Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2879-2020
https://doi.org/10.5194/gmd-13-2879-2020
Development and technical paper
 | 
30 Jun 2020
Development and technical paper |  | 30 Jun 2020

Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors

Gan Luo, Fangqun Yu, and Jonathan M. Moch

Related authors

Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023,https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023,https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023,https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022,https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Impacts of long-range-transported mineral dust on summertime convective cloud and precipitation: a case study over the Taiwan region
Yanda Zhang, Fangqun Yu, Gan Luo, Jiwen Fan, and Shuai Liu
Atmos. Chem. Phys., 21, 17433–17451, https://doi.org/10.5194/acp-21-17433-2021,https://doi.org/10.5194/acp-21-17433-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023,https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023,https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023,https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023,https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023,https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, S. J., A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000. 
Alexander, B., Allman, D. J., Amos, H. M., Fairlie, T. D., Dachs, J., Hegg, D. A., and Sletten, R. S.: Isotopic constraints on sulfate aerosol formation pathways in the marine boundary layer of the subtropical northeast Atlantic Ocean, J. Geophys. Res., 117, D06304, https://doi.org/10.1029/2011JD016773, 2012. 
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 2: Salinity, in: NOAA Atlas NESDIS 69, edited by: Levitus, S., US Government Printing Office, Washington, 2010. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Download
Short summary
This work improved pH calculation for cloud, rain, and wet surfaces, fraction of cloud available for aqueous-phase chemistry, rainout efficiencies for various types of cloud, empirical washout by rain and snow, and wet surface uptake in GEOS-Chem v12.6.0. We compared simulated mass concentrations of aerosol precursors and aerosols with surface monitoring networks, Arctic sites, and ATom observations, and showed that the model results with the updated wet processes agree better for most species.