Articles | Volume 13, issue 4
https://doi.org/10.5194/gmd-13-1999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-1999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1
Mike Bush
CORRESPONDING AUTHOR
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Tom Allen
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Caroline Bain
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Ian Boutle
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
John Edwards
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Anke Finnenkoetter
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Charmaine Franklin
Bureau of Meteorology (BoM), Melbourne, Victoria, Australia
Kirsty Hanley
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Humphrey Lean
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Adrian Lock
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
James Manners
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Marion Mittermaier
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Cyril Morcrette
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Rachel North
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Jon Petch
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Chris Short
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Simon Vosper
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
David Walters
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Stuart Webster
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Mark Weeks
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Jonathan Wilkinson
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Nigel Wood
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Mohamed Zerroukat
Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
Related authors
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Preprint under review for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, https://doi.org/10.5194/acp-15-12251-2015, 2015
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap
Atmos. Chem. Phys., 25, 473–489, https://doi.org/10.5194/acp-25-473-2025, https://doi.org/10.5194/acp-25-473-2025, 2025
Short summary
Short summary
Contrail cirrus is the largest, but also most uncertain, contribution of aviation to global warming. We evaluate, for the first time, the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Anthony Jones, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, Noah Asch, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3376, https://doi.org/10.5194/egusphere-2024-3376, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We study aerosol-fog interactions near Paris using a weather and climate model with high spatial resolution. We show that our model can simulate fog lifecycle effectively. We find that the fog droplet number concentrations, the amount of liquid water in the fog, and the vertical structure of the fog are highly sensitive to the parameterization that simulates droplet formation and growth. The changes we propose could improve fog forecasts significantly without increasing computational costs.
Pratapaditya Ghosh, Ian Boutle, Paul Field, Adrian Hill, Marie Mazoyer, Katherine J. Evans, Salil Mahajan, Hyun-Gyu Kang, Min Xu, Wei Zhang, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2024-3397, https://doi.org/10.5194/egusphere-2024-3397, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We study the lifecycle of fog events in Europe using a weather and climate model. By incorporating droplet formation and growth driven by radiative cooling, our model better simulates the total liquid water in foggy atmospheric columns. We show that both adiabatic and radiative cooling play significant, often equally important roles in driving droplet formation and growth. We discuss strategies to address droplet number overpredictions, by improving model physics and addressing model artifacts.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Preprint under review for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Nicolaj Hansen, Andrew Orr, Xun Zou, Fredrik Boberg, Thomas J. Bracegirdle, Ella Gilbert, Peter L. Langen, Matthew A. Lazzara, Ruth Mottram, Tony Phillips, Ruth Price, Sebastian B. Simonsen, and Stuart Webster
The Cryosphere, 18, 2897–2916, https://doi.org/10.5194/tc-18-2897-2024, https://doi.org/10.5194/tc-18-2897-2024, 2024
Short summary
Short summary
We investigated a melt event over the Ross Ice Shelf. We use regional climate models and a firn model to simulate the melt and compare the results with satellite data. We find that the firn model aligned well with observed melt days in certain parts of the ice shelf. The firn model had challenges accurately simulating the melt extent in the western sector. We identified potential reasons for these discrepancies, pointing to limitations in the models related to representing the cloud properties.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-79, https://doi.org/10.5194/gmd-2024-79, 2024
Preprint under review for GMD
Short summary
Short summary
Earth System Models (ESMs) struggle the uncertainties associated with parameterizing sub-grid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran-Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity and effectiveness.
Emma Howard, Chun-Hsu Su, Christian Stassen, Rajashree Naha, Harvey Ye, Acacia Pepler, Samuel S. Bell, Andrew J. Dowdy, Simon O. Tucker, and Charmaine Franklin
Geosci. Model Dev., 17, 731–757, https://doi.org/10.5194/gmd-17-731-2024, https://doi.org/10.5194/gmd-17-731-2024, 2024
Short summary
Short summary
The BARPA-R modelling configuration has been developed to produce high-resolution climate hazard projections within the Australian region. When using boundary driving data from quasi-observed historical conditions, BARPA-R shows good performance with errors generally on par with reanalysis products. BARPA-R also captures trends, known modes of climate variability, large-scale weather processes, and multivariate relationships.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavčič, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 16, 5601–5626, https://doi.org/10.5194/gmd-16-5601-2023, https://doi.org/10.5194/gmd-16-5601-2023, 2023
Short summary
Short summary
Three-dimensional climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
William Stanley Torgerson, Juliane Schwendike, Andrew Ross, and Chris Short
EGUsphere, https://doi.org/10.5194/egusphere-2023-1272, https://doi.org/10.5194/egusphere-2023-1272, 2023
Preprint archived
Short summary
Short summary
Two types of fluctuations were studied in Hurricane Irma (2017) using model simulations. The first type of fluctuation, the eyewall replacement cycle, has a Hurricane’s eyewall replaced by a second outer eyewall that develops further out. The other type of fluctuation has no replacement of the eyewall but a disruption to its structure instead.
William Torgerson, Juliane Schwendike, Andrew Ross, and Chris J. Short
Weather Clim. Dynam., 4, 331–359, https://doi.org/10.5194/wcd-4-331-2023, https://doi.org/10.5194/wcd-4-331-2023, 2023
Short summary
Short summary
We investigated intensity fluctuations that occurred during the rapid intensification of Hurricane Irma (2017) to understand their effects on the storm structure. Using high-resolution model simulations, we found that the fluctuations were caused by local regions of strong ascent just outside the eyewall that disrupted the storm, leading to a larger and more symmetrical storm eye. This alters the location and intensity of the strongest winds in the storm and hence the storm's impact.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Paul R. Field, Benjamin J. Murray, and Ken S. Carslaw
Atmos. Chem. Phys., 21, 17315–17343, https://doi.org/10.5194/acp-21-17315-2021, https://doi.org/10.5194/acp-21-17315-2021, 2021
Short summary
Short summary
We find that ice-nucleating particles (INPs), aerosols that can initiate the freezing of cloud droplets, cause substantial changes to the properties of radiatively important convectively generated anvil cirrus. The number concentration of INPs had a large effect on ice crystal number concentration while the INP temperature dependence controlled ice crystal size and cloud fraction. The results indicate information on INP number and source is necessary for the representation of cloud glaciation.
Marion Mittermaier, Rachel North, Jan Maksymczuk, Christine Pequignet, and David Ford
Ocean Sci., 17, 1527–1543, https://doi.org/10.5194/os-17-1527-2021, https://doi.org/10.5194/os-17-1527-2021, 2021
Short summary
Short summary
Regions of enhanced chlorophyll-a concentrations can be identified by applying a threshold to the concentration value to a forecast and observed field (or analysis). These regions can then be treated and analysed as features using diagnostic techniques to consider of the evolution of the chlorophyll-a blooms in space and time. This allows us to understand whether the biogeochemistry in the model has any skill in predicting these blooms, their location, intensity, onset, duration and demise.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Chun-Hsu Su, Nathan Eizenberg, Dörte Jakob, Paul Fox-Hughes, Peter Steinle, Christopher J. White, and Charmaine Franklin
Geosci. Model Dev., 14, 4357–4378, https://doi.org/10.5194/gmd-14-4357-2021, https://doi.org/10.5194/gmd-14-4357-2021, 2021
Short summary
Short summary
The Bureau of Meteorology Atmospheric Regional Reanalysis for Australia (BARRA) has produced a very high-resolution reconstruction of Australian historical weather from 1990 to 2018. This paper demonstrates the added weather and climate information to supplement coarse- or moderate-resolution regional and global reanalyses. The new climate data can allow greater understanding of past weather, including extreme events, at very local kilometre scales.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Rachel E. Hawker, Annette K. Miltenberger, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Zhiqiang Cui, Richard J. Cotton, Ken S. Carslaw, Paul R. Field, and Benjamin J. Murray
Atmos. Chem. Phys., 21, 5439–5461, https://doi.org/10.5194/acp-21-5439-2021, https://doi.org/10.5194/acp-21-5439-2021, 2021
Short summary
Short summary
The impact of aerosols on clouds is a large source of uncertainty for future climate projections. Our results show that the radiative properties of a complex convective cloud field in the Saharan outflow region are sensitive to the temperature dependence of ice-nucleating particle concentrations. This means that differences in the aerosol source or composition, for the same aerosol size distribution, can cause differences in the outgoing radiation from regions dominated by tropical convection.
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020, https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
Short summary
The Met Office's Unified Model is widely used both for weather forecasting and climate prediction. We present the first version of the model in which both aerosol and cloud particle mass and number concentrations are allowed to evolve separately and independently, which is important for studying how aerosols affect weather and climate. We test the model against aircraft observations near Ascension Island in the Atlantic, focusing on how aerosols can "activate" to become cloud droplets.
Ric Crocker, Jan Maksymczuk, Marion Mittermaier, Marina Tonani, and Christine Pequignet
Ocean Sci., 16, 831–845, https://doi.org/10.5194/os-16-831-2020, https://doi.org/10.5194/os-16-831-2020, 2020
Short summary
Short summary
We assessed the potential benefit of a new verification metric, developed by the atmospheric community, to assess high-resolution ocean models against coarser-resolution configurations. Typical verification metrics often do not show any benefit when high-resolution models are compared to lower-resolution configurations. The new metric showed improvements in higher-resolution models away from the grid scale. The technique can be applied to both deterministic and ensemble forecasts.
Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman
Geosci. Model Dev., 13, 707–716, https://doi.org/10.5194/gmd-13-707-2020, https://doi.org/10.5194/gmd-13-707-2020, 2020
Short summary
Short summary
Atmospheric characterization of rocky exoplanets orbiting within the habitable zone of nearby M dwarf stars is around the corner with the James Webb Space Telescope (JWST), expected to be launch in 2021.
Global climate models (GCMs) are powerful tools to model exoplanet atmospheres and to predict their habitability. However, intrinsic differences between the models can lead to various predictions. This paper presents an experiment protocol to evaluate these differences.
Andrew J. Wiltshire, Maria Carolina Duran Rojas, John M. Edwards, Nicola Gedney, Anna B. Harper, Andrew J. Hartley, Margaret A. Hendry, Eddy Robertson, and Kerry Smout-Day
Geosci. Model Dev., 13, 483–505, https://doi.org/10.5194/gmd-13-483-2020, https://doi.org/10.5194/gmd-13-483-2020, 2020
Short summary
Short summary
We present the Global Land (GL) configuration of the Joint UK Land Environment Simulator (JULES). JULES-GL7 can be used to simulate the exchange of heat, water and momentum over land and is therefore applicable for helping understand past and future changes, and forms the land component of the HadGEM3-GC3.1 climate model. The configuration is freely available subject to licence restrictions.
Huw W. Lewis, John Siddorn, Juan Manuel Castillo Sanchez, Jon Petch, John M. Edwards, and Tim Smyth
Ocean Sci., 15, 761–778, https://doi.org/10.5194/os-15-761-2019, https://doi.org/10.5194/os-15-761-2019, 2019
Short summary
Short summary
Oceans are modified at the surface by winds and by the exchange of heat with the atmosphere. The effect of changing atmospheric information that is available to drive an ocean model of north-west Europe, which can simulate small-scale details of the ocean state, is tested. We show that simulated temperatures agree better with observations located near the coast around the south-west UK when using data from a high-resolution atmospheric model, and when atmosphere and ocean feedbacks are included.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Alex Arnold, Joachim Fallmann, Andrew Saulter, Jennifer Graham, Mike Bush, John Siddorn, Tamzin Palmer, Adrian Lock, John Edwards, Lucy Bricheno, Alberto Martínez-de la Torre, and James Clark
Geosci. Model Dev., 12, 2357–2400, https://doi.org/10.5194/gmd-12-2357-2019, https://doi.org/10.5194/gmd-12-2357-2019, 2019
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet the prediction systems used for weather and ocean forecasting tend to treat them in isolation. This paper describes the third version of a regional modelling system which aims to represent the feedback processes between sky, sea and land. The main innovation introduced in this version enables waves to affect the underlying ocean. Coupled results from four different month-long simulations are analysed.
Chun-Hsu Su, Nathan Eizenberg, Peter Steinle, Dörte Jakob, Paul Fox-Hughes, Christopher J. White, Susan Rennie, Charmaine Franklin, Imtiaz Dharssi, and Hongyan Zhu
Geosci. Model Dev., 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, https://doi.org/10.5194/gmd-12-2049-2019, 2019
Short summary
Short summary
The Bureau of Meteorology Atmospheric Regional Reanalysis for Australia (BARRA) is the first regional reanalysis for Australia, NZ, and SE Asia. It offers realistic depictions of near-surface meteorology at a scale required for emergency services, defence, and other major sectors such as energy and agriculture. It uses a consistent method of analysing the atmosphere, with a higher-resolution model over 1990 to 2018, and can provide greater understanding of past weather, including extreme events.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks
Geosci. Model Dev., 12, 1703–1724, https://doi.org/10.5194/gmd-12-1703-2019, https://doi.org/10.5194/gmd-12-1703-2019, 2019
Short summary
Short summary
This paper evaluates a significant cold land surface temperature bias in semi-arid regions in the Met Office Unified Model when compared with satellite observations. Sparse vegetation canopies are not well represented in ancillary datasets, in particular regions of cold bias are correlated with low bare soil cover fractions. The study demonstrates the difficulties in modelling land surface temperatures that match state-of-the-art satellite retrievals required for operational data assimilation.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
Gary Lloyd, Thomas W. Choularton, Keith N. Bower, Martin W. Gallagher, Jonathan Crosier, Sebastian O'Shea, Steven J. Abel, Stuart Fox, Richard Cotton, and Ian A. Boutle
Atmos. Chem. Phys., 18, 17191–17206, https://doi.org/10.5194/acp-18-17191-2018, https://doi.org/10.5194/acp-18-17191-2018, 2018
Short summary
Short summary
The work deals with cold weather outbreaks at high latitudes that often bring severe weather such as heavy snow, lightning and high winds but are poorly forecast by weather models. Here we made measurements of these events and the clouds associated with them using a research aircraft. We found that the properties of these clouds were often very different to what the models predicted, and these results can potentially be used to bring significant improvement to the forecasting of these events.
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Short summary
We perform a model intercomparison of summertime high Arctic clouds. Observed concentrations of aerosol particles necessary for cloud formation fell to extremely low values, coincident with a transition from cloudy to nearly cloud-free conditions. Previous analyses have suggested that at these low concentrations, the radiative properties of the clouds are determined primarily by these particle concentrations. The model results strongly support this hypothesis.
Annette K. Miltenberger, Paul R. Field, Adrian A. Hill, Ben J. Shipway, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 18, 10593–10613, https://doi.org/10.5194/acp-18-10593-2018, https://doi.org/10.5194/acp-18-10593-2018, 2018
Ian Boutle, Jeremy Price, Innocent Kudzotsa, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 18, 7827–7840, https://doi.org/10.5194/acp-18-7827-2018, https://doi.org/10.5194/acp-18-7827-2018, 2018
Short summary
Short summary
Aerosol processes are a key mechanism in the development of fog. Poor representation of aerosol–fog interaction can result in large biases in fog forecasts, such as surface temperatures which are too high and fog which is too deep and long lived. A relatively simple representation of aerosol–fog interaction can actually lead to significant improvements in forecasting. Aerosol–fog interaction can have a large effect on the climate system but is poorly represented in climate models.
Daniel T. McCoy, Paul R. Field, Anja Schmidt, Daniel P. Grosvenor, Frida A.-M. Bender, Ben J. Shipway, Adrian A. Hill, Jonathan M. Wilkinson, and Gregory S. Elsaesser
Atmos. Chem. Phys., 18, 5821–5846, https://doi.org/10.5194/acp-18-5821-2018, https://doi.org/10.5194/acp-18-5821-2018, 2018
Short summary
Short summary
Here we use a combination of global convection-permitting models, satellite observations and the Holuhraun volcanic eruption to demonstrate that aerosol enhances the cloud liquid content and brightness of midlatitude cyclones. This is important because the strength of anthropogenic radiative forcing is uncertain, leading to uncertainty in the climate sensitivity consistent with observed temperature record.
Jake J. Gristey, J. Christine Chiu, Robert J. Gurney, Cyril J. Morcrette, Peter G. Hill, Jacqueline E. Russell, and Helen E. Brindley
Atmos. Chem. Phys., 18, 5129–5145, https://doi.org/10.5194/acp-18-5129-2018, https://doi.org/10.5194/acp-18-5129-2018, 2018
Annette K. Miltenberger, Paul R. Field, Adrian A. Hill, Phil Rosenberg, Ben J. Shipway, Jonathan M. Wilkinson, Robert Scovell, and Alan M. Blyth
Atmos. Chem. Phys., 18, 3119–3145, https://doi.org/10.5194/acp-18-3119-2018, https://doi.org/10.5194/acp-18-3119-2018, 2018
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, https://doi.org/10.5194/acp-15-12251-2015, 2015
J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters
Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015, https://doi.org/10.5194/gmd-8-2221-2015, 2015
Short summary
Short summary
The paper presents a new sea ice configuration, GSI6.0, in the Met Office coupled atmosphere-ocean-ice model. Differences in the sea ice from a previous configuration (GSI4.0) are explained in the context of a previously published sensitivity study. In summer, Arctic sea ice is thicker and more extensive than in GSI4.0, bringing it closer to the observationally derived data sets. In winter, the Arctic ice is thicker but less extensive than in GSI4.0.
K. D. Williams, C. M. Harris, A. Bodas-Salcedo, J. Camp, R. E. Comer, D. Copsey, D. Fereday, T. Graham, R. Hill, T. Hinton, P. Hyder, S. Ineson, G. Masato, S. F. Milton, M. J. Roberts, D. P. Rowell, C. Sanchez, A. Shelly, B. Sinha, D. N. Walters, A. West, T. Woollings, and P. K. Xavier
Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, https://doi.org/10.5194/gmd-8-1509-2015, 2015
J. P. Mulcahy, D. N. Walters, N. Bellouin, and S. F. Milton
Atmos. Chem. Phys., 14, 4749–4778, https://doi.org/10.5194/acp-14-4749-2014, https://doi.org/10.5194/acp-14-4749-2014, 2014
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
Related subject area
Atmospheric sciences
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Cited articles
Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size
distribution for single-moment microphysics schemes, Q. J. Roy. Meteor. Soc.,
138, 2151–2162, https://doi.org/10.1002/qj.1949, 2012. a
Abel, S. J. and Shipway, B. J.: A comparison of cloud-resolving model
simulations of trade wind cumulus with aircraft observations taken during
RICO, Q. J. Roy. Meteor. Soc., 133, 781–794, https://doi.org/10.1002/qj.55, 2007. a
Abel, S. J., amd K. Waite, I. A. B., amd P. R. A. Brown, S. F., Cotton, R.,
Lloyd, G., Choularton, T. W., and Bower, K. N.: The role of precipitation in
controlling the transition from stratocumulus to cumulus clouds in a northern
hemisphere cold-air outbreak, J. Atmos. Sci., 74, 2293–2314,
https://doi.org/10.1175/JAS-D-16-0362.1, 2017. a
Allen, T. and Zerroukat, M.: A deep non-hydrostatic compressible atmospheric
model on a Yin-Yang grid, J. Comput. Phys., 319, 44–60, 2016. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamic
processes of the UCLA general circulation model, Methods Comput. Phys., 17,
173–265, 1977. a
Baldauf, M., Seifert, A., Forstner, J., Majewski, D., Raschendorfer, M., and
Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with
the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139,
3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. a
Baran, A. J., Hill, P., Walters, D., Hardman, S. C., Furtado, K., Field, P. R.,
and Manners, J.: The impact of two coupled cirrus microphysics-radiation
parameterizations on the temperature and specific humidity biases in the
tropical tropopause layer in a climate model, J. Climate, 29, 5299–5316,
https://doi.org/10.1175/JCLI-D-15-0821.1, 2016. a
Barker, H. and Li, Z.: Improved simulation of clear-sky radiative transfer in
the CCC-GCM, J. Climate, 8, 2213–2223,
https://doi.org/10.1175/1520-0442(1995)008<2213:ISOCSS>2.0.CO;2, 1995. a
Batjes, N. H.: Harmonized soil profile data for applications at global and
continental scales: updates to the WISE database, Soil Use Manage., 25,
124–127, https://doi.org/10.1111/j.1475-2743.2009.00202.x, 2009. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy,W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson,
K.-I., Lenderink, G., Niemela, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Munoz, D. S., Subias, A., Tijm, S., Toll, V., Yang,
X., and Koltzow, M. O.: The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system, Mon. Weather Rev.,
145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017. a
Berthou, S., Kendon, E., Chan, S., Ban, N., Leutwyler, D., Schar, C., and
Fosser, G.: Pan-European climate at convection-permitting scale: a model
intercomparison study, Clim. Dynam.,
https://doi.org/10.1007/s00382-018-4114-6, online first, 2018. a
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. a, b, c, d
Bodas-Salcedo, A., Williams, K. D., Field, P. R., and Lock, A. P.: The surface
downwelling solar radiation surplus over the Southern Ocean in the Met Office
model: the role of midlatitude cyclone clouds, J. Climate, 25, 7467–7486,
https://doi.org/10.1175/JCLI-D-11-00702.1, 2012. a
Boutle, I. A. and Morcrette, C. J.: Parametrization of area cloud fraction,
Atmos. Sci. Lett., 11, 283–289, https://doi.org/10.1002/asl.293, 2010. a
Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.: Spatial
variability of liquid cloud and rain: observations and microphysical effects,
Q. J. Roy. Meteor. Soc., 140, 583–594, https://doi.org/10.1002/qj.2140,
2014a. a
Boutle, I. A., Eyre, J. E. J., and Lock, A. P.: Seamless stratocumulus
simulation across the turbulent gray zone, Mon. Weather Rev., 142,
1655–1668, https://doi.org/10.1175/MWR-D-13-00229.1, 2014b. a, b
Boutle, I. A., Finnenkoetter, A., Lock, A. P., and Wells, H.: The London Model:
forecasting fog at 333 m resolution, Q. J. Roy. Meteor. Soc., 142, 360–371,
https://doi.org/10.1002/qj.2656, 2016. a
Brousseau, P., Seity, Y., Ricard, D., and Leger, J.: Improvement of the forecast of convective activity from the AROME-France system, Q. J.
R. Meteor. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016. a
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.:
Unified modeling and prediction of weather and climate: a 25 year journey,
B. Am. Meteorol. Soc., 93, 1865–1877, https://doi.org/10.1175/BAMS-D-12-00018.1,
2012. a
Brown, A. R.: The sensitivity of large-eddy simulations of shallow cumulus
convection to resolution and sub-grid model, Q. J. Roy. Meteor. Soc., 125,
469–482, https://doi.org/10.1002/qj.49712555405, 1999. a, b, c
Bunce, R., Barr, C., Gillespie, M., and Howard, D.: The ITE Land
Classification: Providing an Environmental Stratification of Great Britain,
Environ. Monit. Assess., 39, 39–46,
https://doi.org/10.1007/BF00396134, 1996. a, b
Cahalan, R., Ridgway, W., Wiscombe, W., Bell, T., and Snider, J.: The Albedo of
Fractal Stratocumulus clouds, J. Atmos. Sci., 51, 2434–2455,
https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2, 1994. a
Charney, J. G. and Phillips, N. A.: Numerical integration of the
quasi-geostrophic equations for barotropic and simple baroclinic flows, J.
Meteorol., 10, 71–99,
https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2, 1953. a
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011. a, b
Clark, P., Roberts, N., Lean, H., Ballard, S., and Charlton-Perez, C.:
Convection-permitting models: a step-change in rainfall forecasting, Meteorol.
Appl., 23, 165–181, https://doi.org/10.1002/met.1538, 2016. a
Clark, P. A., Harcourt, S. A., Macpherson, B., Mathison, C. T., Cusack, S., and
Naylor, M.: Prediction of visibility and aerosol within the operational Met
Office Unified Model. I: Model formulation and variational assimilation, Q.
J. Roy. Meteor. Soc., 134, 1801–1816, https://doi.org/10.1002/qj.318, 2008. a
Cotton, R. J., Field, P. R., Ulanowski, Z., Kaye, P. H., Hirst, E., Greenaway,
R. S., Crawford, I., Crosier, J., and Dorsey, J.: The effective density of
small ice particles obtained from in situ aircraft observations of
mid-latitude cirrus, Q. J. Roy. Meteor. Soc., 139, 1923–1934,
https://doi.org/10.1002/qj.2058, 2013. a
Cusack, S., Slingo, A., Edwards, J. M., and Wild, M.: The radiative impact of a
simple aerosol climatology on the Hadley Centre atmospheric GCM, Q. J. Roy.
Meteor. Soc., 124, 2517–2526, https://doi.org/10.1002/qj.49712455117, 1998. a
Davies, H. C.: A lateral boundary formulation for multi-level prediction
models, Q. J. Roy. Meteor. Soc., 102, 405–418, 1976. a
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A.,
White, A. A., and Wood, N.: A new dynamical core for the Met Office's
global and regional modelling of the atmosphere, Q. J. Roy. Meteor. Soc.,
131, 1759–1782, https://doi.org/10.1256/qj.04.101, 2005. a
Edwards, J. M. and Slingo, A.: Studies with a flexible new radiation code. I:
Choosing a configuration for a large-scale model, Q. J. Roy. Meteor. Soc.,
122, 689–719, https://doi.org/10.1002/qj.49712253107, 1996. a, b
Field, P. R., Heymsfield, A. J., and Bansemer, A.: Snow Size Distribution
Parameterization for Midlatitude and Tropical Ice Clouds, J. Atmos. Sci., 64,
4346–4365, https://doi.org/10.1175/2007JAS2344.1, 2007. a, b
Furtado, K., Field, P. R., Cotton, R., and Baran, A. J.: The sensitivity of
simulated high clouds to ice crystal fall speed, shape and size distribution,
Q. J. Roy. Meteor. Soc., 141, 1546–1559, https://doi.org/10.1002/qj.2457, 2015. a
Hagelin, S., Son, J., Swinbank, R., McCabe, A., Roberts, N., and Tennant, W.:
The Met Office convective-scale ensemble, MOGREPS-UK, Q. J. Roy. Meteor.
Soc., 143, 2846–2861, https://doi.org/10.1002/qj.3135, 2017. a
Hanley, K. and Lean, H.: Elucidating the causes of errors in the 2.2 km Met Office Unified Model simulations of a convective case from the 2017 Hazardous Weather Testbed, in preparation, 2020. a
Hanley, K., Plant, R., Stein, T., Hogan, R., Nicol, J., Lean, H., Halliwell,
C., and Clark, P.: Mixing-length controls on high-resolution simulations of
convective storms, Q. J. Roy. Meteor. Soc., 141, 272–284,
https://doi.org/10.1002/qj.2356, 2015. a
Hartley, A., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty in
plant functional type distributions and its impact on land surface models,
Remote Sens. Environ., 203, 71–89, https://doi.org/10.1016/j.rse.2017.07.037,
2017. a, b
Hastings, D. A., Dunbar, P. K., Elphingstone, G. M., Bootz, M., Murakami, H.,
Maruyama, H., Masaharu, H., Holland, P., Payne, J., Bryant, N. A., Logan,
T. L., Muller, J.-P., Schreier, G., and MacDonald, J. S.: The Global Land
One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0,
Digital data base on the World Wide Web,
available at: http://www.ngdc.noaa.gov/mgg/topo/globe.html (last access:
25 October 2017), 1999. a
Heming, J. T.: Tropical cyclone tracking and verification techniques for Met
Office numerical weather prediction models, Meteorol. Appl., 24, 1–8,
https://doi.org/10.1002/met.1599, 2017. a
Houldcroft, C., Grey, W., Barnsley, M., Taylor, C., Los, S., and North, P.: New
vegetation albedo parameters and global fields of background albedo derived
from MODIS for use in a climate model, J. Hydrometeorol., 10, 183–198,
https://doi.org/10.1175/2008JHM1021.1, 2008. a
Huffman, G.: GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree x 0.1
degree V05, Greenbelt, MD, Goddard Earth Sciences Data and Information
Services Center (GES DISC),
https://doi.org/10.5067/GPM/IMERG/3B-HH-L/05, 2015. a
Huffman, G.: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1
degree V05, Greenbelt, MD, Goddard Earth Sciences Data and Information
Services Center (GES DISC),
https://doi.org/10.5067/GPM/IMERG/3B-HH/05, 2017. a
Jin, Z., Qiao, Y., Wang, Y., Fang, Y., and Yi, W.: A new parameterization of
spectral and broadband ocean surface albedo, Opt. Express, 19,
26429–26443, https://doi.org/10.1364/OE.19.026429, 2011. a
Jones, A., Roberts, D. L., and Slingo, A.: A climate model study of indirect
radiative forcing by anthropogenic sulphate aerosols, Nature, 370, 450–453,
https://doi.org/10.1038/370450a0, 1994. a
Kain, J. S., Willington, S., Clark, A. J., Weiss, S. J., Weeks, M., Jirak,
I. L., and Suri, D.: Collaborative efforts between the United States and
United Kingdom to advance prediction of high-impact weather, B. Am.
Meteorol. Soc., 98, 937–948, https://doi.org/10.1175/BAMS-D-15-00199.1, 2017. a, b
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and
Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576,
https://doi.org/10.1038/nclimate2258, 2014. a
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J., Fosser, G., and Wilkinson, J.: Do convection-permitting
regional climate models improve projections of future precipitation change?,
B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Klasa, C., Arpagaus, M., Walser, A., and Wernli, H.: An evaluation of the
convection-permitting ensemble COSMO-E for three contrasting precipitation
events in Switzerland, Q. J. Roy. Meteor. Soc., 144, 744–764,
https://doi.org/10.1002/qj.3245, 2018. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson,
S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K.,
Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional
and structural advances in version 4 of the community land model, J. Adv.
Model Earth Sy., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011. a
Lean, H. and Browning, K. A.: Quantification of the importance of wind drift to
the surface distribution of orographic rain on the occasion of the extreme
Cockermouth flood in Cumbria, Q. J. Roy. Meteor. Soc., 139, 1342–1353,
https://doi.org/10.1002/qj.2024, 2013. a
Lean, H., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., and
Halliwell, C.: Characteristics of High-Resolution Versions of the Met Office
Unified Model for Forecasting Convection over the United Kingdom, Mon.
Weather Rev., 136, 3408–3424, https://doi.org/10.1175/2008MWR2332.1, 2008. a
Li, D. and Shine, K.: A 4-D ozone climatology for UGAMP models, Tech. rep.,
UGAMP, University of Reading, 1995. a
Lock, A. P.: Stable boundary layer modelling at the Met Office, in: ECMWF/GABLS
workshop on “Diurnal cycles and the stable atmospheric boundary layer”, available at: https://www.ecmwf.int/sites/default/files/elibrary/2012/10770-stable-bounday-layer-modelling-met-office.pdf (last access: 3 April 2020), 2012. a
Louf, V., Protat, A., Jakob, C., Warren, R., Raunyiar, S., Petersen, W., Wolff,
D., and Collis, S.: An integrated approach to weather radar calibration and
monitoring using ground clutter and satellite comparisons, J. Atmos. Ocean. Tech., 36, 17–39, https://doi.org/10.1175/JTECH-D-18-0007.1, 2018. a
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens.,
21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000. a, b, c
Manners, J., Thelen, J.-C., Petch, J., Hill, P., and Edwards, J. M.: Two fast
radiative transfer methods to improve the temporal sampling of clouds in
numerical weather prediction and climate models, Q. J. Roy. Meteor. Soc.,
135, 457–468, https://doi.org/10.1002/qj.956, 2009. a
Manners, J., Vosper, S. B., and Roberts, N.: Radiative transfer over resolved
topographic features for high-resolution weather prediction, Q. J. Roy. Meteor. Soc., 138, 720–733, https://doi.org/10.1002/qj.956, 2012. a
Marbaix, P., Gallee, H., Brasseur, O., and Ypersele, J. V.: Lateral Boundary
Conditions in Regional Climate Models: A Detailed Study of the Relaxation
Procedure, Mon. Weather Rev., 131, 461–479, 2003. a
McCabe, A., Swinbank, R., Tennant, W., and Lock, A.: Representing model
uncertainty in the Met Office convection-permitting ensemble prediction
system and its impact on fog forecasting, Q. J. Roy. Meteor. Soc., 142,
2897–2910, https://doi.org/10.1002/qj.2876, 2016. a, b
McCaul, E. W., Goodman, S. J., LaCasse, K. M., and Cecil, D. J.: Forecasting
Lightning Threat Using Cloud-Resolving Model Simulations, Weather Forecast., 24, 709–729,
https://doi.org/10.1175/2008WAF2222152.1, 2009. a
Met Office Modelling Infrastructure Support Systems Team, MetOffice: Rose,
available at:
http://metomi.github.io/rose/doc/html/index.html,
last access: 3 April 2020. a
Miller, D. A. and White, R. A.: A conterminous United States multilayer soil
characteristics dataset for regional climate and hydrology modeling, Earth
Interact., 2, 1–26,
https://doi.org/10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2, 1998. a
Mittermaier, M.: A strategy for verifying near-convection-resolving forecasts
at observing sites, Weather Forecast., 29, 185–204,
https://doi.org/10.1175/WAF-D-12-00075.1, 2014. a
Mittermaier, M. and Csima, G.: Ensemble versus deterministic performance at
km-scale, Weather Forecast., 32, 1697–1709,
https://doi.org/10.1175/WAF-D-16-0164.1, 2017. a, b
Mittermaier, M. and Roberts, N.: Inter-comparison of spatial forecast
verification methods: Identifying skillful spatial scales using the
Fractions Skill Score, Weather Forecast., 25, 343–354,
https://doi.org/10.1175/2009WAF2222260.1, 2010. a
Morcrette, C. J.: Improvements to a prognostic cloud scheme through changes to
its cloud erosion parametrization, Atmos. Sci. Lett., 13, 95–102,
https://doi.org/10.1002/asl.374, 2012a. a
Morcrette, C. J.: Prognostic-cloud-scheme increment diagnostics: a novel
addition to the case-study tool kit, Atmos. Sci. Lett., 13, 200–207, https://doi.org/10.1002/asl.380, 2012b. a
Morcrette, C. J. and Petch, J. C.: Analysis of prognostic cloud scheme
increments in a climate model, Q. J. Roy. Meteor. Soc., 136, 2061–2073,
https://doi.org/10.1002/qj.720, 2010. a
Morcrette, C. J., O'Connor, E. J., and Petch, J. C.: Evaluation of two cloud
parametrization schemes using ARM and Cloud-Net observations, Q. J. Roy. Meteor. Soc., 138, 964–979, https://doi.org/10.1002/qj.969, 2012. a
Munoz-Esparza, D., Kosovic, B., Mirocha, J., and van Beeck, J.: Bridging the
Transition from Mesoscale to Microscale Turbulence in Numerical Weather
Prediction Models, Bound.-Lay. Meteorol., 153, 409–440,
https://doi.org/10.1007/s10546-014-9956-9, 2014. a
Murphy, A. and Winkler, R.: A general framework for forecast verification, Mon.
Weather Rev., 115, 1330–1338, 1987. a
Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K.,
van Engelen, V., Fischer, G., Jones, A., Montanarella, L., Petri, M.,
Prieler, S., Teixeira, E., Wiberg, D., and Shi, X.: Harmonized World Soil
Database (version 1.0), FAO, Rome, Italy and IIASA, Laxenburg, Austria,
2008. a
Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., van Haren, R., Hut, R., and Drost, N.:
Workflow Automation for Cycling Systems: The Cylc Workflow Engine, Comput. Sci. Eng.,
21, 7–21, https://doi.org/10.1109/MCSE.2019.2906593, 2019. a
Osborne, S., Abel, S., Boutle, I., and Marenco, F.: Evolution of Stratocumulus
Over Land: Comparison of Ground and Aircraft Observations with Numerical
Weather Prediction Simulations, Bound.-Lay. Meteorol., 153, 165–193,
https://doi.org/10.1007/s10546-014-9944-0, 2014. a
Perkey, D. J. and Kreitzberg, C. W.: A time-dependent lateral boundary scheme
for limited-area primitive equation models, Mon. Weather Rev., 104, 744–755,
1976. a
Porson, A., Clark, P., Harman, I., Best, M., and Belcher, S.: Implementation of
a new urban energy budget scheme in the MetUM. Part I: Description and
idealized simulations, Q. J. Roy. Meteor. Soc., 136, 1514–1529,
https://doi.org/10.1002/qj.668, 2010. a
Price, J. D., Lane, S., and Boutle, I. A.: LANFEX: A Field and Modeling Study
to Improve Our Understanding and Forecasting of Radiation Fog, B. Am.
Meteorol. Soc., 99, 2061–2077, https://doi.org/10.1175/BAMS-D-16-0299.1, 2018. a
Roberts, N. and Lean, H.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon.
Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008. a
Samanta, A., Ganguly, S., Schull, M. A., Shabanov, N. V., Knyazikhin, Y., and
Myneni, R. B.: Collection 5 MODIS LAI/FPAR Products, presented at AGU Fall
Meeting, San Francisco, USA, 15–19 December 2008,
2012. a
Sellers, P. J.: Canopy reflectance, photosynthesis and reflection, Int. J. Remote
Sens., 6, 1335–1372, https://doi.org/10.1080/01431168508948283, 1985. a, b, c, d
Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F.,
Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T.,
Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S.,
Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation
Measurement (GPM) Mission for Science and Society, B. Am.
Meteorol. Soc., 98, 1679–1695, https://doi.org/10.1175/BAMS-D-15-00306.1,
2017. a
Smagorinsky, J.: General circulation experiments with the primitive equations:
I. the basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Smith, R. N. B.: A scheme for predicting layer cloud and their water content in
a general circulation model, Q. J. Roy. Meteor. Soc., 116, 435–460,
https://doi.org/10.1002/qj.49711649210, 1990. a
Stratton, R. A., Senior, C. A., and Vosper, S. B.: A Pan-African
Convection-Permitting Regional Climate Simulation with the Met Office Unified
Model: CP4-Africa, J. Climate, 31, 3485–3508,
https://doi.org/10.1175/JCLI-D-17-0503.1, 2018. a, b
Tang, Y., Lean, H., and Bornemann, J.: The benefits of the Met Office variable
resolution NWP model for forecasting convection, Meteorol. Appl., 20, 417–426,
https://doi.org/10.1002/met.1300, 2013. a, b
Thuburn, J. and White, A. A.: A geometrical view of the shallow-atmosphere
approximation, with application to the semi-Lagrangian departure point
calculation, Q. J. Roy. Meteor. Soc., 139, 261–268, https://doi.org/10.1002/qj.1962,
2013. a
Van Weverberg, K., Boutle, I. A., Morcrette, C. J., and Newsom, R. K.: Towards
retrieving critical relative humidity from ground-based remote-sensing
observations, Q. J. Roy. Meteor. Soc., 142, 2867–2881,
https://doi.org/10.1002/qj.2874, 2016. a
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011. a, b
Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P. R., Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R., Bellouin, N., Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman, S. C., Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M., Milton, S. F., Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and Vidale, P. L.: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations, Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, 2014. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.
a, b, c, d, e, f
Wilkinson, J. M.: A Technique for Verification of Convection-Permitting NWP
Model Deterministic Forecasts of Lightning Activity, Weather Forecast.,
32, 97–115, https://doi.org/10.1175/WAF-D-16-0106.1, 2017. a, b
Wilkinson, J. M. and Bornemann, F. J.: A lightning forecast for the London 2012
Olympics opening ceremony, Weather, 69, 16–19, https://doi.org/10.1002/wea.2176, 2014. a, b
Wilkinson, J. M., Porson, A. N. F., Bornemann, F. J., Weeks, M., Field, P. R.,
and Lock, A. P.: Improved microphysical parametrization of drizzle and fog
for operational forecasting using the Met Office Unified Model, Q. J. Roy. Meteor. Soc., 139, 488–500, https://doi.org/10.1002/qj.1975, 2013. a, b, c, d
Wilson, D. R. and Ballard, S. P.: A microphysically based precipitation scheme
for the UK Meteorological Office Unified Model, Q. J. Roy. Meteor. Soc.,
125, 1607–1636, https://doi.org/10.1002/qj.49712555707, 1999. a
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and
Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation scheme.
I: Scheme description, Q. J. Roy. Meteor. Soc., 134, 2093–2107,
https://doi.org/10.1002/qj.333, 2008a. a, b
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., Morcrette,
C. J., and Bodas-Salcedo, A.: PC2: A prognostic cloud fraction and
condensation scheme. II: Climate model simulations, Q. J. Roy. Meteor. Soc.,
134, 2109–2125, https://doi.org/10.1002/qj.332, 2008b. a
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a, b, c
Wood, R. and Field, P. R.: Relationships between Total Water, Condensed Water
and Cloud Fraction in Stratiform Clouds Examined Using Aircraft Data, J.
Atmos. Sci., 57, 1888–1905, 2000. a
Zerroukat, M. and Allen, T.: On the monotonic and conservative transport on
overset/Yin-Yang grids, J. Comput. Phys., 302, 285–299,
https://doi.org/10.1016/j.jcp.2015.09.006, 2015. a
Zerroukat, M. and Shipway, B.: ZLF (Zero Lateral Flux): a simple mass
conservation method for semi-Lagrangian-based limited-area models, Q. J. Roy.
Meteor. Soc., 143, 2578–2584, https://doi.org/10.1002/qj.3108, 2017. a, b, c
Short summary
In this paper we define the first Regional Atmosphere and Land (RAL) science configuration for kilometre-scale modelling using the Unified Model (UM) as the basis for the atmosphere and the Joint UK Land Environment Simulator (JULES) for the land. RAL1 defines the science configuration of the dynamics and physics schemes of the atmosphere and land. This configuration will provide a model baseline for any future weather or climate model developments to be described against.
In this paper we define the first Regional Atmosphere and Land (RAL) science configuration for...