Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 1999–2029, 2020
https://doi.org/10.5194/gmd-13-1999-2020
Geosci. Model Dev., 13, 1999–2029, 2020
https://doi.org/10.5194/gmd-13-1999-2020
Model description paper
21 Apr 2020
Model description paper | 21 Apr 2020

The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1

Mike Bush et al.

Related authors

The second Met Office Unified Model/JULES Regional Atmosphere and Land configuration, RAL2
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-209,https://doi.org/10.5194/gmd-2022-209, 2022
Preprint under review for GMD
Short summary
The UKC3 regional coupled environmental prediction system
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019,https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015,https://doi.org/10.5194/acp-15-12251-2015, 2015

Related subject area

Atmospheric sciences
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022,https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022,https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement
Haochen Sun, Jimmy C. H. Fung, Yiang Chen, Zhenning Li, Dehao Yuan, Wanying Chen, and Xingcheng Lu
Geosci. Model Dev., 15, 8439–8452, https://doi.org/10.5194/gmd-15-8439-2022,https://doi.org/10.5194/gmd-15-8439-2022, 2022
Short summary
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022,https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022,https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary

Cited articles

Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteor. Soc., 138, 2151–2162, https://doi.org/10.1002/qj.1949, 2012. a
Abel, S. J. and Shipway, B. J.: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO, Q. J. Roy. Meteor. Soc., 133, 781–794, https://doi.org/10.1002/qj.55, 2007. a
Abel, S. J., amd K. Waite, I. A. B., amd P. R. A. Brown, S. F., Cotton, R., Lloyd, G., Choularton, T. W., and Bower, K. N.: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a northern hemisphere cold-air outbreak, J. Atmos. Sci., 74, 2293–2314, https://doi.org/10.1175/JAS-D-16-0362.1, 2017. a
Allen, T. and Zerroukat, M.: A deep non-hydrostatic compressible atmospheric model on a Yin-Yang grid, J. Comput. Phys., 319, 44–60, 2016. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamic processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173–265, 1977. a
Download
Short summary
In this paper we define the first Regional Atmosphere and Land (RAL) science configuration for kilometre-scale modelling using the Unified Model (UM) as the basis for the atmosphere and the Joint UK Land Environment Simulator (JULES) for the land. RAL1 defines the science configuration of the dynamics and physics schemes of the atmosphere and land. This configuration will provide a model baseline for any future weather or climate model developments to be described against.