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K.,
Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and
Yamada, T.: Regions of Strong Coupling Between Soil Moisture and
Precipitation, Science 305, 1138–1140,
https://doi.org/10.1126/science.1100217, 2004.
Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., and Papadimitriou, L.:
Evaluation of precipitation and temperature simulation performance of the
CMIP3 and CMIP5 historical experiments, Clim. Dynam., 47, 1881–1898,
https://doi.org/10.1007/s00382-015-2938-x, 2016.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and
Nepstad, D.: The 2010 Amazon Drought, Science, 331, p. 554,
https://doi.org/10.1126/science.1200807, 2011.
Liebmann, B. and Smith, C. A.: Description of a Complete (Interpolated)
Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77,
1275–1277,
1996.
Liebmann, B., Kiladis, G. N., Marengo, J., Ambrizzi, T., and Glick, J. D.:
Submonthly Convective Variability over South America and the South Atlantic
Convergence Zone, J. Climate, 12, 1877–1891,
https://doi.org/10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2,
1999.
Liu, W. T. and Juárez, R. I. N.: ENSO drought onset prediction in
northeast Brazil using NDVI, Int. J. Remote Sens., 22, 3483–3501,
https://doi.org/10.1080/01431160010006430, 2001.
Marengo, J. A., Nobre, C. A., Tomasella, J., Oyama, M. D., Sampaio de
Oliveira, G., de Oliveira, R., Camargo, H., Alves, L. M., and Brown, I. F.:
The Drought of Amazonia in 2005, J. Climate, 21, 495–516,
https://doi.org/10.1175/2007JCLI1600.1, 2008.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D.
A.: The drought of 2010 in the context of historical droughts in the Amazon
region, Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436, 2011.
Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, D. A., Camargo, H.,
Riveros, M. P., and Pabló, A. D.: Two Contrasting Severe Seasonal
Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in
Northeast Brazil, J. Climate, 26, 9137–9154,
https://doi.org/10.1175/JCLI-D-12-00642.1, 2013.
Martin, G. M., Klingaman, N. P., and Moise, A. F.: Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6, Geosci. Model Dev., 10, 105–126, https://doi.org/10.5194/gmd-10-105-2017, 2017.
McClean, J. L., Bader, D. C., Bryan, F. O., Maltrud, M. E., Dennis, J. M.,
Mirin, A. A., Jones, P. W., Kim, Y. Y., Ivanova, D. P., Vertenstein, M.,
Boyle, J. S., Jacob, R. L., Norton, N., Craig, A., and Worley, P. H.: A
prototype two-decade fully-coupled fine-resolution CCSM simulation, Ocean
Model., 39, 10–30, https://doi.org/10.1016/j.ocemod.2011.02.011,
2011.
Monerie, P.-A.: Scripts we used for “Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31” [Data set], Zenodo, https://doi.org/10.5281/zenodo.3840095, 2020.
Power, S., Casey, T., Folland, C., Colman, A., and Mehta, V.: Inter-decadal
modulation of the impact of ENSO on Australia, Clim. Dynam., 15, 319–324,
https://doi.org/10.1007/s003820050284, 1999.
Rayner, N. A., Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J.,
Vanicek, M., Ansell, T. J., and Tett, S. F. B.: Improved Analyses of Changes
and Uncertainties in Sea Surface Temperature Measured In Situ since the
Mid-Nineteenth Century: The HadSST2 Dataset, J. Climate, 19, 446–469,
https://doi.org/10.1175/JCLI3637.1, 2006.
Roberts, M.: MOHC HadGEM3-GC31-LM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1321, 2017a.
Roberts, M.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1902, 2017b.
Roberts, M.: MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP. Version YYYYMMDD[1], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.446, 2017c.
Roberts, M. J., Vidale, P. L., Senior, C., Hewitt, H. T., Bates, C.,
Berthou, S., Chang, P., Christensen, H. M., Danilov, S., Demory, M.-E.,
Griffies, S. M., Haarsma, R., Jung, T., Martin, G., Minobe, S., Ringler, T.,
Satoh, M., Schiemann, R., Scoccimarro, E., Stephens, G., and Wehner, M. F.:
The Benefits of Global High Resolution for Climate Simulation: Process
Understanding and the Enabling of Stakeholder Decisions at the Regional
Scale, B. Am. Meteorol. Soc., 99, 2341–2359,
https://doi.org/10.1175/BAMS-D-15-00320.1, 2018.
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt,
H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D.,
Schiemann, R., Seddon, J., Vannière, B. and Vidale, P. L.: Description
of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as
used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12(12),
4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019.
Sakamoto, T. T., Komuro, Y., Nishimura, T., Ishii, M., Tatebe, H., Shiogama,
H., Hasegawa, A., Toyoda, T., Mori, M., and Suzuki, T.: MIROC4h–a new
high-resolution atmosphere-ocean coupled general circulation model, J.
Meteorol. Soc. Jpn. Ser. II, 90, 325–359, 2012.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and
Rudolf, B.: GPCC's new land surface precipitation climatology based on
quality-controlled in situ data and its role in quantifying the global water
cycle, Theor. Appl. Climatol., 115, 15–40,
https://doi.org/10.1007/s00704-013-0860-x, 2014.
Seth, A., Rojas, M., Liebmann, B., and Qian, J.-H.: Daily rainfall analysis
for South America from a regional climate model and station observations,
Geophys. Res. Lett., 31, L07213, https://doi.org/10.1029/2003GL019220, 2004.
Shaffrey, L. C., Stevens, I., Norton, W. A., Roberts, M. J., Vidale, P. L.,
Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M. E.,
Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S.,
Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New,
A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L., and Martin, G. M.: U.K.
HiGEM: The New U.K. High-Resolution Global Environment Model–Model
Description and Basic Evaluation, J. Climate, 22, 1861–1896,
https://doi.org/10.1175/2008JCLI2508.1, 2009.
Sierra, J. P., Arias, P. A., and Vieira, S. C.: Precipitation over northern
South America and its seasonal variability as simulated by the CMIP5 models,
Adv. Meteorol., 2015, 634720, https://doi.org/10.1155/2015/634720, 2015.
Small, R. J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F.,
Caron, J., Dennis, J., Gent, P., Hsu, H., Jochum, M., Lawrence, D.,
Muñoz, E., DiNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.
and Vertenstein, M.: A new synoptic scale resolving global climate
simulation using the Community Earth System Model, J. Adv. Model. Earth
Sy., 6, 1065–1094, https://doi.org/10.1002/2014MS000363, 2014.
Solman, S. A. and Blázquez, J.: Multiscale precipitation variability
over South America: Analysis of the added value of CORDEX RCM simulations,
Clim. Dynam., 53, 1547–1565, https://doi.org/10.1007/s00382-019-04689-1, 2019.
Sörensson, A. A. and Menéndez, C. G.: Summer soil–precipitation
coupling in South America, Tellus A, 63, 56–68,
https://doi.org/10.1111/j.1600-0870.2010.00468.x, 2011.
Sun, Y., Solomon, S., Dai, A., and Portmann, R. W.: How Often Does It Rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
Vannière, B., Demory, M.-E., Vidale, P. L., Schiemann, R., Roberts, M.
J., Roberts, C. D., Matsueda, M., Terray, L., Koenigk, T., and Senan, R.:
Multi-model evaluation of the sensitivity of the global energy budget and
hydrological cycle to resolution, Clim. Dyamn., 52, 6817–6846,
https://doi.org/10.1007/s00382-018-4547-y, 2019.
Vellinga, M., Roberts, M., Vidale, P. L., Mizielinski, M. S., Demory, M.-E.,
Schiemann, R., Strachan, J. and Bain, C.: Sahel decadal rainfall variability
and the role of model horizontal resolution, Geophys. Res. Lett., 43(1),
326–333, https://doi.org/10.1002/2015GL066690, 2016.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D.,
Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle,
J., Dias, P. L. S., and Zhang, C.: Toward a Unified View of the American
Monsoon Systems, J. Climate, 19, 4977–5000, https://doi.org/10.1175/JCLI3896.1, 2006.
Villamayor, J., Ambrizzi, T., and Mohino, E.: Influence of decadal sea
surface temperature variability on northern Brazil rainfall in CMIP5
simulations, Clim. Dynam., 51, 563–579, https://doi.org/10.1007/s00382-017-3941-1,
2018.
Waliser, D. E., Graham, N. E., and Gautier, C.: Comparison of the Highly
Reflective Cloud and Outgoing Longwave Radiation Datasets for Use in
Estimating Tropical Deep Convection, J. Climate, 6, 331–353,
https://doi.org/10.1175/1520-0442(1993)006<0331:COTHRC>2.0.CO;2,
1993.
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
Wei, J. and Dirmeyer, P. A.: Dissecting soil moisture-precipitation
coupling, Geophys. Res. Lett., 39, L19711,
https://doi.org/10.1029/2012GL053038, 2012.
Wheeler, M. C. and Hendon, H. H.: An All-Season Real-Time Multivariate MJO
Index: Development of an Index for Monitoring and Prediction, Mon. Weather
Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004.
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert,
D., Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P.,
Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S.
F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey,
D., Thorpe, L., Watterson, I. G., Walters, D. N., West, A., Wood, R. A.,
Woollings, T., and Xavier, P. K.: The Met Office Global Coupled Model 3.0 and
3.1 (GC3.0 and GC3.1) Configurations, J. Adv. Model. Earth Sy., 10,
357–380, https://doi.org/10.1002/2017MS001115, 2018.
Willmott, C. J., Matsuura, K., and Legates, D. R.: Terrestrial air
temperature and precipitation: monthly and annual time series (1950–1999),
Cent. Clim. Res. version, 1, 2001.
Yin, L., Fu, R., Shevliakova, E., and Dickinson, R. E.: How well can CMIP5
simulate precipitation and its controlling processes over tropical South
America?, Clim. Dynam., 41, 3127–3143, https://doi.org/10.1007/s00382-012-1582-y,
2013.
Zeng, N., Yoon, J.-H., Marengo, J. A., Subramaniam, A., Nobre, C. A.,
Mariotti, A., and Neelin, J. D.: Causes and impacts of the 2005 Amazon
drought, Environ. Res. Lett., 3, 14002, https://doi.org/10.1088/1748-9326/3/1/014002,
2008.
Short summary
In this study, we assess how increasing the horizontal resolution of HadGEM3-GC31 can allow simulating better tropical and subtropical South American precipitation. We compare simulations of HadGEM3-GC3.1, performed at three different horizontal resolutions. We show that increasing resolution allows decreasing precipitation biases over the Andes and northeast Brazil and improves the simulation of daily precipitation distribution.
In this study, we assess how increasing the horizontal resolution of HadGEM3-GC31 can allow...