Articles | Volume 13, issue 8
Geosci. Model Dev., 13, 3627–3642, 2020
https://doi.org/10.5194/gmd-13-3627-2020
Geosci. Model Dev., 13, 3627–3642, 2020
https://doi.org/10.5194/gmd-13-3627-2020

Methods for assessment of models 21 Aug 2020

Methods for assessment of models | 21 Aug 2020

Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1)

John T. Fasullo

Related subject area

Climate and Earth System Modeling
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021,https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021,https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021,https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021,https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021,https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary

Cited articles

Adler, R., Sapiano, M., Huffman, G., Bolvin, D., Gu, G., Wang, J., and Schneider, U.: The new version 2.3 of the Global Precipitation Climatology Project (GPCP) monthly analysis product, University of Maryland, April, pp. 1072–1084, 2016. 
Adler, R. F., Gu, G., Huffman, G. J., Sapiano, M. R., and Wang, J. J.: GPCP and the Global Characteristics of Precipitation, in: Satellite Precipitation Measurement, pp. 677–697, Springer, Cham, 2020. 
Baker, N. C. and Taylor, P. C.: A framework for evaluating climate model performance metrics, J. Climate, 29, 1773–1782, https://doi.org/10.1175/JCLI-D-15-0114.1, 2016. 
Borovikov, A., Cullather, R., Kovach, R., Marshak, J., Vernieres, G., Vikhliaev, Y., and Li, Z.: GEOS-5 seasonal forecast system, Clim. Dynam., 53, 7335–7361, https://doi.org/10.1007/s00382-017-3835-2, 2019. 
Box, G. E. P.: Science and statistics, J. Am. Stat. Assoc., 71, 791–799, https://doi.org/10.1080/01621459.1976.10480949, 1976. 
Download
Short summary
The fidelity of climate model simulations included in the WCRP Coupled Model Intercomparison Project Versions 3 through 6 is evaluated using best estimates of fields considered by the community to be critical for climate change projections. The analysis benchmarks patterns of the mean state and variability (seasonal/interannual) both within and across model generations, highlighting progress and quantifying persisting biases across models.