Articles | Volume 13, issue 9
Model evaluation paper
16 Sep 2020
Model evaluation paper |  | 16 Sep 2020

Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54

Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl

Related authors

Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Christof Gerhard Beer, Johannes Hendricks, and Mattia Righi
EGUsphere,,, 2023
Short summary
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907,,, 2022
Short summary
An aerosol classification scheme for global simulations using the K-means machine learning method
Jingmin Li, Johannes Hendricks, Mattia Righi, and Christof G. Beer
Geosci. Model Dev., 15, 509–533,,, 2022
Short summary
Exploring the uncertainties in the aviation soot–cirrus effect
Mattia Righi, Johannes Hendricks, and Christof Gerhard Beer
Atmos. Chem. Phys., 21, 17267–17289,,, 2021
Short summary
Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661,,, 2020
Short summary

Related subject area

Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873,,, 2023
Short summary
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700,,, 2023
Short summary
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634,,, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608,,, 2023
Short summary
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591,,, 2023
Short summary

Cited articles

Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325–355,, 2011. a, b, c, d
Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de Meij, A.: Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmos. Chem. Phys., 12, 11057–11083,, 2012. a
Balkanski, Y., Schulz, M., Claquin, T., Moulin, C., and Ginoux, P.: Global emissions of mineral aerosol: formulation and validation using satellite imagery, in: Emissions of Atmospheric Trace Compounds, Springer, 18, 239–267,, 2004. a
Banks, J. R., Brindley, H. E., Stenchikov, G., and Schepanski, K.: Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015), Atmos. Chem. Phys., 17, 3987–4003,, 2017. a
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59–60, 251–264,, 2001. a
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.