Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4287-2020
https://doi.org/10.5194/gmd-13-4287-2020
Model evaluation paper
 | 
16 Sep 2020
Model evaluation paper |  | 16 Sep 2020

Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54

Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl

Related authors

Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 24, 3217–3240, https://doi.org/10.5194/acp-24-3217-2024,https://doi.org/10.5194/acp-24-3217-2024, 2024
Short summary
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022,https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
An aerosol classification scheme for global simulations using the K-means machine learning method
Jingmin Li, Johannes Hendricks, Mattia Righi, and Christof G. Beer
Geosci. Model Dev., 15, 509–533, https://doi.org/10.5194/gmd-15-509-2022,https://doi.org/10.5194/gmd-15-509-2022, 2022
Short summary
Exploring the uncertainties in the aviation soot–cirrus effect
Mattia Righi, Johannes Hendricks, and Christof Gerhard Beer
Atmos. Chem. Phys., 21, 17267–17289, https://doi.org/10.5194/acp-21-17267-2021,https://doi.org/10.5194/acp-21-17267-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary

Cited articles

Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B., Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011, 2011. a, b, c, d
Astitha, M., Lelieveld, J., Abdel Kader, M., Pozzer, A., and de Meij, A.: Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties, Atmos. Chem. Phys., 12, 11057–11083, https://doi.org/10.5194/acp-12-11057-2012, 2012. a
Balkanski, Y., Schulz, M., Claquin, T., Moulin, C., and Ginoux, P.: Global emissions of mineral aerosol: formulation and validation using satellite imagery, in: Emissions of Atmospheric Trace Compounds, Springer, 18, 239–267, https://doi.org/10.1007/978-1-4020-2167-1_6, 2004. a
Banks, J. R., Brindley, H. E., Stenchikov, G., and Schepanski, K.: Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015), Atmos. Chem. Phys., 17, 3987–4003, https://doi.org/10.5194/acp-17-3987-2017, 2017. a
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/s0169-8095(01)00119-3, 2001. a
Download
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.
Share