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Abstract. An objective approach is presented for scoring
coupled climate simulations through an evaluation against
satellite and reanalysis datasets during the satellite era (i.e.,
since 1979). The approach is motivated, described, and ap-
plied to available Coupled Model Intercomparison Project
(CMIP) archives and the Community Earth System Model
(CESM) Version 1 Large Ensemble archives with the goal of
robustly benchmarking model performance and its evolution
across CMIP generations. A scoring system is employed that
minimizes sensitivity to internal variability, external forc-
ings, and model tuning. Scores are based on pattern corre-
lations of the simulated mean state, seasonal contrasts, and
ENSO teleconnections. A broad range of feedback-relevant
fields is considered and summarized on discrete timescales
(climatology, seasonal, interannual) and physical realms (en-
ergy budget, water cycle, dynamics). Fields are also gener-
ally chosen for which observational uncertainty is small com-
pared to model structural differences.

Highest mean variable scores across models are reported
for well-observed fields such as sea level pressure, precip-
itable water, and outgoing longwave radiation, while the low-
est scores are reported for 500 hPa vertical velocity, net sur-
face energy flux, and precipitation minus evaporation. The
fidelity of models is found to vary widely both within and
across CMIP generations. Systematic increases in model fi-
delity in more recent CMIP generations are identified, with
the greatest improvements occurring in dynamic and ener-
getic fields. Such examples include shortwave cloud forcing
and 500 hPa eddy geopotential height and relative humidity.
Improvements in ENSO scores with time are substantially
greater than for climatology or seasonal timescales.

Analysis output data generated by this approach are made
freely available online from a broad range of model en-
sembles, including the CMIP archives and various single-
model large ensembles. These multimodel archives allow
for an expeditious analysis of performance across a range
of simulations, while the CESM large ensemble archive al-
lows for estimation of the influence of internal variability
on computed scores. The entire output archive, updated and
expanded regularly, can be accessed at http://webext.cgd.
ucar.edu/Multi-Case/CMAT/index.html (last access: 18 Au-
gust 2020).

1 Introduction

Global climate models were first developed over half a cen-
tury ago (Hunt and Manabe, 1968; Manabe et al., 1975) and
have provided insight into the climate system on a range
of issues including the roles of various physical processes
in the climate system and the attribution of climate events.
They also are key tools for near-term initialized prediction
and long-term boundary forced projections. Given their rel-
evance for addressing issues of considerable socioeconomic
importance, climate models are increasingly being looked to
for guiding policy-relevant decisions on long timescales and
on regional levels. Many barriers exist however, and chief
amongst which are the biases in climate model representa-
tions of the physical system.

Adequate evaluation of climate models is nontrivial how-
ever. A key obstacle is that the longest observational records
tend to monitor temperature and sea level pressure and are
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therefore not directly related to many of the fields thought
to govern climate variability and change, such as for ex-
ample cloud radiative forcing and rainfall (Burrows et al.,
2018). Global direct observations of more physically rele-
vant fields exist but are available exclusively from satellite
and thus are limited in duration, with some of the most im-
portant data records beginning only in recent decades. Over
longer timescales, uncertainties in forcing external to the cli-
mate system (e.g., anthropogenic aerosols) further compli-
cate model evaluation. Benchmarks of model performance
must therefore be designed to deal with associated uncertain-
ties and minimize their influence.

1.1 Motivations

Climate modeling centers continually refine their codes with
the goal of improving their models. The Climate Model In-
tercomparison Project (CMIP) is an effort to systematically
coordinate and release targeted climate model experiments of
high interest in the science community and has thus far pro-
vided three major releases, including CMIP3 (Meehl et al.,
2007), CMIP5 (Taylor et al., 2012), and CMIP6 versions
(Eyring et al., 2016). Major advances have also recently been
made in key observationally based climate datasets (as dis-
cussed herein). An opportunity has therefore arisen to take
stock of these simulation archives and conduct a retrospec-
tive assessment of progress that has been made and chal-
lenges that remain.

While individual models are widely scrutinized, system-
atic surveys of model performance are relatively rare. Evalu-
ation of single CMIP generations have been conducted, and
these have been uniquely useful for identifying canonical
model biases (Gleckler et al., 2008; Pincus et al., 2008). It
is the goal of this study to provide a similar benchmark-
ing of models but one considerably expanded in scope in
considering multiple CMIP versions and using newly avail-
able process-relevant observations that contextualize model–
observation differences with respect to both internal variabil-
ity and observational uncertainty. An additional goal is to
provide related diagnostic outputs directly to the community.
Both the graphical and data outputs generated may poten-
tially be incorporated into broader community packages such
as ESMValTool (Eyring et al., 2020), thus providing a unique
evaluation of fully coupled physical climate states that en-
compasses both climatological means and temporal varia-
tions, which accounts for key uncertainties, and that bench-
marks models across CMIP generations.

1.2 Challenges

A number of challenges exist for efforts aimed at comprehen-
sively assessing climate model fidelity. Observations of many
fields that are central to climate variability and change (e.g.,
cloud microphysics, entrainment rates, aerosol–cloud inter-
actions; Knutti et al., 2010) are not observed on the global,

multidecadal timescales required to comprehensively evalu-
ate models. Fields for which observations do exist often en-
tail uncertainties that are large, particularly at times when
the spatial sampling of observing networks is poor (e.g., SST
datasets) or for fields that contain significant uncertainty in
satellite-based retrieval (e.g., surface turbulent and radiative
fluxes). For instances in which extended data records are un-
available, associated sensitivity to internal variability and ex-
ternally imposed forcing, which also contains major uncer-
tainties, must be considered, and evaluation of trends are par-
ticularly susceptible. In addition, model tuning methods vary
widely across centers (e.g., Hourdin et al., 2017; Schmidt
et al., 2017), and in instances where climate fields are ex-
plicitly tuned, direct comparison against observations is un-
warranted.

1.3 Approach

The need for objective climate model analysis was high-
lighted in the 2010 IPCC Expert Meeting on Assessing and
Combining Multi-Model Climate Projections (Knutti et al.,
2010). Its synthesis report detailed a number of summary
recommendations including the consideration of feedback-
relevant, process-based fields and the implementation of met-
rics that are both simple and statistically robust. In addi-
tion, fields were recommended for which observational un-
certainty and internal variability are both quantifiable and
small relative to model structural differences. The reliance
on any single evaluation dataset was also deemed problem-
atic in that doing so might be both susceptible to compen-
sating errors and insufficient to fully characterize intermodel
contrasts. The approach here is guided, in part, by these rec-
ommendations.

Various model analysis efforts have focused on surface
temperature (e.g., Braverman et al., 2017; Lorenz et al.,
2018). A thorough evaluation of climate model thermody-
namics is provided by the TheDiaTo as described in Lembo
et al. (2019). Complex measures of model performance that
allow for a richer comparison of model statistics against ob-
servations have also been discussed (Gibbs and Su, 2002) and
proposed (Ghil, 2015). The approach adopted here highlights
instead the main components of the energy and water cycles
using simple diagnostic measures. Objective assessments of
CMIP3 performance based on the mean climate state using
these fields were performed in Gleckler et al. (2008) and
Pincus et al. (2008). The goal of this work is to comple-
ment and extend these efforts in including an analysis of both
the mean state and variability across three generations of
CMIP simulations while distinguishing between timescales
and realms of diagnostics as well as using improved observa-
tional datasets and constraints (described below). As the skill
of a given climate model is likely to depend on the relevant
application (Gleckler et al., 2008; Pierce et al., 2009; Knutti
et al., 2017), the scores computed herein are made widely
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available to the community and may help guide formation of
optimal model subsets for targeted applications.

The consideration of multiple CMIP generations is moti-
vated in part by reported shifts in model behavior, such as
for example the apparent increase in climate sensitivity to
carbon dioxide in some models (Gettelman et al., 2019; Go-
laz et al., 2019; Neubauer et al., 2019). Do such shifts ac-
company systematic improvements in models and if so, in
what fields? It is also of a more general interest to quan-
tify canonical biases in models, their changes in successive
model generations, and persistent biases affecting the most
recent generations of climate models. The specific ques-
tions addressed here therefore include the following: what
improvements have occurred across model generations, and
what persistent biases remain? What process-relevant, well-
observed fields are models most skillful in reproducing? To
what extent are apparent improvements and persisting biases
robustly detectible in the presence of internal climate vari-
ability, particularly as they relate to brief satellite records?

2 Methods

The analysis approach consists of computing a range of
scores based on pattern correlations encompassing three cli-
matic timescales: the climatological annual mean (annual),
seasonal mean contrasts (June–July–August and December–
January–February), and ENSO teleconnection patterns –
computed from the 12-month July through June mean re-
gressions against Niño3.4 (area-averaged SSTA 5◦ S–5◦ N,
170–120◦W) sea surface temperatures (SST). The choice of
ENSO as a model diagnostic is motivated in part by the de-
mands involved in its accurate simulation arising from the
highly coupled nature of the mode, which includes feed-
backs between clouds, diabatic heating, and winds in the
atmosphere, and currents and steric structure in the ocean
(e.g., Cheng et al., 2019). Variables are classified according
to three variable types (or realms) corresponding to the en-
ergy budget, water cycle, and dynamics. To reduce the influ-
ence of internal variability, the time period over which these
fields are considered is at least 20 years, though the avail-
ability of some datasets allows for the use of longer peri-
ods, further reducing the susceptibility of the analysis to in-
ternal variability. Contemporaneous time intervals are also
chosen to provide for maximum overlap between observed
and simulated fields. The variables selected for considera-
tion are chosen based on availability and judgment of their
importance in simulating climate variability and change. In
part this judgment is based on a recent community solicita-
tion (Burrows et al., 2018), and some of the fields included
(e.g., TOA fluxes) are deemed by experts to be optimal met-
rics for model evaluation (e.g., Baker and Taylor, 2016).

2.1 Observational datasets

2.1.1 The energy budget realm

Energy budget fields considered consist broadly of TOA ra-
diative fluxes and cloud forcing, vertically integrated atmo-
spheric energy divergence and tendency, and surface heat
fluxes. Radiative fluxes at TOA are taken from the Clouds
and Earth’s Radiant Energy System (CERES) Energy Bal-
ance and Filled Version 4.1 dataset (EBAFv4.1; Loeb et al.,
2018). The dataset offers a number of improvements over
earlier versions and datasets, with improved angular distri-
bution models and scene identification, but is perhaps most
notable for its recently updated derivation of cloud radia-
tive forcing (CF). Historically CF has been estimated from
observations by differencing cloudy and neighboring clear
regions, with the effect of aliasing meteorological contrasts
between the regions (whereas models merely remove clouds
from their radiative transfer scheme using colocated meteo-
rology). In the EBAFv4.1, fields from NASA’s GEOS-5 re-
analysis (Borovikov et al., 2019) are used to estimate fluxes
and CF for colocated (rather than remote) atmospheric con-
ditions, thus providing for a more analogous comparison to
models. From CERES, the TOA net shortwave (ASR), outgo-
ing longwave (OLR), and net (RT) radiative fluxes are used.
In addition, estimates of shortwave CF (SWCF) and longwave
CF (LWCF) are used.

Derived from the ERA-Interim reanalysis (Dee et al.,
2011), vertical integrals of atmospheric energy are used to
both assess the total energy divergence within the atmosphere
(∇ ·AE) and its tendency (∂AE/∂t). This provides important
insight into the regional generation of atmospheric transports
and their cumulative influence on the global energy budget
(e.g., Fasullo and Trenberth, 2008). They are also an energy
budget component necessary for computing the net surface
energy fluxes from the residual of RT, ∇ ·AE , and ∂AE/∂t .
Given the challenges of directly observing the net surface
flux, a residual method is likely the best available method
for estimating the large-scale evaluation of the surface heat
budget. The method has been demonstrated to achieve an ac-
curacy on par with direct observations on regional scales and
has proven superior on large scales, where the atmospheric
divergences on which they rely become small, converging to
zero by definition in the global mean (Trenberth and Fasullo,
2017). Uncertainty estimation of CERES fluxes is also well
documented (Loeb et al., 2018).

2.1.2 The water cycle realm

Water cycle fields considered include precipitation (P ),
evaporation minus precipitation (E−P ), precipitable water
(PRW), evaporation (LH), and near-surface relative humid-
ity (RHS). The utility of P and E−P as model diagnos-
tics was highlighted by Greve et al., (2018) in selecting a
subset of CMIP5 models. As global evaporation fields from
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direct observations and estimated from satellite also con-
tain substantial uncertainty, precipitation minus evaporation
is estimated here instead from the vertically integrated diver-
gence of moisture simulated in ERA-Interim fields, which is
also arguably the most accurate means of evaluating large-
scale patterns and variability (Trenberth and Fasullo, 2013).
Precipitation is estimated from the Global Precipitation Cli-
matology Project (GPCP, Adler et al., 2020) Climate Data
Record (Adler et al., 2016). The improved version takes ad-
vantage of improvements in the gauge records used for cal-
ibration and indirect precipitation estimation from longwave
radiances provided by NOAA LEO-IR data. For other water
cycle fields, output from the European Centre for Medium
Range Weather Forecasts (ECMWF) Reanalysis Version 5
(ERA5; Hersbach et al., 2019) is used. ERA5 is the successor
to ERA-Interim, increasing the resolution of reported fields,
the range of fields assimilated from satellite instruments, and
the simulation accuracy as compared against a broad range of
observations for various measures. For example, a compari-
son of ERA5 to satellite data (CERES, GPCP) demonstrates
reduced mean state annual and seasonal biases as compared
to ERA-Interim (not shown).

2.1.3 The dynamical realm

Dynamical fields considered include sea level pressure
(SLP), wind speed (US), 500 hPa eddy geopotential height
(Z500), vertical velocity (W500), and relative humidity
(RH500). The use of eddy geopotential rather than total
geopotential, which contains significant spatial variance aris-
ing from meridional temperature contrasts, is motivated by
its ability to resolve our main field of interest – the spa-
tial structure of atmospheric circulations. ERA5, discussed
above, is used for estimation of dynamical fields, as such
fields are generally not provided from satellite (excepting
RH500). Motivating its use – and among its notable improve-
ments relative to earlier reanalyses – is ERA5’s improved
representation of tropospheric waves and jets that is core to
our dynamical evaluation.

2.2 Generation of variable, realm, timescale, and
overall scores

Scores for annual mean, seasonal mean, and ENSO timescale
metrics are generated from the area-weighted pattern corre-
lations (Rs) between each simulated variable and the corre-
sponding observational dataset. Weighted averages of these
three Rs values are then used to generate a variable score
for each field in a given simulation. Arithmetic averages
across the relevant variable scores are then used to generate
realm scores, and the realm scores for a simulation are arith-
metically averaged to generate an overall score. Similarly,
timescale scores are generated by averaging Rs values for the
relevant timescale across all variables. The inclusion of both
realm and timescale scores is motivated in part by the need

Table 1. Sorted summary of CMIP models considered in this work,
sorted by overall scores.

CMIP3 CMIP5 CMIP6

gfdl_cm2_0 (0.78) CESM1-BGC (0.81) CESM2 (0.86)
gfdl_cm2_1 (0.75) CNRM-CM5-2 (0.81) MIROC6 (0.85)
cccma_cgcm3_1_t63 (0.75) CESM1-FASTCHEM (0.81) CESM2-WACCM (0.85)
mri_cgcm2_3_2a (0.75) CESM1-CAM5 (0.81) GISS-E2-1-H (0.85)
mpi_echam5 (0.75) ACCESS1-0 (0.81) SAM0-UNICON (0.84)
miub_echo_g (0.74) NorESM1-ME (0.80) GFDL-CM4 (0.84)
csiro_mk3_5 (0.74) CESM1-WACCM (0.80) EC-Earth3-Veg (0.84)
ingv_echam4 (0.73) CESM1-CAM5-1-FV2 (0.80) EC-Earth3 (0.83)
ukmo_hadcm3 (0.73) MIROC5 (0.80) UKESM1-0-LL (0.82)
cccma_cgcm3_1 (0.73) CMCC-CMS (0.80) MRI-ESM2-0 (0.82)
cnrm_cm3 (0.73) HadGEM2-ES (0.80) E3SM-1-0 (0.81)
ncar_ccsm3_0 (0.72) NorESM1-M (0.79) CNRM-CM6-1 (0.81)
csiro_mk3_0 (0.71) BNU-ESM (0.79) CNRM-ESM2-1 (0.81)
miroc3_2_medres (0.71) ACCESS1-3 (0.78) MIROC-ES2L (0.81)
bccr_bcm2_0 (0.71) HadGEM2-AO (0.78) FGOALS-g3 (0.79)
iap_fgoals1_0_g (0.69) bcc-csm1-1-m (0.77) CAMS-CSM1-0 (0.79)
miroc3_2_hires (0.69) GFDL-CM2p1 (0.76) BCC-CSM2-MR (0.77)
ukmo_hadgem1 (0.68) CanESM2 (0.76) BCC-ESM1 (0.77)
ipsl_cm4 (0.67) CMCC-CESM (0.75) CanESM5 (0.77)
ncar_pcm1 (0.61) IPSL-CM5B-LR (0.75) IPSL-CM6A-LR (0.74)
inmcm3_0 (0.60) MRI-ESM1 (0.75) GISS-E2-1-G (0.74)
giss_model_e_r (0.60) MPI-ESM-LR (0.75) NorESM2-LM (0.74)
giss_aom (0.59) MPI-ESM-MR (0.74)
giss_model_e_h (0.46) MPI-ESM-P (0.74)

MRI-CGCM3 (0.74)
FGOALS-g2 (0.74)
GFDL-ESM2G (0.72)
GISS-E2-R-CC (0.72)
IPSL-CM5A-MR (0.71)
MIROC-ESM (0.70)
GISS-E2-H-CC (0.69)
IPSL-CM5A-LR (0.68)
CSIRO-Mk3-6-0 (0.68)
MIROC-ESM-CHEM (0.68)
inmcm4 (0.68)
GISS-E2-H (0.67)
CESM1-BGC (0.81)
CNRM-CM5-2 (0.81)
CESM1-FASTCHEM (0.81)
CESM1-CAM5 (0.81)
ACCESS1-0 (0.81)
NorESM1-ME (0.80)
CESM1-WACCM (0.80)
CESM1-CAM5-1-FV2 (0.80)
MIROC5 (0.80)
CMCC-CMS (0.80)
HadGEM2-ES (0.80)
NorESM1-M (0.79)
BNU-ESM (0.79)
ACCESS1-3 (0.78)
HadGEM2-AO (0.78)
bcc-csm1-1-m (0.77)
GFDL-CM2p1 (0.76)
CanESM2 (0.76)
CMCC-CESM (0.75)
IPSL-CM5B-LR (0.75)
MRI-ESM1 (0.75)
MPI-ESM-LR (0.75)
MPI-ESM-MR (0.74)
MPI-ESM-P (0.74)
MRI-CGCM3 (0.74)
FGOALS-g2 (0.74)
GFDL-ESM2G (0.72)
GISS-E2-R-CC (0.72)
IPSL-CM5A-MR (0.71)
MIROC-ESM (0.70)
GISS-E2-H-CC (0.69)
IPSL-CM5A-LR (0.68)
CSIRO-Mk3-6-0 (0.68)
MIROC-ESM-CHEM (0.68)
inmcm4 (0.68)
GISS-E2-H (0.67)
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Figure 1. Mean simulated fields of SWCF in CESM2 from 1995 to 2014 for (a) the annual mean, (b) seasonal contrasts, and (c) regressed
against Niño3.4 SST anomalies using July through June averages. Observed CERES EBAF4.1 estimated SWCF for 2000–2018 for (d–
f) analogous metrics and (g–i) CESM2–CERES differences are also shown. Stippling indicates regions where CESM2–CERES differences
exceed twice the estimated internal spread from CESM1-LE. Hatching indicates regions where differences exceed the same spread plus
observational uncertainty (added in quadrature, applied to all panels in each column). Units are watts per square meter (Wm−2) except for
regressions (right column), where units are watts per square meter per kelvin (Wm−2 K−1). Zonal means (right panels) include land (red),
ocean (blue), and global (black).

to interpret the origin of changes in overall scores, which in-
clude a large number of Rs values that may otherwise ob-
scure an obvious physical interpretation. Insights gained, for
example, include the attribution of much of the overall score
improvement across CMIP generations to the fidelity of sim-
ulated ENSO patterns.

The use of weights in generating variable scores is moti-
vated by the desire to assist in interpretation of differences
in the overall score relative to the influence of internal vari-
ability. Using the Community Earth System Version 1 Large
Ensemble (CESM1-LE; Kay et al., 2015), weights for ENSO
scores are reduced from 1.000 to 0.978 (while for annual
and seasonal scores they are 1.000) such that the standard
deviation range in overall scores for the 40 members of the
CESM1-LE is 0.010. This therefore can be used to interpret
generally the approximate contribution of internal variability
to intermodel overall scores in analysis of the CMIP archives,
suggesting that differences between individual simulations of
less than approximately 0.040 (±2σ ) are not statistically sig-
nificant. Where available, multiple-simulation analyses pro-
vide an opportunity for further narrowing the uncertainty in
statements regarding intermodel fidelity, and as will be seen,
overall score ranges within and across the CMIP ensembles
generally exceed the obscuring effects of internal variability.

2.3 CMIP Simulations

As the goal of this work is to characterize the evolution
of agreement between climate models generally across the
CMIP archives and the observations, all available model sub-
missions for which sufficient data are provided are included
in the analysis (as summarized in Table 1). A major ex-
ception to the data availability requirement relates to near-
surface wind speed (US), which was not included as part of
the CMIP3 variable list specification. Scores for the dynam-
ical realm in CMIP3 therefore omit US as a scored variable
and instead compute the dynamic realm score from the re-
maining dynamic variable scores. While multiple ensemble
members are provided in the CMIP archives for many mod-
els and have been assessed, only a single member of each
model is incorporated into the analysis here to avoid over-
weighting the influence of any single mode.

Lastly, in an effort to quantify the leading patterns of bias
that differentiate models, a covariance-matrix-based princi-
pal component (PC) analysis is used where the array of bias
patterns (long × lat × model) is decomposed for its empir-
ical orthogonal functions (EOFs). The EOFs are plotted as
regressions against the normalized PC time series and there-
fore have the same units as the raw fields. Shown are the two
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Figure 2. Overall, realm, timescale, and variable scores (ordinate) for historical (20c3m) simulations submitted to the CMIP3 archives
(abscissa), sorted by overall score (top row) based on methods employed (see Methods). Simulations and variables are ordered in descending
score order from left to right using the overall score and from top to bottom using average variable score.

leading EOFs and corresponding PC values, sorted by their
values and averaged across terciles for each CMIP genera-
tion. Included in the PC analysis is an observational estimate
(i.e., zero bias) to provide context for model differences. The
leading EOFs are found to be both separable and explain sig-
nificant variance in the bias matrix.

3 Assessing CMIP scores

To illustrate the analysis approach and provide context for the
magnitude of biases relative to internal variability and obser-
vational uncertainty, Fig. 1 shows both observed and simu-
lated SWCF fields across the timescales considered (Fig. 1a,
annual, Fig. 1b, seasonal, and Fig. 1c, ENSO) in the CESM
Version 2 submission to CMIP6, CERES estimates (Fig. 1d–
f), and their differences (CESM2–CERES, Fig. 1g–i). Signif-
icant spatial structure characterizes all fields, with a strong
SWCF cooling influence in the mean across much of the
globe (Fig. 1a), seasonal contrasts (Fig. 1b) that vary between
land and ocean and latitudinal zone, and ENSO teleconnec-
tions (Fig. 1c) that extend from the tropical Pacific Ocean to

remote ocean basins and the extratropics. While (as will be
seen) CESM2 scores among the best available climate mod-
els, large model–observation differences nonetheless exist.
Regions where model–observation differences are larger than
twice the ensemble standard deviation in the CESM1-LE in
the annual and seasonal means (stippled) are widespread and
remain extensive where the uncertainty range is expanded
to incorporate estimated observational uncertainty (added in
quadrature, hatched) from Loeb et al. (2018). Of particular
note is the fact that it is the large-scale coherent patterns of
bias, where model–observational disagreement exceeds un-
certainty bounds, that are the primary drivers of pattern cor-
relations used in scoring, rather than synoptic-scale noise.

The color table summary of scores for CMIP3 (mean pat-
tern correlations scaled by 100, Fig. 2) provides a visual
summary of simulation performance across the models in
the archive (abscissa), including variable, realm, timescale,
and overall scores (i.e., aggregate scores, ordinate). Sim-
ulations are sorted by overall scores (top row, descending
scores toward the right). Realm and timescale scores (rows
2 through 7) also provide broad summaries of model perfor-
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Figure 3. As in Fig. 2 except for historical simulations submitted to the CMIP5 archive.

mance. Mean overall scores (69±7, 1σ ) are modest generally
in CMIP3 and generally uniform across realms. CMIP3 sim-
ulations score particularly poorly for ENSO, where scores
average to 47, are generally less than 60, and approach 0
in some coarse-grid models. Variable scores are highest for
PRW and OLR (which are strongly tied to surface temper-
ature) – and for SLP – and less for other variables, with
the lowest scores reported for RS and W500. Spread across
models for RS is particularly large relative to other variables.
Average variable scores are also poor for SWCF (68), LWCF
(71), and P (69), which are among the more important sim-
ulated fields according to expert consensus (Burrows et al.,
2018).

The color table summary of scores for CMIP5 (Fig. 3) re-
veals scores that are considerably higher than most CMIP3
simulations, with improvements in the average overall score
of (75± 5) and most notable improvements on the ENSO
timescale, with an average of 57, though with considerable
intermodel range (σ = 10). A broad increase in scores in
the highest-performing models is apparent with numerous
variable scores exceeding 85 (orange/red) and several over-
all scores of 80 or better. As for CMIP3 the highest-scoring
variables are PRW, SLP, and OLR, while RHS and W500 are

among the lowest-scoring variables. Mean variable scores re-
main relatively low for SWCF (71), LWCF (75), and P (73).

The color table summary of scores for CMIP6 (Fig. 4) il-
lustrates scores that are considerably higher than both CMIP3
and CMIP5 simulations, with improvements in the average
overall score of (79± 4) and most continued improvements
on the ENSO timescale, though again with considerable in-
termodel range. A continued increase in scores in the highest-
performing models is again apparent, with scores reaching
the mid to upper 70s and numerous variable scores exceeding
90 (red). The highest-scoring variables again include PRW,
SLP, and OLR, though scores are also high for RH500, one of
the more important simulated fields according to expert con-
sensus (Burrows et al., 2018). Scores also increase for SWCF
(78), LWCF (80), and P (77).

To highlight connections between variables and aid in
identifying the main variables driving variance in aggre-
gate scores across the CMIP archives, correlations amongst
scores across all CMIP models are shown in Fig. 5. For over-
all scores, these include strong connections to P , E−P ,
and OLR, fields strongly connected to atmospheric heating,
dynamics, and deep convection and therefore broadly rele-
vant to model performance. Strong connections also exist for
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Figure 4. As in Fig. 2 except for historical simulations submitted to the CMIP6 archive.

SWCF, LWCF, and RH500, consistent with the expert consen-
sus in highlighting these fields as being particularly impor-
tant (Burrows et al., 2018). An approximately equal corre-
lation exists across realms with the overall score, while for
timescales, ENSO exhibits the strongest overall correlation
as it contains the greatest intermodel variance and thus ex-
plains a greater portion of the overall score variance. Cor-
relations between timescales are weak generally, consistent
with the findings of Gleckler et al., (2008) where relation-
ships were also examined between the mean state and inter-
annual variability. Notable as well is that some variables for
which scores are high in the mean, such as SLP and PRW, ex-
hibit little correlation with the overall score as the uniformly
high scores across models impart relatively little variance to
the overall scores.

4 Derived bias patterns for selected variables

The observational estimate of SWCF from CERES is shown
in Fig. 6a along with mean bias patterns for CMIP3 (b)
and CMIP6 (c). A principal component (PC) analysis of the
bias across the broader CMIP archives is also conducted
(see Methods) with the leading principal components and

their tercile mean values within each CMIP version be-
ing shown (d) along with the two leading patterns of bias
(Fig. 6e and f). The mean observational field (Fig. 6a) is
characterized by negative values in nearly all locations (ex-
cept over ice) and the strongest cooling influence in the
deep tropics, subtropical stratocumulus regions, and mid-
latitude oceans. Mean bias patterns demonstrate consider-
able improvement across the CMIP generations, with major
reductions in negative biases in the subtropical and tropi-
cal oceans. Variance across models is characterized by the
degree of tropical–extratropical contrasts in SWCF (EOF1),
which explains 24 % of the intermodel variance, and land–
ocean contrasts (EOF2), which explain 16 % of the variance.
The expression of both patterns of biases is demonstrated to
diminish across CMIP generations and terciles in their PC
weights (Fig. 6d), ordered sequentially (1–3) with CMIP6
values (dark blue) lying generally closer to observations than
CMIP3/5. Improvements are not however necessarily mono-
tonic across the CMIP generations, with improvements and
degradations notable in some aspects of the PC1/2 transition
from CMIP3 to CMIP5 (i.e., instances in which tercile mean
PC values are closer to CERES for CMIP3 than CMIP5).
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Figure 5. Cross correlations between variable and aggregate scores computed for the all CMIP archives sorted in order of decreasing
correlations from left to right and top to bottom.

The observational estimate for LWCF from CERES is
shown in Fig. 7a along with mean bias patterns for
CMIP3 (b) and CMIP6 (c). A PC analysis of the bias across
the CMIP archives is also shown with the leading PC weights
and their tercile mean values within each CMIP version be-
ing shown (d) along with the two leading patterns of bias
(Fig. 7e, f). Observational fields are characterized by a strong
heating influence in regions of deep tropical convection and
in the extratropical ocean regions in which SWCF is also
strong (Fig. 6a), while weak heating is evident in the sub-
tropics and polar regions. Significant changes characterize
mean bias patterns between CMIP3 and CMIP6, with posi-
tive biases across most ocean regions in CMIP3 and negative
biases in many of the same regions in CMIP6. On average
however, the magnitudes of biases are reduced across CMIP
generations. This is evident for example in the PC analysis
of bias (Fig. 7d), where CMIP6 values lie closer generally
to CERES than for CMIP3 or CMIP5. The leading mode
(EOF1, Fig. 7e) exhibits strong weightings over the warm
pool, is negatively correlated with both the mean pattern and
bias, and explains 36 % of the intermodel variance. In con-
trast, EOF2 exhibits a strong tropical–extratropical contrast,
has little correlation to the mean pattern or bias, and explains

only 13 % of the variance. The PC1/2 tercile weights for
these modes show a considerable reduction in EOF1 spread,
smaller mean tercile biases generally, and improved agree-
ment across model terciles from CMIP3 to CMIP6, though
as with SWCF, the improvement is not monotonic nor uni-
form across all terciles and PCs.

The observational estimate for precipitation from GPCP is
shown in Fig. 8a along with mean bias patterns for CMIP3
(Fig. 8b) and CMIP6 (Fig. 8c). The PC analysis of the bias
across the CMIP archives is also shown with the leading
PC tercile mean values for each CMIP version being shown
(Fig. 8d) along with the two leading patterns of bias (Fig. 8e,
f). The annual mean pattern resolves key climate system
features, including strong precipitation in the Inter-Tropical
Convergence Zone (ITCZ) and arid conditions in the subtrop-
ics and at high latitudes. Biases are large in both CMIP3 and
CMIP6 on average and are characterized generally by exces-
sive subtropical precipitation and deficient precipitation in
the Pacific Ocean ITCZ, in South America, and at high lat-
itudes. Earlier work has generally characterized model bias
in terms of its double-ITCZ structure (Oueslati and Bellon,
2015), though systematic bias is also apparent beyond the
tropical Pacific Ocean. In addition, the PC decomposition of
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Figure 6. Analysis of the annual mean SWCF bias in the combined historical CMIP3/5/6 archive including the following: (a) the observed
estimate from CERES EBAFv4.1; the mean biases in (b) CMIP3 and (c) CMIP6; and (d) the first two PCs of biases and their tercile averages
across the CMIP archives and the associated (e) first and (f) second EOFs of biases. All units are watts per square meter (Wm−2), except for
the PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black).

CMIP precipitation biases (Fig. 8d–f) suggests that the bias
is comprised to two orthogonal leading patterns that together
explain 15 % and 11 % of the variance across models, respec-
tively. A separable unique leading pattern is therefore not ev-
ident. Rather, the leading pattern (Fig. 8e) is characterized by
weakness in precipitation across the equatorial oceans, with
elevated rates in the Maritime continent and in the Pacific
Ocean near 15◦ N and 15◦ S. The second pattern (Fig. 8f)
is characterized by loadings over Africa and South Amer-
ica and on the southern fringe of the observed climatological
Pacific ITCZ (Fig. 8a), with negative loadings in the subtrop-
ical ocean basins. Based on mean PC tercile values, slight
improvement across CMIP generations is evident, as tercile
values lie closer to observations for all terciles of PC1/2 in
CMIP6 versus CMIP3, with the exception of the first tercile
of PC1, where CMIP3 lies close to GPCP.

The observational estimate for RH500 from ERA5 is
shown in Fig. 9a along with mean bias patterns for
CMIP3 (b) and CMIP6 (c). A principal component analysis
of the bias across the CMIP archives is also shown with the
leading principal components and their tercile mean values
within each CMIP version being shown (Fig. 9d) along with
the two leading patterns of bias (Fig. 9e and f). The observed
RH500 field is characterized by positive humidity biases in re-
gions of frequent deep convection (i.e., Maritime continent,
Amazon) and at high latitudes and very dry conditions in the
subtropics, with values generally below 30 % across the sub-
tropics, features that were poorly resolved in CMIP3 (e.g.,
Fasullo and Trenberth 2012). The CMIP3 mean bias field is
negatively correlated with the mean state, with patterns that
lack sufficient spatial contrast, are too moist in the subtropics,
and are too dry in Africa, the Maritime continent, the Ama-
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Figure 7. Analysis of the annual mean LWCF bias in the combined historical CMIP3/5/6 archive including the following: (a) the observed
estimate from CERES EBAFv4.1; the mean biases in (b) CMIP3 and (c) CMIP6; and (d) the first two PCs of biases and their tercile averages
across the CMIP archives and the associated (e) first and (f) second EOFs of biases. All units are watts per square meter (Wm−2), except for
the PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black).

zon, and at high latitudes. The magnitude of mean RH500 bi-
ases in CMIP6 are substantially smaller (roughly 50 %) than
CMIP3, though they share a similar overall pattern reflecting
weakness in spatial contrasts. The PC analysis of bias reveals
a leading pattern that explains 50 % of the intermodal vari-
ance and is negatively correlated with observations (−0.44).
The second leading pattern (Fig. 9f) explains considerably
less variance (15 %) and exhibits a zonally uniform structure
characterized by tropical–extratropical contrast. The weights
for PC1/2 reveal systematic bias in PC1 across models (all lie
to the right of ERA5) and considerable improvement across
CMIP generations as CMIP6 weights lie significantly closer
to ERA5 than CMIP3 weights for all terciles (1–3). Small
improvements are also evident in terciles 1 and 2 of PC2,
though this comprises a small fraction of variance in overall
CMIP bias.

In the effort to summarize the evolution of the full distribu-
tions of scores across the CMIP archives, whisker plots en-
compassing the median, interquartile, and 10–90 percentile
ranges are shown for various aggregate metrics and key
fields in Fig. 10. Also shown are the equivalent ranges for
scores computed from the CESM1-LE to provide an esti-
mate of the influence of internal variability for each distri-
bution. A steady improvement in the overall scores is ev-
ident across CMIP versions, a progression that is also ev-
ident across realm scores and particularly for the poorest
scoring models in the dynamics realm. Scores for annual
and seasonal timescales are generally high across archives,
though internal variability is also small and is substantially
less than the median improvements across the archives. The
range of scores for ENSO is significantly greater than other
timescales, as is the range of internal variability, and substan-
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Figure 8. Analysis of the annual mean precipitation bias in the combined historical CMIP3/5/6 archive including the following: (a) the
observed estimate from GPCP CDR; the mean biases in (b) CMIP3 and (c) CMIP6; and (d) the first two PCs of biases and their tercile
averages across the CMIP archives and the associated (e) first and (f) second EOFs of biases. All units are millimeters per day (mmd−1),
except for the PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black).

tial improvements have been realized for the lowest-scoring
models across successive CMIP generations. Noteworthy are
the substantial improvements in SWCF, LWCF, and P , with
the best CMIP3 simulations scoring near the median value
for CMIP6 and improvements in median values from CMIP3
to CMIP6 exceeding uncertainty arising from internal vari-
ability. Scores for RH500 have also improved, although the
spread within the CMIP3 archives is substantial, and uncer-
tainty arising from internal variability is somewhat greater
than for other variables. RH500 scores in CMIP6 are gener-
ally higher than for cloud forcing and P . For SLP, median
scores are uniformly high across the CMIP generations, with
small but steady improvement in median and interquartile
scores, with the main exception of high scores being the low-
scoring 0 %–25 % range of CMIP3 simulations.

5 Discussion

An objective model evaluation approach has been developed
that uses feedback-relevant fields and takes advantage of re-
cent expert elicitations of the climate modeling community
and advances in satellite and reanalysis datasets. In its appli-
cation to the CMIP archives, the analysis is shown to provide
an objective means for computing model scores across vari-
ables, realms, and timescales. Visual summaries of model
performance across the CMIP archives are also generated,
which readily allow for the survey of a broad suite of climate
performance scores. As there is unlikely to be a single model
best suited to all applications (Gleckler et al., 2008; Knutti
et al., 2010, 2017), in providing online access to model scores
and the fields used to compute them, the results herein are
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Figure 9. Analysis of the annual mean RH500 bias in the combined historical CMIP3/5/6 archive including the following: (a) the observed
estimate from ERA5; the mean bias in (b) CMIP3 and (c) CMIP6; and (d) the first two PCs of biases and their tercile averages across the
CMIP archives and the associated (e) first and (f) second EOFs of biases. All units are percent (%), except for the PCs, which are unitless.
Zonal means (right panels) include land (red), ocean (blue), and global (black).

intended to aid the community in informing model ensemble
optimization for targeted applications.

Based on the pattern correlation approach adopted, a num-
ber of statements can be made regarding the overall perfor-
mance of climate models across CMIP generations. Note-
worthy is that, as informed by analysis of the CESM1-LE and
consistent with the design of the approach used, these state-
ments are robust to the obscuring influence of internal cli-
mate variability. In general, computed scores have increased
steadily across CMIP generations, with improvements ex-
ceeding the range of internal variability. Associated with
these improvements, the leading patterns of bias across mod-
els are shown to have been reduced. Improvements are large
and particularly noteworthy for ENSO teleconnection pat-
terns, as the poorest scoring models in each CMIP genera-
tion have improved substantially. In part this may be due to
the elimination of very low resolution models in CMIP5/6,

though improvements in model physics is also likely to play
a role. The overall range of model performance within CMIP
versions has also decreased in conjunction with increases in
median scores, as improvement in the worst models has gen-
erally outpaced that of the median. Reductions in systematic
patterns of bias (e.g., Figs. 6–9) across the CMIP archives
have been pronounced for fields deemed in expert solicita-
tions to have particular importance, including SWCF, LWCF,
and RH500.

Also relevant for climate feedbacks, variable scores for
SWCF, LWCF, RH500, and precipitation have increased
steadily across the CMIP generations (e.g., Fig. 10), with
magnitudes exceeding the uncertainty associated with inter-
nal variability. Scores are particularly high for CMIP6 mod-
els for which high climate sensitivities have been reported,
including CESM2, SAM0-UNICON, GFDL-CM4, CNRM-
CM6-1, E3SM, and EC-Earth3-Veg (though exceptions also
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Figure 10. Evolution of the distribution of aggregate and selected
variable scores across the CMIP archives and the CESM1-LE.

exist such as in the case of MIRCO6). These findings there-
fore echo the concerns voiced in Gettelman et al. (2019):
“What scares us is not that the CESM2 ECS is wrong (all
models are wrong; Box, 1976) but that it might be right.”.
The fields provided by the Climate Model Assessment Tool
(CMAT) allow for an expedited analysis of the sources of
these improvements, such as for example the simulation of
supercooled liquid clouds (e.g., Kay et al., 2016). Further
work examining the ties between metrics of performance in
simulating the present-day climate, such as those provided
here, and longer-term climate model behavior is warranted
to bolster confidence in model projections of climate change.
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