Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1545-2020
https://doi.org/10.5194/gmd-13-1545-2020
Model evaluation paper
 | 
26 Mar 2020
Model evaluation paper |  | 26 Mar 2020

P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production

Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice

Related authors

Leaf habit and nutrient availability drive leaf nutrient resorption globally
Gabriela Sophia, Silvia Caldararu, Benjamin Stocker, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-687,https://doi.org/10.5194/egusphere-2024-687, 2024
Short summary
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023,https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
An effective machine learning approach for predicting ecosystem CO2 assimilation across space and time
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826,https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022,https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
N2O changes from the Last Glacial Maximum to the preindustrial – Part 2: terrestrial N2O emissions and carbon–nitrogen cycle interactions
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020,https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary

Related subject area

Biogeosciences
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024,https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
In silico calculation of soil pH by SCEPTER v1.0
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024,https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024,https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
A global behavioural model of human fire use and management: WHAM! v1.0
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024,https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024,https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary

Cited articles

Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak, R., and Janouš, D.: Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe – from boreal to alpine forest, Geoderma, 192, 295–303, https://doi.org/10.1016/j.geoderma.2012.08.027, 2013. a
Adams, W. W., Zarter, C. R., Ebbert, V., and Demmig-Adams, B.: Photoprotective Strategies of Overwintering Evergreens, Biosci., 54, 41–49, 2004. a
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the nitrogen and carbon budget of two managed temperate grassland fields, Agr. Ecosyst. Environ., 133, 150–162, https://doi.org/10.1016/j.agee.2009.05.006, 2009. a
Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N.: Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa, Biogeosci., 6, 251–266, https://doi.org/10.5194/bg-6-251-2009, 2009. a
Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M.: Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan, Carb. Bal. Manage., 3, 7, https://doi.org/10.1186/1750-0680-3-7, 2008. a
Download
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).