Articles | Volume 13, issue 1
https://doi.org/10.5194/gmd-13-335-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-335-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0)
ETH Zurich, Future Cities Laboratory, Singapore-ETH Centre, Singapore
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Gabriele Manoli
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
Paolo Burlando
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Elie Bou-Zeid
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Winston T. L. Chow
School of Social Sciences, Singapore Management University, Singapore
Andrew M. Coutts
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Cooperative Research Centre for Water Sensitive Cities, Melbourne, Australia
Edoardo Daly
Department of Civil Engineering, Monash University, Clayton, Australia
Kerry A. Nice
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Cooperative Research Centre for Water Sensitive Cities, Melbourne, Australia
Transport, Health, and Urban Design Hub, Faculty of Architecture, Building, and Planning, University of Melbourne, Victoria, Melbourne, Australia
Matthias Roth
Department of Geography, National University of Singapore, Singapore
Nigel J. Tapper
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Cooperative Research Centre for Water Sensitive Cities, Melbourne, Australia
Erik Velasco
Centre for Urban Greenery and Ecology, National Parks Board, Singapore
Enrique R. Vivoni
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Simone Fatichi
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen, and Michael Rezny
Geosci. Model Dev., 12, 2155–2179, https://doi.org/10.5194/gmd-12-2155-2019, https://doi.org/10.5194/gmd-12-2155-2019, 2019
Short summary
Short summary
This study describes the scientific basis for a public web page that gives access to a large set of climate model simulations. This web page is called the Monash Simple Climate Model. It provides access to more than 1300 experiments and has an interactive interface for fast analysis of the experiments and open access to the data. The study gives a short overview of the simulation experiments and discusses some of the results.
Martina Botter, Paolo Burlando, and Simone Fatichi
Hydrol. Earth Syst. Sci., 23, 1885–1904, https://doi.org/10.5194/hess-23-1885-2019, https://doi.org/10.5194/hess-23-1885-2019, 2019
Short summary
Short summary
The study focuses on the solute export from rivers with the purpose of discerning the impacts of anthropic activities and catchment characteristics on water quality. The results revealed a more detectable impact of the anthropic activities than of the catchment characteristics. The solute export follows different dynamics depending on catchment characteristics and mainly on solute-specific properties. The export modality is consistent across different catchments only for a minority of solutes.
Ashley M. Broadbent, Andrew M. Coutts, Kerry A. Nice, Matthias Demuzere, E. Scott Krayenhoff, Nigel J. Tapper, and Hendrik Wouters
Geosci. Model Dev., 12, 785–803, https://doi.org/10.5194/gmd-12-785-2019, https://doi.org/10.5194/gmd-12-785-2019, 2019
Short summary
Short summary
We present a simple model for assessing the cooling impacts of vegetation and water features (green and blue infrastructure) in urban environments. This model is designed to be computationally efficient so that those without technical knowledge or access to high-performance computers can use it. TARGET can be used to model average street-level air temperature at canyon to block scales (e.g. 100 m resolution). The model is carefully designed to provide reliable and accurate cooling estimates.
Dana R. Caulton, Qi Li, Elie Bou-Zeid, Jeffrey P. Fitts, Levi M. Golston, Da Pan, Jessica Lu, Haley M. Lane, Bernhard Buchholz, Xuehui Guo, James McSpiritt, Lars Wendt, and Mark A. Zondlo
Atmos. Chem. Phys., 18, 15145–15168, https://doi.org/10.5194/acp-18-15145-2018, https://doi.org/10.5194/acp-18-15145-2018, 2018
Short summary
Short summary
Mobile laboratory measurements have been widely used to quantify methane emissions from point sources such as oil and gas wells, but the emission uncertainties are poorly constrained. We designed a hierarchical measurement strategy to sample natural gas emissions in the Marcellus Shale play based upon high-resolution modeling of select sites. Our study quantifies the largest sources of error with this approach and provides guidance on how to best implement mobile laboratory sampling protocols.
Enrica Perra, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer
Hydrol. Earth Syst. Sci., 22, 4125–4143, https://doi.org/10.5194/hess-22-4125-2018, https://doi.org/10.5194/hess-22-4125-2018, 2018
Dusan Jovanovic, Tijana Jovanovic, Alfonso Mejía, Jon Hathaway, and Edoardo Daly
Hydrol. Earth Syst. Sci., 22, 3551–3559, https://doi.org/10.5194/hess-22-3551-2018, https://doi.org/10.5194/hess-22-3551-2018, 2018
Short summary
Short summary
A relationship between the Hurst (H) exponent (a long-term correlation coefficient) within a flow time series and various catchment characteristics for a number of catchments in the USA and Australia was investigated. A negative relationship with imperviousness was identified, which allowed for an efficient catchment classification, thus making the H exponent a useful metric to quantitatively assess the impact of catchment imperviousness on streamflow regime.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 22, 2903–2919, https://doi.org/10.5194/hess-22-2903-2018, https://doi.org/10.5194/hess-22-2903-2018, 2018
Short summary
Short summary
Hydrologic modeling methodologies must be developed that are capable of predicting runoff in catchments with changing land cover conditions. This article investigates the efficacy of a recently developed approach that allows for runoff prediction in catchments with unknown land cover changes, through experimentation in a deforested catchment in Vietnam. The importance of key elements of the method in ensuring its success, such as the chosen hydrologic model, is investigated.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, and Nigel J. Tapper
Biogeosciences, 14, 111–129, https://doi.org/10.5194/bg-14-111-2017, https://doi.org/10.5194/bg-14-111-2017, 2017
Short summary
Short summary
Separating tree and grass productivity dynamics in savanna ecosystems is vital for understanding how they function over time. We showed how tree-grass phenology information can improve model estimates of gross primary productivity in an Australian tropical savanna. Our findings will contribute towards improved modelling of productivity in savannas, which will assist with their management into the future.
Valentijn R. N. Pauwels and Edoardo Daly
Hydrol. Earth Syst. Sci., 20, 4689–4706, https://doi.org/10.5194/hess-20-4689-2016, https://doi.org/10.5194/hess-20-4689-2016, 2016
Short summary
Short summary
We demonstrate that the classical approach to solve the surface energy balance equation in land surface models has its issues, and we propose an improved method.
Jason Beringer, Lindsay B. Hutley, Ian McHugh, Stefan K. Arndt, David Campbell, Helen A. Cleugh, James Cleverly, Víctor Resco de Dios, Derek Eamus, Bradley Evans, Cacilia Ewenz, Peter Grace, Anne Griebel, Vanessa Haverd, Nina Hinko-Najera, Alfredo Huete, Peter Isaac, Kasturi Kanniah, Ray Leuning, Michael J. Liddell, Craig Macfarlane, Wayne Meyer, Caitlin Moore, Elise Pendall, Alison Phillips, Rebecca L. Phillips, Suzanne M. Prober, Natalia Restrepo-Coupe, Susanna Rutledge, Ivan Schroder, Richard Silberstein, Patricia Southall, Mei Sun Yee, Nigel J. Tapper, Eva van Gorsel, Camilla Vote, Jeff Walker, and Tim Wardlaw
Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, https://doi.org/10.5194/bg-13-5895-2016, 2016
Short summary
Short summary
OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national facility to monitor and assess trends, and improve predictions, of Australia’s terrestrial biosphere and climate. We describe the evolution, design, and status as well as an overview of data processing. We suggest that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing Australian ecosystems.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, Ian McHugh, and Nigel J. Tapper
Biogeosciences, 13, 2387–2403, https://doi.org/10.5194/bg-13-2387-2016, https://doi.org/10.5194/bg-13-2387-2016, 2016
Short summary
Short summary
Savannas cover 20 % of the global land surface and account for 25 % of global terrestrial carbon uptake. They support 20 % of the world’s human population and are one of the most important ecosystems on our planet. We evaluated the temporal partitioning of carbon between overstory and understory in Australian tropical savanna using eddy covariance. We found the understory contributed ~ 32 % to annual productivity, increasing to 40 % in the wet season, thus driving seasonality in carbon uptake.
A. P. Schreiner-McGraw, E. R. Vivoni, G. Mascaro, and T. E. Franz
Hydrol. Earth Syst. Sci., 20, 329–345, https://doi.org/10.5194/hess-20-329-2016, https://doi.org/10.5194/hess-20-329-2016, 2016
Short summary
Short summary
Soil moisture estimates from a novel method were evaluated in two semiarid watersheds. We found good agreements between the technique and estimates derived from watershed instruments designed to close the water balance. We then investigated local hydrologic processes and link between evapotranspiration and soil moisture obtained from the novel measurements.
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
M. Piras, G. Mascaro, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 18, 5201–5217, https://doi.org/10.5194/hess-18-5201-2014, https://doi.org/10.5194/hess-18-5201-2014, 2014
Short summary
Short summary
We quantified the hydrologic impacts of climate change in the Rio Mannu basin (472.5 km2), Sardinia, Italy.
We created high-resolution climate forcings for a physically based distributed hydrologic model by combining four climate models with two statistical downscaling tools of precipitation and potential evapotranspiration. A significant diminution of mean annual runoff at the basin outlet (mean of -32%), and a reduction of soil water content and actual evapotranspiration are expected.
G. Mascaro, M. Piras, R. Deidda, and E. R. Vivoni
Hydrol. Earth Syst. Sci., 17, 4143–4158, https://doi.org/10.5194/hess-17-4143-2013, https://doi.org/10.5194/hess-17-4143-2013, 2013
E. Velasco, M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford
Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013, https://doi.org/10.5194/acp-13-10185-2013, 2013
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
S. Fatichi, S. Rimkus, P. Burlando, R. Bordoy, and P. Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3743-2013, https://doi.org/10.5194/hessd-10-3743-2013, 2013
Revised manuscript not accepted
Related subject area
Climate and Earth system modeling
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Climate change projections of wet and dry extreme events in the Upper Jhelum Basin using a multivariate drought index: Evaluation of bias correction
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Importance of Ice Nucleation and Precipitation on Climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States
SURFER v2.0: a flexible and simple model linking anthropogenic CO2 emissions and solar radiation modification to ocean acidification and sea level rise
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Modeling the topographic influence on aboveground biomass using a coupled model of hillslope hydrology and ecosystem dynamics
Impacts of the ice-particle size distribution shape parameter on climate simulations with the Community Atmosphere Model Version 6 (CAM6)
A modeling framework to understand historical and projected ocean climate change in large coupled ensembles
TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
The Moist Quasi-Geostrophic Coupled Model: MQ-GCM 2.0
Pace v0.1: A Python-based Performance-Portable Implementation of the FV3 Dynamical Core
Transport parameterization of the Polar SWIFT model (version 2)
Effects of complex terrain on the shortwave radiative balance: A sub–grid scale parameterization for the GFDL Land Model version 4.2
Analog data assimilation for the selection of suitable general circulation models
Uncertainty and sensitivity analysis for probabilistic weather and climate-risk modelling: an implementation in CLIMADA v.3.1.0
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-237, https://doi.org/10.5194/gmd-2022-237, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Bias correction has become indispensable to climate model output as a post-processing step to render climate model output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX and CORDEX-CORE) for a multivariate drought index (i.e., Standardized Precipitation Evapotranspiration Index).
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Laura Claire Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-277, https://doi.org/10.5194/gmd-2022-277, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult, however it is unclear whether TP exist in global climate models. Here we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic hosing model intercomparison project (NAHosMIP).
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
EGUsphere, https://doi.org/10.5194/egusphere-2022-980, https://doi.org/10.5194/egusphere-2022-980, 2022
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth System Models. These updates include the ability to run the scheme on Graphics Processing Units (GPUs) and changes to the numerical description of precipitation, as well as a correction to ice number. There are big improvements in computational performance that can be achieved with GPU acceleration.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
Xingying Huang, Andrew Gettelman, William C. Skamarock, Peter Hjort Lauritzen, Miles Curry, Adam Herrington, John T. Truesdale, and Michael Duda
Geosci. Model Dev., 15, 8135–8151, https://doi.org/10.5194/gmd-15-8135-2022, https://doi.org/10.5194/gmd-15-8135-2022, 2022
Short summary
Short summary
We focus on the recent development of a state-of-the-art storm-resolving global climate model and investigate how this next-generation model performs for precipitation prediction over the western USA. Results show realistic representations of precipitation with significantly enhanced snowpack over complex terrains. The model evaluation advances the unified modeling of large-scale forcing constraints and realistic fine-scale features to advance multi-scale climate predictions and changes.
Marina Martínez Montero, Michel Crucifix, Victor Couplet, Nuria Brede, and Nicola Botta
Geosci. Model Dev., 15, 8059–8084, https://doi.org/10.5194/gmd-15-8059-2022, https://doi.org/10.5194/gmd-15-8059-2022, 2022
Short summary
Short summary
We present SURFER, a lightweight model that links CO2 emissions and geoengineering to ocean acidification and sea level rise from glaciers, ocean thermal expansion and Greenland and Antarctic ice sheets. The ice sheet module adequately describes the tipping points of both Greenland and Antarctica. SURFER is understandable, fast, accurate up to several thousands of years, capable of emulating results obtained by state of the art models and well suited for policy analyses.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Wentao Zhang, Xiangjun Shi, and Chunsong Lu
Geosci. Model Dev., 15, 7751–7766, https://doi.org/10.5194/gmd-15-7751-2022, https://doi.org/10.5194/gmd-15-7751-2022, 2022
Short summary
Short summary
The two-moment bulk cloud microphysics scheme used in CAM6 was modified to consider the impacts of the ice-crystal size distribution shape parameter (μi). After that, how the μi impacts cloud microphysical processes and then climate simulations is clearly illustrated by offline tests and CAM6 model experiments. Our results and findings are useful for the further development of μi-related parameterizations.
Yona Silvy, Clément Rousset, Eric Guilyardi, Jean-Baptiste Sallée, Juliette Mignot, Christian Ethé, and Gurvan Madec
Geosci. Model Dev., 15, 7683–7713, https://doi.org/10.5194/gmd-15-7683-2022, https://doi.org/10.5194/gmd-15-7683-2022, 2022
Short summary
Short summary
A modeling framework is introduced to understand and decompose the mechanisms causing the ocean temperature, salinity and circulation to change since the pre-industrial period and into 21st century scenarios of global warming. This framework aims to look at the response to changes in the winds and in heat and freshwater exchanges at the ocean interface in global climate models, throughout the 1850–2100 period, to unravel their individual effects on the changing physical structure of the ocean.
Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf
Geosci. Model Dev., 15, 7489–7504, https://doi.org/10.5194/gmd-15-7489-2022, https://doi.org/10.5194/gmd-15-7489-2022, 2022
Short summary
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Sergey Kravtsov, Ilijana Mastilovic, Andrew McC. Hogg, William K. Dewar, and Jeffrey R. Blundell
Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022, https://doi.org/10.5194/gmd-15-7449-2022, 2022
Short summary
Short summary
Climate is a complex system whose behavior is shaped by multitudes of processes operating on widely different spatial scales and timescales. In hierarchical modeling, one goes back and forth between highly idealized process models and state-of-the-art models coupling the entire range of climate subsystems to identify specific phenomena and understand their dynamics. The present contribution highlights an intermediate climate model focussing on midlatitude ocean–atmosphere interactions.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
EGUsphere, https://doi.org/10.5194/egusphere-2022-943, https://doi.org/10.5194/egusphere-2022-943, 2022
Short summary
Short summary
It is hard for scientists to write efficient code which runs fast on all kinds of supercomputers. They like writing Python because it is easier to read and use. We re-wrote a Fortran code that simulates weather and climate into Python. The Python code re-writes itself to a much faster language to run on either normal processors or graphics cards. On one big computer system, our code is 3.5–4x faster on its graphics cards than the original code is on its processors.
Ingo Wohltmann, Daniel Kreyling, and Ralph Lehmann
Geosci. Model Dev., 15, 7243–7255, https://doi.org/10.5194/gmd-15-7243-2022, https://doi.org/10.5194/gmd-15-7243-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2022-770, https://doi.org/10.5194/egusphere-2022-770, 2022
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth System Models, where coarse grid cells hinder the description of fine scale land-atmosphere interactions. We adopt a clustering algorithm to partiton land domain in a set of homogeneous sub-grid “tiles”, and for each evaluate solar radiation receive by land based on terrain properties.
Juan Ruiz, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec, and Pierre Tandeo
Geosci. Model Dev., 15, 7203–7220, https://doi.org/10.5194/gmd-15-7203-2022, https://doi.org/10.5194/gmd-15-7203-2022, 2022
Short summary
Short summary
We present a new approach to validate numerical simulations of the current climate. The method can take advantage of existing climate simulations produced by different centers combining an analog forecasting approach with data assimilation to quantify how well a particular model reproduces a sequence of observed values. The method can be applied with different observations types and is implemented locally in space and time significantly reducing the associated computational cost.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Cited articles
Allegrini, J. and Carmeliet, J.: Coupled CFD and building energy simulations
for studying the impacts of building height topology and buoyancy on local
urban microclimates, Urban Climate, 21, 278–305,
https://doi.org/10.1016/j.uclim.2017.07.005, 2017. a, b
Arora, V. K. and Boer, G. J.: A parameterization of leaf phenology for the
terrestrial ecosystem component of climate models, Glob. Change Biol., 11,
39–59, 2005. a
Bastin, J.-F., Clark, E., Elliott, T., Hart, S., van den Hoogen, J., Hordijk,
I., Ma, H., Majumder, S., Manoli, G., Maschler, J., Mo, L., Routh, D., Yu,
K., Zohner, C., and Crowther, T. W.: Understanding climate change from a global analysis of city analogues, PLoS ONE, 14, e0217592, https://doi.org/10.1371/journal.pone.0217592, 2019. a
Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard,
H. C., Herrmann, D. L., and Hopton, M. E.: The role of trees in urban
stormwater management, Landscape Urban Plan., 162, 167–177,
https://doi.org/10.1016/j.landurbplan.2017.02.017, 2017. a
Best, M. J. and Grimmond, C. S. B.: Key conclusions of the first international
urban land surface model comparison project, B. Am. Meteorol.
Soc., 96, 805–819, https://doi.org/10.1175/BAMS-D-14-00122.1, 2015. a, b
Bonan, G. B., Lawrence, D. M., Swenson, S. C., Oleson, K. W., Jung, M.,
Lawrence, P. J., Levis, S., and Reichstein, M.: Improving canopy processes
in the Community Land Model version 4 (CLM4) using global flux fields
empirically inferred from FLUXNET data, J. Geophys. Res.,
116, 1–22, https://doi.org/10.1029/2010jg001593, 2011. a
Bowler, D. E., Buyung-Ali, L., Knight, T. M., and Pullin, A. S.: Urban
greening to cool towns and cities : A systematic review of the empirical
evidence, Landscape Urban Plan., 97, 147–155,
https://doi.org/10.1016/j.landurbplan.2010.05.006, 2010. a, b
Broadbent, A. M., Coutts, A. M., Nice, K. A., Demuzere, M., Krayenhoff, E. S., Tapper, N. J., and Wouters, H.: The Air-temperature Response to Green/blue-infrastructure Evaluation Tool (TARGET v1.0): an efficient and user-friendly model of city cooling, Geosci. Model Dev., 12, 785–803, https://doi.org/10.5194/gmd-12-785-2019, 2019a. a, b, c
Broadbent, A. M., Coutts, A. M., Tapper, N. J., and Demuzere, M.: The cooling
effect of irrigation on urban microclimate during heatwave conditions, Urban
Climate, 23, 309–329, https://doi.org/10.1016/j.uclim.2017.05.002, 2018b. a
Bruse, M. and Fleer, H.: Simulating surface-plant-air interactions inside
urban environments with a three dimensional numerical model, Environ.
Model. Softw., 13, 373–384, https://doi.org/10.1016/S1364-8152(98)00042-5,
1998. a, b
Choudhury, B. J. and Monteith, J. L.: A four-layer model for the heat budget of homogeneous land surfaces, Q. J. Roy. Meteor.
Soc., 114, 378–398, 1988. a
Chow, W.: Eddy covariance data measured at the CAP LTER flux tower located in
the west Phoenix, AZ neighborhood of Maryvale from 2011-12-16 through
2012-12-31, Environmental Data Initiative,
https://doi.org/10.6073/pasta/fed17d67583eda16c439216ca40b0669, 2017. a
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration-A model that includes a laminar boundary-layer, Agr.
Forest Meteorol., 54, 107–136, 1991. a
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled
photosynthesis-stomatal conductance model for leaves of C4 plants,
Aust. J. Plant Physiol., 19, 519–538, 1992. a
Collins, D. B. G. and Bras, R. L.: Plant rooting strategies in water-limited
ecosystems, Water Resour. Res., 43, https://doi.org/10.1029/2006WR005541, 2007. a
Dai, Y., Dickinson, R. E., and Wang, Y.-P.: A two-big-leaf model for canopy
temperature, photosynthesis, and stomatal conductance, J. Climate,
17, 2281–2299, 2004. a
Deardorff, J. W.: Efficient prediction of ground surface temperature and
moisture with inclusion of a layer of vegetation, J. Geophys.
Res., 83, 1889–1903, 1978. a
de Munck, C., Lemonsu, A., Masson, V., Le Bras, J., and Bonhomme, M.:
Evaluating the impacts of greening scenarios on thermal comfort and energy
and water consumptions for adapting Paris city to climate change, Urban
Climate, 23, 260–286, https://doi.org/10.1016/j.uclim.2017.01.003, 2018. a
Demuzere, M., Harshan, S., Jaervi, L., Roth, M., Grimmond, C. S. B., Masson,
V., Oleson, K. W., Velasco, E., and Wouters, H.: Impact of urban canopy
models and external parameters on the modelled urban energy balance in a
tropical city, Q. J. Roy. Meteor. Soc., 143, 1581–1596, https://doi.org/10.1002/qj.3028, 2017. a, b, c, d, e, f, g, h, i, j, k
de Vries, D. A.: Thermal Properties of Soils, in: Physics of the Plant
Environment, edited by: van Wijk, W., North-Holland, Amsterdam, 1963. a
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.:
Biosphere-atmosphere transfer scheme (BATS) version 1E as coupled to the
NCAR Community Climate Model, Tech. Rep. NCAR/TN-387+STR, Natl. Cent.
for Atmos. Res., Boulder, Colorado, 1993. a
Farouki, O. T.: The thermal properties of soils in cold regions, Cold Reg.
Sci. Technol., 5, 67–75, 1981. a
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, 1980. a
Fatichi, S. and Pappas, C.: Constrained variability of modeled T:ET ratio
across biomes, Geophys. Res. Lett., 44, 6795–6803,
https://doi.org/10.1002/2017GL074041, 2017. a, b
Fatichi, S., Ivanov, V. Y., and Caporali, E.: Simulation of future climate
scenarios with a weather generator, Adv. Water Resour., 34,
448–467, https://doi.org/10.1016/j.advwatres.2010.12.013, 2011. a
Fatichi, S., Ivanov, V. Y., and Caporali, E.: A mechanistic ecohydrological
model to investigate complex interactions in cold and warm water-controlled
environments: 1. Theoretical framework and plot-scale analysis, J.
Adv. Model. Earth Syst., 4, M5002, https://doi.org/10.1029/2011MS000086,
2012a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Fatichi, S., Ivanov, V. Y., and Caporali, E.: A mechanistic ecohydrological
model to investigate complex interactions in cold and warm water-controlled
environments: 2. Spatiotemporal analyses, J.
Adv. Model. Earth Syst., 4, M5003, https://doi.org/10.1029/2011MS000087, 2012b. a, b, c, d, e, f, g, h, i, j, k, l, m
Frank, A., Heidemann, W., and Spindler, K.: Modeling of the surface-to-surface radiation exchange using a Monte Carlo method, in: J. Phys. Conf. Ser., 745, 032143, https://doi.org/10.1088/1742-6596/745/3/032143, 2016. a
Gillner, S., Vogt, J., Tharang, A., Dettmann, S., and Roloff, A.: Role of
street trees in mitigating effects of heat and drought at highly sealed urban
sites, Landscape Urban Plan., 143, 33–42,
https://doi.org/10.1016/j.landurbplan.2015.06.005, 2015. a
Golasi, I., Salata, F., de Lieto Vollaro, E., and Coppi, M.: Complying with the demand of standardization in outdoor thermal comfort: a first approach to the Global Outdoor Comfort Index (GOCI), Buil. Environ., 130, 104–119, https://doi.org/10.1016/j.buildenv.2017.12.021, 2018. a
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., and Briggs, J. M.: Global Change and the Ecology of Cities, Science, 39, 756–760, 2008. a
Grimmond, C. S. B., Blackett, M., Best, M. J., Baik, J., Belcher, S. E.,
Beringer, J., Bohnenstengel, S. I., Calmet, I., Chen, F., Coutts, A., Dandou,
A., Fortuniak, K., Gouvea, M. L., Hamdi, R., Hendry, M., Kanda, M., Kawai,
T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., Lee, S., Loridan, T.,
Martilli, A., Masson, V., Miao, S., Oleson, K., Ooka, R., Pigeon, G., Porson,
A., Ryu, Y., Salamanca, F., Steeneveld, G. J., and Tombrou, M.: Initial
results from Phase 2 of the international urban energy balance model
comparison, Int. J. Climatol., 272, 244–272,
https://doi.org/10.1002/joc.2227, 2011. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Hadley, S. W., Erickson III, D. J., Hernandez, J. L., Broniak, C. T., and
Blasing, T. J.: Responses of energy use to climate change: A climate
modeling study, Geophys. Res. Lett., 33, 2–5,
https://doi.org/10.1029/2006GL026652, 2006. a
Haghighi, E., Shahraeeni, E., Lehmann, P., and Or, D.: Evaporation rates across a convective air boundary layer are dominated by diffusion, Water Resour. Res., 49, 1602–1610, https://doi.org/10.1002/wrcr.20166, 2013. a, b
Hillel, D.: Environmental Soil Physics: Fundamentals, Applications, and
Environmental Considerations, Academic Press, London, UK, 1998. a
Holst, C. C., Tam, C.-Y., and Chan, J. C. L.: Sensitivity of urban rainfall to anthropogenic heat flux: A numerical experiment, Geophys. Res.
Lett., 43, 2240–2248, https://doi.org/10.1002/2015GL067628.Received, 2016. a
Höppe, P.: The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment,
Int. J. Biometeorol., 43, 71–75, https://doi.org/10.1007/s004840050118, 1999. a
Huang, C.-W., Domec, J.-C., Ward, E. J., Duman, T., Manoli, G., Parolari,
A. J., and Katul, G. G.: The effect of plant water storage on water fluxes
within the coupled soil-plant system, New Phytol., 213, 1093–1106,
https://doi.org/10.1111/nph.14273, 2017. a
Iio, A., Hikosaka, K., Anten, N. P., Nakagawa, Y., and Ito, A.: Global
dependence of field-observed leaf area index in woody species on climate: A
systematic review, Global Ecol. Biogeogr., 23, 274–285,
https://doi.org/10.1111/geb.12133, 2014. a
IPCC: Climate Change 2014, Synthesis Report, Summary for Policymakers, 2014. a
Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling
dynamic feedbacks, Water Resour. Res., 44, W03429, https://doi.org/10.1029/2006WR005588,
2008. a, b
Jochner, S., Alves-Eigenheer, M., Menzel, A., and Morellato, L. P. C.: Using
phenology to assess urban heat islands in tropical and temperate regions,
Int. J. Climatol., 33, 3141–3151, https://doi.org/10.1002/joc.3651,
2013. a
Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale
terrestrial biosphere models, Glob. Change Biol., 15, 976–991,
https://doi.org/10.1111/j.1365-2486.2008.01744.x, 2009. a
Kent, C. W., Grimmond, S., and Gatey, D.: Aerodynamic roughness parameters in
cities: Inclusion of vegetation, J. Wind Eng. Ind. Aerod., 169, 168–176, https://doi.org/10.1016/j.jweia.2017.07.016, 2017. a
Konarska, J., Holmer, B., Lindberg, F., and Thorsson, S.: Influence of vegetation and building geometry on the spatial variations of air temperature
and cooling rates in a high-latitude city, Int. J.
Climatol., 36, 2379–2395, https://doi.org/10.1002/joc.4502, 2016. a
Krayenhoff, E. S., Christen, A., Martilli, A., and Oke, T. R.: A Multi-layer
Radiation Model for Urban Neighbourhoods with Trees, Bound.-Lay.
Meteorol., 151, 139–178, https://doi.org/10.1007/s10546-013-9883-1, 2014. a, b
Krayenhoff, E. S., Santiago, J.-L., Martilli, A., Christen, A., and Oke, T.:
Parametrization of Drag and Turbulence for Urban Neighbourhoods with Trees,
Bound.-Lay. Meteorol., 156, 157–189, https://doi.org/10.1007/s10546-015-0028-6,
2015. a
Lawrence, D. M., Levis, S., Zeng, X., Flanner, M. G., Bonan, G. B., Oleson,
K. W., Swenson, S. C., Lawrence, D. M., Sakaguchi, K., Slater, A. G., Yang,
Z.-L., Lawrence, P. J., and Thornton, P. E.: Parameterization improvements
and functional and structural advances in Version 4 of the Community Land
Model, J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011. a
Lee, H. S., Matthews, C. J., Braddock, R. D., Sander, G. C., and Gandola, F.: A MATLAB method of lines template for transport equations, Environ.
Model. Softw., 19, 603–614, https://doi.org/10.1016/j.envsoft.2003.08.017, 2004. a
Lemonsu, A., Masson, V., Shashua-Bar, L., Erell, E., and Pearlmutter, D.: Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas, Geosci. Model Dev., 5, 1377–1393, https://doi.org/10.5194/gmd-5-1377-2012, 2012. a, b
Leuning, R.: A critical appraisal of a combined stomatal- photosynthesis model for C3 plants, Plant Cell Environ., 18, 357–364, 1995. a
Leuning, R., Kelliher, F. M., Pury, D. G. G., and Schulze, E.-D.: Leaf
nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves
to canopies, Plant, Cell Environ., 18, 1183–1200, 1995. a
Li, D. and Bou-Zeid, E.: Synergistic Interactions between Urban Heat Islands
and Heat Waves : The Impact in Cities Is Larger than the Sum of Its Parts,
J. Appl. Meteorol. Climatol., 52, 2051–2064,
https://doi.org/10.1175/JAMC-D-13-02.1, 2013. a
Li, D., Bou-Zeid, E., and Oppenheimer, M.: The effectiveness of cool and green roofs as urban heat island mitigation strategies, Environ. Res.
Lett., 9, 055002, https://doi.org/10.1088/1748-9326/9/5/055002, 2014. a
Lim, H. S. and Lu, X. X.: Sustainable urban stormwater management in the
tropics : An evaluation of Singapore's ABC Waters Program, J.
Hydrol., 538, 842–862, https://doi.org/10.1016/j.jhydrol.2016.04.063, 2016. a, b
Lindberg, F., Holmer, B., and Thorsson, S.: SOLWEIG 1.0 – Modelling spatial
variations of 3D radiant fluxes and mean radiant temperature in complex urban
settings, Int. J. Biometeorol., 52, 697–713,
https://doi.org/10.1007/s00484-008-0162-7, 2008. a, b
Liu, X., Li, X.-x., Harshan, S., Roth, M., and Velasco, E.: Evaluation of an
urban canopy model in a tropical city : the role of tree evapotranspiration, Environ. Res. Letters, 12, 094008, https://doi.org/10.1088/1748-9326/aa7ee7, 2017. a, b, c, d
Macdonald, R. W., Griffiths, R. F., and Hall, D. J.: An improved method for
the estimation of surface roughness of obstacle arrays, Atmos.
Environ., 32, 1857–1864, 1998. a
Mahat, V., Tarboton, D. G., and Molotch, N. P.: Testing above- and
below-canopy representations of turbulent fluxes in an energy balance
snowmelt model, Water Resour. Res., 49, 1107–1122,
https://doi.org/10.1002/wrcr.20073, 2013. a, b
Manickathan, L., Defraeye, T., Allegrini, J., Derome, D., and Carmeliet, J.:
Parametric study of the influence of environmental factors and tree
properties on the transpirative cooling effect of trees, Agr.
Forest Meteorol., 248, 259–274, https://doi.org/10.1016/j.agrformet.2017.10.014, 2018. a, b
Manoli, G., Ivanov, V. Y., and Fatichi, S.: Dry-Season Greening and Water
Stress in Amazonia: The Role of Modeling Leaf Phenology, J.
Geophys. Res.-Biogeo., 123, 1909–1926,
https://doi.org/10.1029/2017JG004282, 2018. a
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili,
N., Burlando, P., Katul, G. G., and Bou-Zeid, E.: Magnitude of urban heat
islands largely explained by climate and population, Nature, 573, 55–60,
https://doi.org/10.1038/s41586-019-1512-9, 2019. a
Mascart, P., Noilhan, J., and Giordani, H.: A Modified Parameterization of
Flux-Profile Relationships in the Surface Layer Using Different Roughness
Length Values for Heat and Momentum, Bound.-Lay. Meteorol., 72,
331–344, 1995. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Matzarakis, A., Rutz, F., and Mayer, H.: Modelling radiation fluxes in simple and complex environments – application of the RayMan model, Int. J. Biometeorol., 51, 323–334, https://doi.org/10.1007/s00484-009-0261-0, 2007. a, b
Matzarakis, A., Rutz, F., and Mayer, H.: Modelling radiation fluxes in simple and complex environments: basics of the RayMan model, Int. J. Biometeorol., 54, 131–139, https://doi.org/10.1007/s00484-009-0261-0, 2010. a
Meili, N. and Fatichi, S.: Urban Tethys-Chloris (UT&C v1.0) with the
possibility of sub-hourly time steps, Zenodo, https://doi.org/10.5281/zenodo.3548147, 2019. a
Middel, A., Chhetri, N., and Quay, R.: Urban forestry and cool roofs:
Assessment of heat mitigation strategies in Phoenix residential
neighborhoods, Urban For. Urban Gree., 14, 178–186,
https://doi.org/10.1016/j.ufug.2014.09.010, 2015. a
Mirfenderesgi, G., Bohrer, G., Matheny, A., Fatichi, S., Frasson, R. P. D. M., and Schafer, K. V. R.: Tree-level hydrodynamic approach for modeling
aboveground water storage and stomatal conductance illuminates the effects of
tree hydraulic strategy, J. Geophys. Res.-Biogeo., 121,
1792–1813, https://doi.org/10.1002/2016JG003467, 2016. a
Mitchell, D., Heaviside, C., Vardoulakis, S., Huntingford, C., Masato, G., P
Guillod, B., Frumhoff, P., Bowery, A., Wallom, D., and Allen, M.:
Attributing human mortality during extreme heat waves to anthropogenic
climate change, Environ. Res. Lett., 11, 074006,
https://doi.org/10.1088/1748-9326/11/7/074006, 2016. a
Monteith, J. L.: Principles of Environmental Physics, Edward Arnold, London,
1973. a
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C.,
Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis,
L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca,
T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.: Global risk of deadly
heat, Nat. Clim. Change, 7, 501–506, https://doi.org/10.1038/NCLIMATE3322, 2017. a
Ng, K. S. T., Sia, A., Ng, M. K., Tan, C. T., Chan, H. Y., Tan, C. H., Rawtaer, I., Feng, L., Mahendran, R., Larbi, A., Kua, E. H., and Ho, R. C.: Effects of horticultural therapy on asian older adults: A randomized controlled trial, Int. J. Environ. Res. Pub. He.,
15, 1–14, https://doi.org/10.3390/ijerph15081705, 2018. a
Nice, K. A., Coutts, A. M., and Tapper, N. J.: Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation
influences on human thermal comfort, Urban Climate, 24, 1052–1076,
https://doi.org/10.1016/j.uclim.2017.12.008, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Noilhan, J. and Planton, S.: A simple parameterization of land surface
processes for meteorological models, Mon. Weather Rev., 117, 536–549,
1989. a
Nowak, D. J. and Crane, D. E.: Carbon storage and sequestration by urban trees in the USA, Environ. Pollut., 116, 381–389, 2002. a
Núnez, C. M., Varas, E. A., and Meza, F. J.: Modelling soil heat flux,
Theor. Appl. Climatol., 100, 251–260,
https://doi.org/10.1007/s00704-009-0185-y, 2010. a
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Kowen, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., and Thornton, P. E.: Technical Description of version 4.5 of the Community Land
Model (CLM), Tech. Rep. NCAR/TN-503+STR, Natl. Cent. for Atmos. Res.,
Boulder, Colorado, 2013. a
Park, S.-U. and Lee, S.-H.: A Vegetated Urban Canopy Model for Meteorological and Environmental Modelling, Bound.-Lay. Meteorol., 126, 73–102, https://doi.org/10.1007/s10546-007-9221-6, 2008. a, b, c
Paschalis, A., Fatichi, S., Pappas, C., and Or, D.: Covariation of vegetation and climate constrains present and future T/ET variability, Environ. Res. Lett, 13, 104012, https://doi.org/10.1088/1748-9326/aae267, 2018. a
Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V.,
Pincetl, S., Pouyat, R. V., Whitlow, T. H., and Zipperer, W. C.: Coupling
biogeochemical cycles in urban environments: Ecosystem services, green
solutions, and misconceptions, Front. Ecol. Environ., 9,
27–36, https://doi.org/10.1890/090220, 2011. a
Ramamurthy, P. and Bou-Zeid, E.: Contribution of impervious surfaces to urban evaporation, Water Resour. Res., 50, 2889–2902,
https://doi.org/10.1111/j.1752-1688.1969.tb04897.x, 2014. a
Ramamurthy, P., Bou-Zeid, E., Smith, J. A., Wang, Z., Baeck, M. L., Saliendra, N. Z., Hom, J. L., and Welty, C.: Influence of subfacet heterogeneity and material properties on the urban surface energy budget, J. Appl. Meteorol. Clim., 53, 2114–2129, https://doi.org/10.1175/JAMC-D-13-0286.1,
2014. a
Redon, E. C., Lemonsu, A., Masson, V., Morille, B., and Musy, M.: Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0, Geosci. Model Dev., 10, 385–411, https://doi.org/10.5194/gmd-10-385-2017, 2017. a, b
Roth, M.: Review of urban climate research in (sub)tropical regions,
Int. J. Climate, 27, 1859–1873, https://doi.org/10.1002/joc, 2007. a
Rowley, F. B. and Eckley, W. A.: Surface coefficients as affected by wind
direction, ASHREA Trans., 39, 33–46, 1932. a
Rowley, F. B., Algren, A. B., and Blackshaw, J.: Surface conductance as
affected by air velocity, temperature and character of surface, ASHREA
Trans., 36, 429–446, 1930. a
Rutter, A. J., Morton, A. J., and Robins, P. C.: A predictive model of rainfall interception in forests. 2. Generalization of model and comparison with
observations in some coniferous and hardwood stands, J. Appl.
Ecol., 12, 367–380, 1975. a
Sailor, D. J. and Lu, L.: A top-down methodology for developing diurnal and
seasonal anthropogenic heating profiles for urban areas, Atmos.
Environ., 38, 2737–2748, https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004. a
Sailor, D. J., Georgescu, M., Milne, J. M., and Hart, M. A.: Development of a national anthropogenic heating database with an extrapolation for international cities, Atmos. Environ., 118, 7–18,
https://doi.org/10.1016/j.atmosenv.2015.07.016, 2015. a
Salmond, J. A., Tadaki, M., Vardoulakis, S., Arbuthnott, K., Coutts, A.,
Demuzere, M., Dirks, K. N., Heaviside, C., Lim, S., Macintyre, H., Mcinnes,
R. N., and Wheeler, B. W.: Health and climate related ecosystem services
provided by street trees in the urban environment, Environ. Health, 15, S36,
https://doi.org/10.1186/s12940-016-0103-6, 2016. a
Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions, Soil Sci. Soc. Am. J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006. a
Schenk, H. J. and Jackson, R. B.: The global biogeography of roots, Ecol.
Monogr., 72, 311–328, 2002. a
Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G.,
Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A.,
Sato, N., Field, C. B., and Henderson-Sellers, A.: Modeling the Exchanges of
Energy, Water and Carbon Between Continents and the Atmosphere, Science, 275,
502–509, 1997. a
Shuttleworth, W. J.: Terrestrial hydrometeorology, John Wiley & Sons, Ltd, 2012. a
Shuttleworth, W. J. and Gurney, R. J.: The theoretical relationship between
foliage temperature and canopy resistance in sparse crops, Q. J. Roy. Meteor. Soc., 116, 497–519, 1990. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, NCAR Tech Note, 488–494,
https://doi.org/10.5065/D6DZ069T, 2008. a
Stavropulos-Laffaille, X., Chancibault, K., Brun, J.-M., Lemonsu, A., Masson, V., Boone, A., and Andrieu, H.: Improvements to the hydrological processes of the Town Energy Balance model (TEB-Veg, SURFEX v7.3) for urban modelling and impact assessment, Geosci. Model Dev., 11, 4175–4194, https://doi.org/10.5194/gmd-11-4175-2018, 2018. a, b
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1,
2012. a, b, c
Templeton, N. P., Vivoni, E. R., Wang, Z. H., and Schreiner-McGraw, A. P.:
Quantifying Water and Energy Fluxes Over Different Urban Land Covers in
Phoenix, Arizona, J. Geophys. Res.-Atmos., 123,
2111–2128, https://doi.org/10.1002/2017JD027845, 2018. a
United Nations: World Urbanization Prospects, 2014. a
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,
44, 892–898, 1980. a
Volo, T. J., Vivoni, E. R., Martin, C. A., Earl, S., and Ruddell, B. L.:
Modelling soil moisture, water partitioning, and plant water stress under
irrigated conditions in desert Urban areas, Ecohydrology, 7, 1297–1313,
https://doi.org/10.1002/eco.1457, 2014. a
Wang, C., Wang, Z.-H., and Yang, J.: Cooling Effect of Urban Trees on the
Built Environment of Contiguous United States, Earth's Future,
1066–1081, https://doi.org/10.1029/2018EF000891, 2018. a
Wang, C., Wang, Z.-H., and Yang, J.: Urban water capacity: Irrigation for heat mitigation, Comput. Environ. Urban, 78, 101397,
https://doi.org/10.1016/j.compenvurbsys.2019.101397, 2019. a
Wang, Y.-P. and Leuning, R.: A two-leaf model for canopy conductance,
photosynthesis and portioning of available energy I: Model description
and comparison with a multi-layered model, Agr. Forest
Meteorol., 91, 89–111, 1998. a
Wang, Z.-H.: Geometric effect of radiative heat exchange in concave structure with application to heating of steel I-sections in fire, Int. J. Heat Mass. Tran., 53, 997–1003,
https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.013, 2010. a
Wang, Z.-F.: Monte Carlo simulations of radiative heat exchange in a street
canyon with trees, Solar Energy, 110, 704–713,
https://doi.org/10.1016/j.solener.2014.10.012, 2014. a, b, c
Wang, Z.-H., Bou-Zeid, E., and Smith, J. A.: A Spatially-Analytical Scheme for Surface Temperatures and Conductive Heat Fluxes in Urban Canopy Models,
Bound.-Lay. Meteorol., 138, 171–193, https://doi.org/10.1007/s10546-010-9552-6,
2011. a
Ward, H. C., Kotthaus, S., Järvi, L., and Grimmond, C. S.: Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites, Urban Climate, 18, 1–32, https://doi.org/10.1016/j.uclim.2016.05.001, 2016. a, b, c
Willmott, C. J.: Some Comments on the Evaluation of Model Performance,
B. Am. Meteorol. Soc., 63, 1309–1313, https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2, 1982. a
Wouters, H., Demuzere, M., Ridder, K. D., and Van Lipzig, N. P.: The impact of impervious water-storage parametrization on urban climate modelling, Urban Climate, 11, 24–50, https://doi.org/10.1016/j.uclim.2014.11.005, 2015. a, b, c
Wouters, H., Demuzere, M., Blahak, U., Fortuniak, K., Maiheu, B., Camps, J., Tielemans, D., and van Lipzig, N. P. M.: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer, Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, 2016. a
Wullschleger, S. D.: Biochemical Limitations to Carbon Assimilation in C3
Plants—A Retrospective Analysis of the A/C i Curves from 109 Species,
J. Exp. Bot., 44, 907–920, https://doi.org/10.1093/jxb/44.5.907,
1993. a
Yang, J. and Wang, Z. H.: Planning for a sustainable desert city: The
potential water buffering capacity of urban green infrastructure, Landscape Urban Plan., 167, 339–347, https://doi.org/10.1016/j.landurbplan.2017.07.014, 2017. a
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., and Schneider, A.:
The footprint of urban climates on vegetation phenology, Geophys.
Res. Lett., 31, 10–13, https://doi.org/10.1029/2004GL020137, 2004. a
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W., and Prentice, I. C.:
How should we model plant responses to drought? An analysis of stomatal and
non-stomatal responses to water stress, Agr. Forest Meteorol.,
182–183, 204–214, https://doi.org/10.1016/j.agrformet.2013.05.009, 2013. a
Ziegler, A. D., Terry, J. P., Oliver, G. J., Friess, D. A., Chuah, C. J., Chow, W. T., and Wasson, R. J.: Increasing Singapore's resilience to drought,
Hydrol. Proc., 28, 4543–4548, https://doi.org/10.1002/hyp.10212, 2014. a
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the...