Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1545-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-1545-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
CREAF, Campus UAB, 08193 Bellaterra, Catalonia, Spain
Earth System Science, Stanford University, Stanford, CA 94305, USA
Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH, Universitätsstrasse 2, 8092 Zürich, Switzerland
Department of Earth System Science, Tsinghua University, Haidian, Beijing, 100084, China
Nicholas G. Smith
Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
Sandy P. Harrison
Geography and Environmental Science, Reading University, Reading, RG6 6AH, UK
Trevor F. Keenan
Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA 94709, USA
Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA 94720, USA
David Sandoval
AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
Tyler Davis
AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
Center for Geospatial Analysis, The College of William & Mary, Williamsburg, VA 23185, USA
I. Colin Prentice
AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
Department of Earth System Science, Tsinghua University, Haidian, Beijing, 100084, China
Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
Related authors
Josefa Arán Paredes, Fabian Bernhard, Koen Hufkens, Mayeul Marcadella, and Benjamin D. Stocker
Geosci. Model Dev., 18, 9855–9878, https://doi.org/10.5194/gmd-18-9855-2025, https://doi.org/10.5194/gmd-18-9855-2025, 2025
Short summary
Short summary
Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse conditions. Here, we demonstrate and evaluate the rsofun R package, which provides a computationally efficient implementation of the P-model for site-scale simulations of ecosystem photosynthesis. Bayesian model fitting to observed fluxes and traits and evaluation on an independent test data set indicated robust calibration and unbiased prediction capabilities.
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
Biogeosciences, 22, 7455–7481, https://doi.org/10.5194/bg-22-7455-2025, https://doi.org/10.5194/bg-22-7455-2025, 2025
Short summary
Short summary
Our work addresses the predictability of carbon absorption by ecosystems across the globe, particularly in dry regions. We compare 3 different models, including a deep learning model that can learn from past environmental conditions, and show that this helps improve predictions. Still, challenges remain in dry areas due to varying vulnerabilities to drought. As drought conditions intensify globally, it's crucial to understand the varying impacts on ecosystem function.
Christoph von Matt, Benjamin Stocker, and Olivia Martius
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-383, https://doi.org/10.5194/essd-2025-383, 2025
Preprint under review for ESSD
Short summary
Short summary
Low flow conditions (hydrological droughts) in Switzerland pose challenges to agriculture and energy production. Improved understanding of droughts supports warning applications and infrastructure planning. The HYD-responses data set provides data to study the the evolution of drought conditions. The data set combines weather data, snow cover data, soil moisture data, and numerous drought indicators. The data set supports process studies, statistical analyses, and the training of AI models.
Inne Vanderkelen, Marie-Estelle Demoury, Sean Swenson, David M. Lawrence, Benjamin D. Stocker, Myke Koopmans, and Édouard L. Davin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2637, https://doi.org/10.5194/egusphere-2025-2637, 2025
Short summary
Short summary
Soil carbon sequestration supports climate mitigation and may enhance water availability. Using a global land model, we show that increased soil organic carbon improves water retention in the root zone and reduces runoff, particularly in dry, sandy regions. Although hydrological changes are modest, they are systematic and suggest co-benefits for vegetation productivity and ecosystem resilience in water-limited areas.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826, https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary
Short summary
Our research highlights the effectiveness of a recurrent neural network, LSTM, in predicting plant carbon absorption using weather and satellite data. LSTM outperforms other models, even for new locations, suggesting its broad application. Yet, challenges remain in predicting diverse ecosystems globally due to varying plant and climate factors. Our work enhances understanding of Earth's complex ecosystems using advanced models.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Josefa Arán Paredes, Fabian Bernhard, Koen Hufkens, Mayeul Marcadella, and Benjamin D. Stocker
Geosci. Model Dev., 18, 9855–9878, https://doi.org/10.5194/gmd-18-9855-2025, https://doi.org/10.5194/gmd-18-9855-2025, 2025
Short summary
Short summary
Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse conditions. Here, we demonstrate and evaluate the rsofun R package, which provides a computationally efficient implementation of the P-model for site-scale simulations of ecosystem photosynthesis. Bayesian model fitting to observed fluxes and traits and evaluation on an independent test data set indicated robust calibration and unbiased prediction capabilities.
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
Biogeosciences, 22, 7455–7481, https://doi.org/10.5194/bg-22-7455-2025, https://doi.org/10.5194/bg-22-7455-2025, 2025
Short summary
Short summary
Our work addresses the predictability of carbon absorption by ecosystems across the globe, particularly in dry regions. We compare 3 different models, including a deep learning model that can learn from past environmental conditions, and show that this helps improve predictions. Still, challenges remain in dry areas due to varying vulnerabilities to drought. As drought conditions intensify globally, it's crucial to understand the varying impacts on ecosystem function.
Jiahe Zheng, Zhengsen Xu, Rossella Arcucci, Sandy P. Harrison, Lincoln Linlin Xu, and Sibo Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-4007, https://doi.org/10.5194/egusphere-2025-4007, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We introduce the first AI model that predicts wildfire spread with the placement of both permanent and temporary firebreaks. Our spatiotemporal model learns from simulation data to capture how fire interacts with changing suppression efforts over time. Our model runs fast enough for near real-time use and performs well across different wildfire events. This approach could lead to better tools for helping decision-makers understand where and when firebreaks are most effective.
Jierong Zhao, Boya Zhou, Sandy P. Harrison, and Colin Prentice
Earth Syst. Dynam., 16, 1655–1669, https://doi.org/10.5194/esd-16-1655-2025, https://doi.org/10.5194/esd-16-1655-2025, 2025
Short summary
Short summary
We used eco-evolutionary optimality modelling to examine how climate and CO2 impacted vegetation at the Last Glacial Maximum (LGM; 21 000 years ago) and the mid-Holocene (MH; 6000 years ago). Low CO2 at the LGM was as important as climate in reducing tree cover and productivity and in increasing C4 plant abundance. Climate had positive effects on MH vegetation, but the low CO2 was a constraint on plant growth. These results show it is important to consider changing CO2 to model ecosystem changes.
Christoph von Matt, Benjamin Stocker, and Olivia Martius
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-383, https://doi.org/10.5194/essd-2025-383, 2025
Preprint under review for ESSD
Short summary
Short summary
Low flow conditions (hydrological droughts) in Switzerland pose challenges to agriculture and energy production. Improved understanding of droughts supports warning applications and infrastructure planning. The HYD-responses data set provides data to study the the evolution of drought conditions. The data set combines weather data, snow cover data, soil moisture data, and numerous drought indicators. The data set supports process studies, statistical analyses, and the training of AI models.
Luke Sweeney, Sandy P. Harrison, and Marc Vander Linden
Biogeosciences, 22, 4903–4922, https://doi.org/10.5194/bg-22-4903-2025, https://doi.org/10.5194/bg-22-4903-2025, 2025
Short summary
Short summary
Changes in tree cover across Europe during the Holocene are reconstructed from fossil pollen data using a model developed with modern observations of tree cover and modern pollen assemblages. There is a rapid increase in tree cover after the last glacial period, with maximum cover during the mid-Holocene and a decline thereafter; the timing of the maximum and the speed of the increase and subsequent decrease vary regionally, likely reflecting differences in climate trajectories and human influence.
Joseph Ovwemuvwose, Ian Colin Prentice, and Heather Graven
EGUsphere, https://doi.org/10.5194/egusphere-2025-3785, https://doi.org/10.5194/egusphere-2025-3785, 2025
Short summary
Short summary
This work examines the role of cropland representation and the treatment of photosynthetic pathways in the uncertainties in the carbon flux simulations in Earth System Models (ESMs). Our results show that reducing these uncertainties will require improvement of the representation of C3 and C4 crops and natural vegetation area coverage as well as the theories underpinning the simulation of their carbon uptake and storage processes.
Inne Vanderkelen, Marie-Estelle Demoury, Sean Swenson, David M. Lawrence, Benjamin D. Stocker, Myke Koopmans, and Édouard L. Davin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2637, https://doi.org/10.5194/egusphere-2025-2637, 2025
Short summary
Short summary
Soil carbon sequestration supports climate mitigation and may enhance water availability. Using a global land model, we show that increased soil organic carbon improves water retention in the root zone and reduces runoff, particularly in dry, sandy regions. Although hydrological changes are modest, they are systematic and suggest co-benefits for vegetation productivity and ecosystem resilience in water-limited areas.
Amin Hassan, Iain Colin Prentice, and Xu Liang
EGUsphere, https://doi.org/10.5194/egusphere-2025-622, https://doi.org/10.5194/egusphere-2025-622, 2025
Short summary
Short summary
Evapotranspiration (ET) is the evaporation occurring from plants, soil, and water bodies. Separating these components is challenging due to the lack of measurements and uncertainty of existing ET partitioning methods. We propose a method that utilizes hydrological measurements such as streamflow to determine the ratio of transpiration (evaporation from plants) to evapotranspiration. The results provide a better understanding of plant-water interactions and new perspective on a challenging topic.
Kieran M. R. Hunt and Sandy P. Harrison
Clim. Past, 21, 1–26, https://doi.org/10.5194/cp-21-1-2025, https://doi.org/10.5194/cp-21-1-2025, 2025
Short summary
Short summary
In this study, we train machine learning models on tree rings, speleothems, and instrumental rainfall to estimate seasonal monsoon rainfall over India over the last 500 years. Our models highlight multidecadal droughts in the mid-17th and 19th centuries, and we link these to historical famines. Using techniques from explainable AI (artificial intelligence), we show that our models use known relationships between local hydroclimate and the monsoon circulation.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Mengmeng Liu, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-12, https://doi.org/10.5194/cp-2024-12, 2024
Revised manuscript under review for CP
Short summary
Short summary
Dansgaard-Oeschger events were large and rapid warming events that occurred multiple times during the last ice age. We show that changes in the northern extratropics and the southern extratropics were anti-phased, with warming over most of the north and cooling in the south. The reconstructions do not provide evidence for a change in seasonality in temperature. However, they do indicate that warming was generally accompanied by wetter conditions and cooling by drier conditions.
Huiying Xu, Han Wang, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 4511–4525, https://doi.org/10.5194/bg-20-4511-2023, https://doi.org/10.5194/bg-20-4511-2023, 2023
Short summary
Short summary
Leaf carbon (C) and nitrogen (N) are crucial elements in leaf construction and physiological processes. This study reconciled the roles of phylogeny, species identity, and climate in stoichiometric traits at individual and community levels. The variations in community-level leaf N and C : N ratio were captured by optimality-based models using climate data. Our results provide an approach to improve the representation of leaf stoichiometry in vegetation models to better couple N with C cycling.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826, https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary
Short summary
Our research highlights the effectiveness of a recurrent neural network, LSTM, in predicting plant carbon absorption using weather and satellite data. LSTM outperforms other models, even for new locations, suggesting its broad application. Yet, challenges remain in predicting diverse ecosystems globally due to varying plant and climate factors. Our work enhances understanding of Earth's complex ecosystems using advanced models.
Giulia Mengoli, Sandy P. Harrison, and I. Colin Prentice
EGUsphere, https://doi.org/10.5194/egusphere-2023-1261, https://doi.org/10.5194/egusphere-2023-1261, 2023
Preprint archived
Short summary
Short summary
Soil water availability affects plant carbon uptake by reducing leaf area and/or by closing stomata, which reduces its efficiency. We present a new formulation of how climatic dryness reduces both maximum carbon uptake and the soil-moisture threshold below which it declines further. This formulation illustrates how plants adapt their water conservation strategy to thrive in dry climates, and is step towards a better representation of soil-moisture effects in climate models.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Cited articles
Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak,
R., and Janouš, D.: Soil surface CO2 efflux measurements in Norway
spruce forests: Comparison between four different sites across Europe
– from boreal to alpine forest, Geoderma, 192, 295–303,
https://doi.org/10.1016/j.geoderma.2012.08.027, 2013. a
Adams, W. W., Zarter, C. R., Ebbert, V., and Demmig-Adams, B.: Photoprotective Strategies of Overwintering Evergreens, Biosci., 54, 41–49, 2004. a
Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of the nitrogen
and carbon budget of two managed temperate grassland fields, Agr.
Ecosyst. Environ., 133, 150–162, https://doi.org/10.1016/j.agee.2009.05.006, 2009. a
Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N.: Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa, Biogeosci., 6, 251–266, https://doi.org/10.5194/bg-6-251-2009, 2009. a
Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M.: Seasonal
variation of carbon fluxes in a sparse savanna in semi arid Sudan, Carb.
Bal. Manage., 3, 7, https://doi.org/10.1186/1750-0680-3-7, 2008. a
Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P.,
Bonal, D., Bönisch, G., Bradford, M. G., Cernusak, L. A., Cosio, E. G.,
Creek, D., Crous, K. Y., Domingues, T. F., Dukes, J. S., Egerton, J. J. G.,
Evans, J. R., Farquhar, G. D., Fyllas, N. M., Gauthier, P. P. G., Gloor, E.,
Gimeno, T. E., Griffin, K. L., Guerrieri, R., Heskel, M. A., Huntingford, C.,
Ishida, F. Y., Kattge, J., Lambers, H., Liddell, M. J., Lloyd, J., Lusk,
C. H., Martin, R. E., Maksimov, A. P., Maximov, T. C., Malhi, Y., Medlyn,
B. E., Meir, P., Mercado, L. M., Mirotchnick, N., Ng, D., Niinemets, U.,
O'Sullivan, O. S., Phillips, O. L., Poorter, L., Poot, P., Prentice, I. C.,
Salinas, N., Rowland, L. M., Ryan, M. G., Sitch, S., Slot, M., Smith, N. G.,
Turnbull, M. H., VanderWel, M. C., Valladares, F., Veneklaas, E. J.,
Weerasinghe, L. K., Wirth, C., Wright, I. J., Wythers, K. R., Xiang, J.,
Xiang, S., and Zaragoza-Castells, J.: Global variability in leaf respiration
in relation to climate, plant functional types and leaf traits, New
Phytol., 206, 614–636, https://doi.org/10.1111/nph.13253,
2015. a
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and
Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the
Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315,
https://doi.org/10.1016/s0168-1923(01)00244-1, 2001. a
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance
and terrestrial photosynthesis, Sci. Adv., 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. a
Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao, J., Wenk,
R., and Battles, J.: The Dynamics of Energy, Water, and Carbon Fluxes in a
Blue Oak (Quercus douglasii) Savanna in California, in: Ecosystem
Function in Savannas, 135–151, CRC Press, https://doi.org/10.1201/b10275-10, 2010. a
Ball, J. T., Timothy Ball, J., Woodrow, I. E., and Berry, J. A.: A Model
Predicting Stomatal Conductance and its Contribution to the Control of
Photosynthesis under Different Environmental Conditions, in: Progress in
Photosynthesis Research, 221–224, 1987. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification maps
at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018. a
Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D.,
Soussana, J.-F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens,
I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H.,
Vesala, T., Williams, C. A., and Wohlfahrt, G.: Temporal and among-site
variability of inherent water use efficiency at the ecosystem level, Global
Biogeochem. Cy., 23, GB2018, https://doi.org/10.1029/2008GB003233,
2009. a
Belelli Marchesini, L., Papale, D., Reichstein, M., Vuichard, N., Tchebakova, N., and Valentini, R.: Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach, Biogeosciences, 4, 581–595, https://doi.org/10.5194/bg-4-581-2007, 2007. a
Berberan-Santos, M. N., Bodunov, E. N., and Pogliani, L.: On the barometric
formula, Am. J. Phys., 65, 404–412, 1997. a
Berbigier, P., Bonnefond, J.-M., and Mellmann, P.: CO2 and water vapour
fluxes for 2 years above Euroflux forest site, Agr. Forest
Meteorol., 108, 183–197, https://doi.org/10.1016/s0168-1923(01)00240-4, 2001. a
Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr,
A. G., and Wofsy, S. C.: Comparison of carbon dioxide fluxes over three
boreal black spruce forests in Canada, Global Change Biol., 13, 89–107,
https://doi.org/10.1111/j.1365-2486.2006.01281.x, 2007. a
Beringer, J., Hacker, J., Hutley, L. B., Leuning, R., Arndt, S. K., Amiri, R.,
Bannehr, L., Cernusak, L. A., Grover, S., Hensley, C., Hocking, D., Isaac,
P., Jamali, H., Kanniah, K., Livesley, S., Neininger, B., U, K. T. P., Sea,
W., Straten, D., Tapper, N., Weinmann, R., Wood, S., and Zegelin, S.:
SPECIAL–Savanna Patterns of Energy and Carbon Integrated across
the Landscape, B. Am. Meteorol. Soc., 92,
1467–1485, https://doi.org/10.1175/2011bams2948.1, 2011a. a
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P.:
Patterns and processes of carbon, water and energy cycles across northern
Australian landscapes: From point to region, Agr. Forest
Meteorol., 151, 1409–1416, https://doi.org/10.1016/j.agrformet.2011.05.003,
2011b. a
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P.:
Patterns and processes of carbon, water and energy cycles across northern
Australian landscapes: From point to region, Agr. Forest
Meteorol., 151, 1409–1416, https://doi.org/10.1016/j.agrformet.2011.05.003,
2011c. a
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016. a, b, c, d
Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R., Litvak, M. E.,
Kolb, T. E., Yepez, E. A., Oechel, W. C., Blanken, P. D., Bell, T. W.,
Garatuza-Payan, J., Maurer, G. E., Dore, S., and Burns, S. P.: Terrestrial
carbon balance in a drier world: the effects of water availability in
southwestern North America, Global Change Biol., 22, 1867–1879,
https://doi.org/10.1111/gcb.13222,
2016. a
Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P.,
Bonnefond, J.-M., Elbers, J., Longdoz, B., Epron, D., Guehl, J.-M., and
Granier, A.: Impact of severe dry season on net ecosystem exchange in the
Neotropical rainforest of French Guiana, Global Change Biol., 14,
1917–1933, https://doi.org/10.1111/j.1365-2486.2008.01610.x, 2008. a
Bowling, D. R., Bethers-Marchetti, S., Lunch, C. K., Grote, E. E., and Belnap,
J.: Carbon, water, and energy fluxes in a semiarid cold desert grassland
during and following multiyear drought, J. Geophys. Res., 115, G4,
https://doi.org/10.1029/2010jg001322, 2010. a
Bristow, M., Hutley, L. B., Beringer, J., Livesley, S. J., Edwards, A. C., and Arndt, S. K.: Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia, Biogeosciences, 13, 6285–6303, https://doi.org/10.5194/bg-13-6285-2016, 2016. a
Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A., and Turner, B. L.:
Photosynthetic physiology of eucalypts along a sub-continental rainfall
gradient in northern Australia, Agr. Forest Meteorol., 151,
1462–1470, https://doi.org/10.1016/j.agrformet.2011.01.006, 2011. a
Chen, B., Liu, J., Chen, J. M., Croft, H., Gonsamo, A., He, L., and Luo, X.:
Assessment of foliage clumping effects on evapotranspiration estimates in
forested ecosystems, Agr. Forest Meteorol., 216, 82–92,
https://doi.org/10.1016/j.agrformet.2015.09.017,
2016. a, b, c
Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X.: Energy balance and partition in Inner Mongolia steppe ecosystems with
different land use types, Agr. Forest Meteorol., 149,
1800–1809, https://doi.org/10.1016/j.agrformet.2009.06.009, 2009. a
Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E.,
Tirone, G., Matteucci, G., and Seufert, G.: Modelling carbon budget of
Mediterranean forests using ground and remote sensing measurements,
Agr. Forest Meteorol., 135, 22–34,
https://doi.org/10.1016/j.agrformet.2005.09.011, 2005. a
Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C.,
Cook, P. G., Yu, Q., Leigh, A., and Eamus, D.: Dynamics of component carbon
fluxes in a semi-arid Acacia woodland, central Australia, J.
Geophys. Res.-Biogeosci., 118, 1168–1185,
https://doi.org/10.1002/jgrg.20101, 2013. a
Cleverly, J., Eamus, D., Van Gorsel, E., Chen, C., Rumman, R., Luo, Q.,
Coupe, N. R., Li, L., Kljun, N., Faux, R., Yu, Q., and Huete, A.:
Productivity and evapotranspiration of two contrasting semiarid ecosystems
following the 2011 global carbon land sink anomaly, Agr. Forest
Meteorol., 220, 151–159, https://doi.org/10.1016/j.agrformet.2016.01.086,
2016. a
Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger, B. W., Teclaw, R. M.,
Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C., and Heilman, W.: Carbon
exchange and venting anomalies in an upland deciduous forest in northern
Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295,
https://doi.org/10.1016/j.agrformet.2004.06.008, 2004. a
Cowan, I. R. and Farquhar, G. D.: Stomatal function in relation to leaf
metabolism and environment, Symp. Soc. Exp. Biol., 31, 471–505, 1977. a
Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whitley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M. T., and Cramer, W.: Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture, Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, 2017. a, b
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variability of wood
growth in a temperate oak forest, New Phytol., 210, 459–470,
https://doi.org/10.1111/nph.13771,
2015. a
Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J., and Carey, E. V.:
Comparing net ecosystem exchange of carbon dioxide between an old-growth and
mature forest in the upper Midwest, USA, Agr. Forest
Meteorol., 128, 33–55, https://doi.org/10.1016/j.agrformet.2004.09.005, 2005. a
Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews,
A. E., Cook, B. D., King, J. Y., and Kolka, R.: Landscape-level terrestrial
methane flux observed from a very tall tower, Agr. Forest
Meteorol., 201, 61–75, https://doi.org/10.1016/j.agrformet.2014.10.017, 2015. a
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015. a
Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grimmond, C. S. B., and Randolph, J. C.: Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA, Global Change Biol., 17, 886–897,
https://doi.org/10.1111/j.1365-2486.2010.02281.x, 2011. a
Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C.: A
long-term record of carbon exchange in a boreal black spruce forest: means,
responses to interannual variability, and decadal trends, Global Change
Biol., 13, 577–590, https://doi.org/10.1111/j.1365-2486.2006.01221.x, 2007. a
Egea, G., Verhoef, A., and Vidale, P. L.: Towards an improved and more flexible
representation of water stress in coupled photosynthesis–stomatal
conductance models, Agr. Forest Meteorol., 151, 1370–1384, 2011. a
Ensminger, I., Sveshnikov, D., Campbell, D. A., Funk, C., Jansson, S., Lloyd,
J., Shibistova, O., and Öquist, G.: Intermittent low temperatures constrain
spring recovery of photosynthesis in boreal Scots pine forests, Global Change
Biol., 10, 995–1008, https://doi.org/10.1111/j.1365-2486.2004.00781.x,
2004. a
Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P.,
Häsler, R., Eugster, W., and Buchmann, N.: The Carbon Balance of Two
Contrasting Mountain Forest Ecosystems in Switzerland: Similar Annual
Trends, but Seasonal Differences, Ecosystems, 14, 1289–1309,
https://doi.org/10.1007/s10021-011-9481-3, 2011. a
Falge, E., Aubinet, M., Bakwin, P. S., Baldocchi, D., Berbigier, P., Bernhofer,
C., Black, T. A., Ceulemans, R., Davis, K. J., Dolman, A. J., Goldstein, A.,
Goulden, M. L., Granier, A., Hollinger, D. Y., Jarvis, P. G., Jensen, N.,
Pilegaard, K., Katul, G., Kyaw Tha Paw, P., Law, B. E., Lindroth, A.,
Loustau, D., Mahli, Y., Monson, R., Moncrieff, P., Moors, E., Munger, J. W.,
Meyers, T., Oechel, W., Schulze, E. d., Thorgeirsson, H., Tenhunen, J.,
Valentini, R., Verma, S. B., Vesala, T., and Wofsy, S. C.: FLUXNET Research
Network Site Characteristics, Investigators, and Bibliography, 2016,
https://doi.org/10.3334/ornldaac/1530, 2017. a, b
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table
Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881, 2013. a
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal,
C.: Hydrologic regulation of plant rooting depth, P. Natl.
Acad. Sci. USA, 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017. a
Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.: Simultaneous
measurements of above and below canopy ozone fluxes help partitioning ozone
deposition between its various sinks in a Mediterranean Oak Forest,
Agr. Forest Meteorol., 198-199, 181–191,
https://doi.org/10.1016/j.agrformet.2014.08.014, 2014. a
Farquhar, G. D. and Wong, S. C.: An Empirical Model of Stomatal Conductance,
Funct. Plant Biol., 11, 191–210,
https://doi.org/10.1071/PP9840191, 1984. a
Ferréa, C., Zenone, T., Comolli, R., and Seufert, G.: Estimating
heterotrophic and autotrophic soil respiration in a semi-natural forest of
Lombardy, Italy, Pedobiologia, 55, 285–294,
https://doi.org/10.1016/j.pedobi.2012.05.001, 2012. a
Fick, A.: Ueber Diffusion, Ann. Phys., 170, 59–86,
https://doi.org/10.1002/andp.18551700105,
1855. a
Field, C. B., Randerson, J. T., and Malmström, C. M.: Global net primary
production: Combining ecology and remote sensing, Remote Sens.
Environ., 51, 74–88,
https://doi.org/10.1016/0034-4257(94)00066-V,
1995. a
Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., and Negrón,
J. F.: Ecosystem CO2∕H2O fluxes are explained by hydraulically limited
gas exchange during tree mortality from spruce bark beetles, J.
Geophys. Res.-Biogeosci., 119, 1195–1215,
https://doi.org/10.1002/2013jg002597, 2014. a
Frankenberg, C., Köhler, P., Magney, T. S., Geier, S., Lawson, P.,
Schwochert, M., McDuffie, J., Drewry, D. T., Pavlick, R., and Kuhnert, A.:
The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red
fluorescence from aircraft, Remote Sens. Environ., 217, 523–536, 2018. a
Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa,
G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M., and Migliavacca,
M.: Phenology and carbon dioxide source/sink strength of a subalpine
grassland in response to an exceptionally short snow season, Environ.
Res. Lett., 8, 025008, https://doi.org/10.1088/1748-9326/8/2/025008, 2013. a
Gamon, J., Peñuelas, J., and Field, C.: A narrow-waveband spectral index
that tracks diurnal changes in photosynthetic efficiency, Remote Sens.
Environ., 41, 35–44,
https://doi.org/10.1016/0034-4257(92)90059-S, 1992. a
Gamon, J. A., Huemmrich, K. F., Wong, C. Y. S., Ensminger, I., Garrity, S.,
Hollinger, D. Y., Noormets, A., and Peñuelas, J.: A remotely sensed
pigment index reveals photosynthetic phenology in evergreen conifers,
P. Natl. Acad. Sci. USA, 113, 13087–13092,
https://doi.org/10.1073/pnas.1606162113, 2016. a
Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek, J., Xu, M., Qi,
Y., Guenther, A., and Baugh, W.: Effects of climate variability on the carbon
dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in
the Sierra Nevada (CA), Agr. Forest Meteorol., 101,
113–129, https://doi.org/10.1016/s0168-1923(99)00168-9, 2000. a
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel,
C. S., Nadelhoffer, K. J., and Curtis, P. S.: Sustained carbon uptake and
storage following moderate disturbance in a Great Lakes forest,
Ecol. Appl., 23, 1202–1215, https://doi.org/10.1890/12-1554.1, 2013. a, b
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci, 7, 716–721, https://doi.org/10.1038/ngeo2247, 2014. a
Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux
measurements of an old spruce forest at the Anchor Station Tharandt,
Tellus B, 59, 387–396, https://doi.org/10.3402/tellusb.v59i3.17000, 2007. a
Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun, X.-M., and
Jin, C.-J.: CO2 fluxes over an old, temperate mixed forest in northeastern
China, Agr. Forest Meteorol., 137, 138–149,
https://doi.org/10.1016/j.agrformet.2006.02.003, 2006. a
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Susan Moran, M.,
Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D.,
Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and
time-resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333, 2014. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset,
Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014. a
He, L., Chen, J. M., Gonsamo, A., Luo, X., Wang, R., Liu, Y., and Liu, R.:
Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon
and Water Cycles Under Climate Change, Geophys. Res. Lett., 45,
5052–5061, https://doi.org/10.1029/2018GL077560,
2018. a, b, c, d
Heinsch, F. A., , Running, S. W., Kimball, J. S., Nemani, R. R.,
Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto,
D. M., Law, B. E., Oechel, W. C., Wofsy, S. C., Dunn, A. L.,
Munger, J. W., Baldocchi, D. D., Hollinger, D. Y., Richardson,
A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P., and Flanagan, L. B.: Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations, IEEE Trans. Geosci. Remote Sens., 44, 1908–1925,
https://doi.org/10.1109/TGRS.2005.853936, 2006. a
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km–global soil information based on
automated mapping, PLoS One, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014. a, b
Heskel, M., O'Sullivan, O., Reich, P., Tjoelker, M., Weerasinghe, L.,
Penillard, A., Egerton, J., Creek, D., Bloomfield, K., Xiang, J., Sinca, F.,
Stangl, Z., Martinez-De La Torre, A., Griffin, K., Huntingford, C., Hurry,
V., Meir, P., Turnbull, M., and Atkin, O.: Convergence in the temperature
response of leaf respiration across biomes and plant functional types,
P. Natl. Acad. Sci. USA, 113, 3832–3837, https://doi.org/10.1073/pnas.1520282113, 2016. a
Hinko-Najera, N., Isaac, P., Beringer, J., van Gorsel, E., Ewenz, C., McHugh, I., Exbrayat, J.-F., Livesley, S. J., and Arndt, S. K.: Net ecosystem carbon exchange of a dry temperate eucalypt forest, Biogeosciences, 14, 3781–3800, https://doi.org/10.5194/bg-14-3781-2017, 2017. a
Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco, A.,
Sicard, P., and Paoletti, E.: Stomatal conductance models for ozone risk
assessment at canopy level in two Mediterranean evergreen forests,
Agr. Forest Meteorol., 234-235, 212–221,
https://doi.org/10.1016/j.agrformet.2017.01.005, 2017. a
Hufkens, K.: khufkens/gee_subset: Google Earth Engine subset
script and library, https://doi.org/10.5281/zenodo.833789, 2017. a
Huner, N. P., Oquist, G., Hurry, V. M., Krol, M., Falk, S., and Griffith, M.:
Photosynthesis, photoinhibition and low temperature acclimation in cold
tolerant plants, Photosynth. Res., 37, 19–39, 1993. a
Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A.:
A sub-continental scale living laboratory: Spatial patterns of savanna
vegetation over a rainfall gradient in northern Australia, Agr.
Forest Meteorol., 151, 1417–1428, https://doi.org/10.1016/j.agrformet.2011.03.002, 2011. a
Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands, Biogeosciences, 10, 5931–5945, https://doi.org/10.5194/bg-10-5931-2013, 2013. a
Irvine, J., Law, B. E., and Hibbard, K. A.: Postfire carbon pools and fluxes in semiarid ponderosa pine in Central Oregon, Global Change Biol., 13,
1748–1760, https://doi.org/10.1111/j.1365-2486.2007.01368.x, 2007. a
Irvine, J., Law, B. E., Martin, J. G., and Vickers, D.: Interannual variation
in soil CO2 efflux and the response of root respiration to climate and
canopy gas exchange in mature ponderosa pine, Global Change Biol., 14,
2848–2859, https://doi.org/10.1111/j.1365-2486.2008.01682.x, 2008. a
Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-Uijl, A., and Veenendaal, E. M.: Variability of annual CO2 exchange from Dutch grasslands, Biogeosciences, 4, 803–816, https://doi.org/10.5194/bg-4-803-2007, 2007. a
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013. a
Joiner, J., Yoshida, Y., Guanter, L., and Middleton, E. M.: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939–3967, https://doi.org/10.5194/amt-9-3939-2016, 2016. a
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-Biogeosci., 116, g00J07, https://doi.org/10.1029/2010JG001566, 2011. a, b, c, d
Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.:
Temperature and biomass influences on interannual changes in CO2 exchange
in an alpine meadow on the Qinghai-Tibetan Plateau, Global Change
Biol., 12, 1285–1298, https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006. a
Keenan, T., Sabate, S., and Gracia, C.: Soil water stress and coupled
photosynthesis–conductance models: Bridging the gap between conflicting
reports on the relative roles of stomatal, mesophyll conductance and
biochemical limitations to photosynthesis, Agr. Forest Meteorol., 150,
443–453, 2010. a
Keenan, T., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragoni, D.,
Gough, C. M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B., McCaughey,
H., Raczka, B., Ryu, Y., Schaefer, K., Tian, H., Verbeeck, H., Zhao, M., and
Richardson, A. D.: Terrestrial biosphere model performance for inter-annual
variability of land-atmosphere CO2 exchange, Global Change Biol., 18,
1971–1987, https://doi.org/10.1111/j.1365-2486.2012.02678.x, 2012. a, b
Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., and Collatz, G. J.: Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake, Nat. Commun., 7, 13428, https://doi.org/10.1038/ncomms13428, 2016. a, b, c
Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M.,
Torn, M., and Wutzler, T.: Widespread inhibition of daytime ecosystem
respiration, Nat. Ecol. Evolut., 3, 407–415, https://doi.org/10.1038/s41559-019-0809-2, 2019. a
Kilinc, M., Beringer, J., Hutley, L. B., Tapper, N. J., and McGuire, D. A.:
Carbon and water exchange of the world's tallest angiosperm forest,
Agr. Forest Meteorol., 182–183, 215–224,
https://doi.org/10.1016/j.agrformet.2013.07.003, 2013. a
Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large carbon uptake by
an unmanaged 250-year-old deciduous forest in Central Germany, Agr. Forest Meteorol., 118, 151–167, https://doi.org/10.1016/s0168-1923(03)00115-1, 2003. a
Kok, B.: On the interrelation of respiration and photosynthesis in green
plants, Biochim. Biophys. Acta, 3, 625–631,
https://doi.org/10.1016/0006-3002(49)90136-5,
1949. a
Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.: Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia, Biogeosciences, 5, 969–980, https://doi.org/10.5194/bg-5-969-2008, 2008. a
Landsberg, J. J. and Waring, R. H.: A generalised model of forest productivity
using simplified concepts of radiation-use efficiency, carbon balance and
partitioning, For. Ecol. Manage., 95, 209–228, 1997. a
Lasslop, G., Reichstein, M., Papale, D., Richardson, A., Arneth, A., Barr, A.,
Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into
assimilation and respiration using a light response curve approach: critical
issues and global evaluation, Global Change Biol., 16, 187–208,
https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010. a, b
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model
for C3 plants, Plant Cell Environ., 18, 339–355, 1995. a
Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D.: Carbon and water
fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in
Australia: measurements and comparison with MODIS remote sensing
estimates, Agr. Forest Meteorol., 129, 151–173,
https://doi.org/10.1016/j.agrformet.2004.12.004, 2005. a
Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., Emmel,
C., Hollinger, D. Y., Krasnova, A., Mammarella, I., Noe, S. M., Ortiz, P. S.,
Rey-Sanchez, A. C., Rocha, A. V., and Varlagin, A.: Solar-induced chlorophyll
fluorescence is strongly correlated with terrestrial photosynthesis for a
wide variety of biomes: First global analysis based on OCO-2 and flux tower
observations, Glob. Chang. Biol., 24, 3990–4008, https://doi.org/10.1111/gcb.14297, 2018. a
Lindauer, M., Schmid, H., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert,
B.: Net ecosystem exchange over a non-cleared wind-throw-disturbed upland
spruce forest–Measurements and simulations, Agr.
Forest Meteorol., 197, 219–234, https://doi.org/10.1016/j.agrformet.2014.07.005, 2014. a
Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 assimilation by
the terrestrial biosphere, Oecologia, 99, 201–215, https://doi.org/10.1007/BF00627732, 1994. a
Long, S. P., Postl, W. F., and Bolhár-Nordenkampf, H. R.: Quantum yields
for uptake of carbon dioxide in C3 vascular plants of contrasting habitats
and taxonomic groupings, Planta, 189, 226–234, 1993. a
Luo, X., Keenan, T. F., Fisher, J. B., Jiménez-Muñoz, J.-C., Chen, J. M.,
Jiang, C., Ju, W., Perakalapudi, N.-V., Ryu, Y., and Tadić, J. M.: The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing, Philos. Trans. Roy. Soc. B, 373, 20170409, https://doi.org/10.1098/rstb.2017.0409,
2018. a, b
Ma, S., Baldocchi, D. D., Xu, L., and Hehn, T.: Inter-annual variability in
carbon dioxide exchange of an oak/grass savanna and open grassland in
California, Agr. Forest Meteorol., 147, 157–171,
https://doi.org/10.1016/j.agrformet.2007.07.008, 2007. a
MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006. a
Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., and Nikinmaa,
E.: Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature, Tree Physiol., 24, 369–376, 2004. a
Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy Architecture and Turbulence
Structure in a Coniferous Forest, Bound.-Layer Meteorol., 108, 39–59,
https://doi.org/10.1023/a:1023027709805,
2003a. a
Marcolla, B., Pitacco, A., and Cescatti, A.: Canopy Architecture and Turbulence
Structure in a Coniferous Forest, Bound.-Layer Meteorol., 108, 39–59,
https://doi.org/10.1023/a:1023027709805,
2003b. a
Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A.,
Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R.: Climatic
controls and ecosystem responses drive the inter-annual variability of the
net ecosystem exchange of an alpine meadow, Agr. Forest
Meteorol., 151, 1233–1243, https://doi.org/10.1016/j.agrformet.2011.04.015, 2011. a
Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S.: Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East, Agr. Forest
Meteorol., 148, 1978–1989, https://doi.org/10.1016/j.agrformet.2008.09.008, 2008. a, b
McHugh, I. D., Beringer, J., Cunningham, S. C., Baker, P. J., Cavagnaro, T. R., Mac Nally, R., and Thompson, R. M.: Interactions between nocturnal turbulent flux, storage and advection at an “deal” eucalypt woodland site, Biogeosciences, 14, 3027–3050, https://doi.org/10.5194/bg-14-3027-2017, 2017. a
McNevin, D., von Caemmerer, S., and Farquhar, G.: Determining RuBisCO
activation kinetics and other rate and equilibrium constants by simultaneous
multiple non-linear regression of a kinetic model, J. Exp. Bot., 57,
3883–3900, 2006. a
Medlyn, B. E.: Physiological basis of the light use efficiency model, Tree
Physiol., 18, 167–176, 1998. a
Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B., and Reginato, R. J.:
A Generalized Relationship between Photosynthetically Active Radiation and
Solar Radiation1, Agron. J., 76, 939–945, 1984. a
Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Le Dantec, V., Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L.: Precipitation as driver of carbon fluxes in 11 African ecosystems, Biogeosciences, 6, 1027–1041, https://doi.org/10.5194/bg-6-1027-2009, 2009. a
Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann,
N.: Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed
grassland following restoration, Global Change Biol., 20, 1913–1928,
https://doi.org/10.1111/gcb.12518,
2014. a
Meyer, W. S., Kondrlovà, E., and Koerber, G. R.: Evaporation of perennial
semi-arid woodland in southeastern Australia is adapted for irregular but
common dry periods, Hydrol. Process., 29, 3714–3726,
https://doi.org/10.1002/hyp.10467,
2015. a
Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., and
Enquist, B. J.: Plant Thermoregulation: Energetics, Trait-Environment
Interactions, and Carbon Economics, Trends Ecol. Evol., 30, 714–724, 2015. a
Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci,
G., Manca, G., and Seufert, G.: Modeling Gross Primary Production of
Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in
a Process-Based Model, Sensors, 9, 922–942, https://doi.org/10.3390/s90200922, 2009. a
Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton,
L. E., Sparks, K., and Huxman, T. E.: Carbon sequestration in a
high-elevation, subalpine forest, Global Change Biol., 8, 459–478,
https://doi.org/10.1046/j.1365-2486.2002.00480.x, 2002. a
Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter,
C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L., Minerbi, S.,
Mölder, M., Pavelka, M., Seufert, G., Zeri, M., and Ziegler, W.: A new mass
conservation approach to the study of CO2 advection in an alpine forest,
J. Geophys. Res., 114, D07306, https://doi.org/10.1029/2008jd010650, 2009. a
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems,
J. Appl. Ecol., 9, 747–766, 1972. a
Moors, E.: Water Use of Forests in The Netherlands, Ph.D. thesis, Vrije
Universiteit Amsterdam, 2012. a
Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A3H MODIS/Combined Terra+Aqua
Leaf Area Index/FPAR Daily L4 Global 500 m SIN Grid V006, Data set, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015. a
Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V006, Data set, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD15A2H.006, 2020. a
Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park,
H., Sugiura, K., and Ito, A.: Characteristics of evapotranspiration from a
permafrost black spruce forest in interior Alaska, Polar Sci., 7,
136–148, https://doi.org/10.1016/j.polar.2013.03.003, 2013. a
Oquist, G. and Huner, N. P. A.: Photosynthesis of overwintering evergreen
plants, Annu. Rev. Plant Biol., 54, 329–355, 2003. a
Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G.,
Balzarolo, M., Marchesini, L. B., Canfora, E., Casa, R., Duce, P., Facini,
O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci, G.,
Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D., Stefani,
P., Vaccari, F. P., and Valentini, R.: Carbon, Water and Energy Fluxes of
Terrestrial Ecosystems in Italy, in: The Greenhouse Gas Balance of Italy,
11–45, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-32424-6_2, 2014. a
Pelkonen, P. and Hari, P.: The Dependence of the Springtime Recovery of CO2
Uptake in Scots Pine on Temperature and Internal Factors, Flora, 169,
398–404, 1980. a
Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen,
N. O.: Increasing net CO2 uptake by a Danish beech forest during the
period from 1996 to 2009, Agr. Forest Meteorol., 151, 934–946,
https://doi.org/10.1016/j.agrformet.2011.02.013, 2011. a
Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C., Flexas,
J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry, J. A.:
Linking chlorophyll a fluorescence to photosynthesis for remote sensing
applications: mechanisms and challenges, J. Exp. Bot., 65, 4065–4095, 2014. a
Posse, G., Lewczuk, N., Richter, K., and Cristiano, P.: Carbon and water vapor
balance in a subtropical pine plantation, iForest – Biogeosci.
Forest., 9, 736–742, https://doi.org/10.3832/ifor1815-009, 2016. a
Post, H., Hendricks Franssen, H. J., Graf, A., Schmidt, M., and Vereecken, H.: Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach, Biogeosciences, 12, 1205–1221, https://doi.org/10.5194/bg-12-1205-2015, 2015. a
Powell, T. L., Bracho, R., Li, J., Dore, S., Hinkle, C. R., and Drake, B. G.:
Environmental controls over net ecosystem carbon exchange of scrub oak in
central Florida, Agr. Forest Meteorol., 141, 19–34,
https://doi.org/10.1016/j.agrformet.2006.09.002, 2006. a
Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust and realistic: the three R's of next-generation land-surface modelling, Atmos. Chem. Phys., 15, 5987–6005, https://doi.org/10.5194/acp-15-5987-2015, 2015. a
Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land use regulates carbon
budgets in eastern Germany: From NEE to NBP, Agr. Forest
Meteorol., 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008, 2010. a
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux
and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100,
81–92, 1972. a
Prober, S. M., Thiele, K. R., Rundel, P. W., Yates, C. J., Berry, S. L., Byrne,
M., Christidis, L., Gosper, C. R., Grierson, P. F., Lemson, K., Lyons, T.,
Macfarlane, C., O'Connor, M. H., Scott, J. K., Standish, R. J., Stock, W. D.,
van Etten, E. J., Wardell-Johnson, G. W., and Watson, A.: Facilitating
adaptation of biodiversity to climate change: A conceptual framework applied
to the world's largest Mediterranean-climate woodland, Clim. Change, 110,
227–248, https://doi.org/10.1007/s10584-011-0092-y, 2012. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 6 March 2020), 2016. a
Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A.:
The growth respiration component in eddy CO2 flux from a Quercus ilex
mediterranean forest, Global Change Biol., 10, 1460–1469,
https://doi.org/10.1111/j.1365-2486.2004.00819.x, 2004. a
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier,
P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T.,
Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila,
A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M.,
Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of
net ecosystem exchange into assimilation and ecosystem respiration: review
and improved algorithm, Global Chang. Biol., 11, 1424–1439, 2005. a, b, c
Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C., and Kowalski, A. S.: Analyzing the major drivers of NEE in a Mediterranean alpine shrubland, Biogeosciences, 7, 2601–2611, https://doi.org/10.5194/bg-7-2601-2010, 2010. a
Richardson, A. D., Hollinger, D. Y., Aber, J. D., Ollinger, S. V., and
Braswell, B. H.: Environmental variation is directly responsible for short-
but not long-term variation in forest-atmosphere carbon exchange, Global
Change Biol., 13, 788–803, https://doi.org/10.1111/j.1365-2486.2007.01330.x,
2007. a, b
Rogers, A.: The use and misuse of Vc,max in Earth System Models, Photosynt.
Res., 119, 15–29, https://doi.org/10.1007/s11120-013-9818-1, 2014. a
Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze,
M. C., Kattge, J., Leakey, A. D. B., Mercado, L. M., Niinemets, U., Prentice,
I. C., Serbin, S. P., Sitch, S., Way, D. A., and Zaehle, S.: A roadmap for
improving the representation of photosynthesis in Earth system models, New
Phytol., 213, 22–42 https://doi.org/10.1111/nph.14283, 2017. a, b, c, d, e
Ruehr, N. K., Martin, J. G., and Law, B. E.: Effects of water availability on
carbon and water exchange in a young ponderosa pine forest: Above- and
belowground responses, Agr. Forest Meteorol., 164, 136–148,
https://doi.org/10.1016/j.agrformet.2012.05.015, 2012. a
Running, S., Mu, Q., and Zhao, M.: MOD17A2H MODIS/Terra Gross Primary
Productivity 8-Day L4 Global 500 m SIN Grid V006, Data set, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MOD17A2H.006, 2015. a
Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T. A.,
Beringer, J., van Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O.:
Integration of MODIS land and atmosphere products with a coupled-process
model to estimate gross primary productivity and evapotranspiration from 1 km
to global scales, Global Biogeochem. Cy., 25, 4, https://doi.org/10.1029/2011GB004053, 2011. a
Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Njakou Djomo, S., Gioli, B., Matteucci, G., and Papale, D.: Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice, Biogeosciences, 13, 95–113, https://doi.org/10.5194/bg-13-95-2016, 2016. a, b
Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by Texture
and Organic Matter for Hydrologic Solutions, Soil Sci. Soc. Am. J., 70,
1569–1578, 2006. a
Schroder, I., Kuske, T., and Zegelin, S.: Eddy Covariance Dataset for Arcturus
(2011–2013), Geoscience Australia, Canberra, Tech. rep.,
https://doi.org/102.100.100/14249, 2014. a
Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E.: Effects of
seasonal drought on net carbon dioxide exchange from a woody-plant-encroached
semiarid grassland, J. Geophys. Res., 114, G4,
https://doi.org/10.1029/2008jg000900, 2009. a
Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S., and
Barron-Gafford, G. A.: Carbon dioxide exchange in a semidesert grassland
through drought-induced vegetation change, J. Geophys. Res.,
115, G3, https://doi.org/10.1029/2010jg001348, 2010. a
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A.:
The carbon balance pivot point of southwestern U.S. semiarid ecosystems:
Insights from the 21st century drought, J. Geophys. Res.-Biogeosci., 120, 2612–2624, https://doi.org/10.1002/2015jg003181, 2015a. a
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A.:
The carbon balance pivot point of southwestern U.S. semiarid ecosystems:
Insights from the 21st century drought, J. Geophys. Res.-Biogeosci., 120, 2612–2624, https://doi.org/10.1002/2015jg003181, 2015b. a
Serrano-Ortiz, P., Marañón-Jiménez, S., Reverter, B. R.,
Sánchez-Cañete, E. P., Castro, J., Zamora, R., and Kowalski,
A. S.: Post-fire salvage logging reduces carbon sequestration in
Mediterranean coniferous forest, Forest Ecol. Manage., 262,
2287–2296, https://doi.org/10.1016/j.foreco.2011.08.023,
2011. a
Shao, C., Chen, J., Li, L., Dong, G., Han, J., Abraha, M., and John, R.:
Grazing effects on surface energy fluxes in a desert steppe on the Mongolian
Plateau:, Ecol. Appl., 27, 485–502, https://doi.org/10.1002/eap.1459,
2017. a
Shi, P., Sun, X., Xu, L., Zhang, X., He, Y., Zhang, D., and Yu, G.: Net
ecosystem CO2 exchange and controlling factors in a
steppe–Kobresia meadow on the Tibetan Plateau, Sci.
China Ser. D, 49, 207–218,
https://doi.org/10.1007/s11430-006-8207-4, 2006. a
Singsaas, E. L., Ort, D. R., and DeLucia, E. H.: Variation in measured values
of photosynthetic quantum yield in ecophysiological studies, Oecologia, 128, 15–23, https://doi.org/10.1007/s004420000624, 2001. a
Smith, E. L.: THE INFLUENCE OF LIGHT AND CARBON DIOXIDE ON
PHOTOSYNTHESIS, J. Gen. Physiol., 20, 807–830, 1937. a
Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J.,
Niinemets, U., Crous, K. Y., Domingues, T. F., Guerrieri, R., Yoko Ishida,
F., Kattge, J., Kruger, E. L., Maire, V., Rogers, A., Serbin, S. P.,
Tarvainen, L., Togashi, H. F., Townsend, P. A., Wang, M., Weerasinghe, L. K.,
and Zhou, S.-X.: Global photosynthetic capacity is optimized to the
environment, Ecol. Lett., 22, 506–517, 2019. a, b, c, d, e, f
Stevens, R. M., Ewenz, C. M., Grigson, G., and Conner, S. M.: Water use by an
irrigated almond orchard, Irrig. Sci., 30, 189–200,
https://doi.org/10.1007/s00271-011-0270-8, 2011. a
Stocker, B.: fLUE, https://doi.org/10.5281/zenodo.1158524, 2018. a
Stocker, B.: rpmodel: v1.0.4, https://doi.org/10.5281/zenodo.3560169, 2019a. a
Stocker, B.: sofun: v1.2.0, https://doi.org/10.5281/zenodo.3529466, 2019b. a
Stocker, B.: eval_pmodel, https://doi.org/10.5281/zenodo.3632308, 2020a. a
Stocker, B.: rsofun, https://doi.org/10.5281/zenodo.3632328, 2020b. a
Stocker, B. D.: GPP at FLUXNET Tier 1 sites from P-model,
https://doi.org/10.5281/zenodo.3559850, 2019c. a
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne,
S. I., and Peñuelas, J.: Drought impacts on terrestrial primary
production underestimated by satellite monitoring, Nat. Geosci., 12,
264–270, https://doi.org/10.1038/s41561-019-0318-6, 2019. a, b
Suni, T., Rinne, J., Reissel, A., Altimir, N., Keronen, P., Rannik, Ü.,
Maso, M., Kulmala, M., and Vesala, T.: Long-term measurements of surface
fluxes above a Scots pine forest in Hyytiälä, southern Finland,
Boreal Environ. Res., 4, 287–301, 2003. a
Suzuki, Y., Makino, A., and Mae, T.: Changes in the turnover of Rubisco and
levels of mRNAs of rbcL and rbcS in rice leaves from emergence to
senescence, Plant Cell Environ., 24, 1353–1360, 2001. a
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C.,
Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche,
F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., Madsen, M.,
Olesen, F. S., and Ardö, J.: Ecosystem properties of semiarid savanna
grassland in West Africa and its relationship with environmental
variability, Global Change Biol., 21, 250–264, https://doi.org/10.1111/gcb.12734, 2014. a
Tanja, S., Berninger, F., Vesala, T., Markkanen, T., Hari, P., Mäkelä, A.,
Ilvesniemi, H., Hänninen, H., Nikinmaa, E., Huttula, T., Laurila, T.,
Aurela, M., Grelle, A., Lindroth, A., Arneth, A., Shibistova, O., and Lloyd,
J.: Air temperature triggers the recovery of evergreen boreal forest
photosynthesis in spring, Global Change Biol., 9, 1410–1426,
https://doi.org/10.1046/j.1365-2486.2003.00597.x,
2003. a, b
Tedeschi, V., Rey, A., Manca, G., Valentini, R., Jarvis, P. G., and Borghetti,
M.: Soil respiration in a Mediterranean oak forest at different
developmental stages after coppicing, Global Change Biol., 12, 110–121,
https://doi.org/10.1111/j.1365-2486.2005.01081.x, 2006. a
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016. a, b, c
Ulke, A. G., Gattinoni, N. N., and Posse, G.: Analysis and modelling of
turbulent fluxes in two different ecosystems in Argentina, International
J. Environ. Pollut., 58, 52, https://doi.org/10.1504/ijep.2015.076583, 2015. a
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J.,
McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors
controlling CO2 exchange on timescales from hourly to decadal at Harvard
Forest, J. Geophys. Res., 112, https://doi.org/10.1029/2006jg000293, 2007a. a
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J.,
McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors
controlling CO2 exchange on timescales from hourly to decadal at Harvard
Forest, J. Geophys. Res.-Biogeosci., 112, G2,
https://doi.org/10.1029/2006JG000293,
2007b. a
Valentini, R., Angelis, P., Matteucci, G., Monaco, R., Dore, S., and Mucnozza,
G. E. S.: Seasonal net carbon dioxide exchange of a beech forest with the
atmosphere, Global Change Biol., 2, 199–207,
https://doi.org/10.1111/j.1365-2486.1996.tb00072.x, 1996. a
Veres, J. S. and Williams III, G. J.: Time course of photosynthetic
temperature acclimation in Carex eleocharis Bailey, Plant Cell Environ., 7,
545–547, 1984. a
Verhoeven, A.: Sustained energy dissipation in winter evergreens, New Phytol.,
201, 57–65, 2014. a
von Caemmerer, S. and Farquhar, G. D.: Some relationships between the
biochemistry of photosynthesis and the gas exchange of leaves, Planta, 153,
376–387, 1981. a
Wang, L., Zhu, H., Lin, A., Zou, L., Qin, W., and Du, Q.: Evaluation of the
Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance
Flux Data, Remote Sensing, 9, 5, https://doi.org/10.3390/rs9050418, 2017b. a, b
Way, D. A. and Yamori, W.: Thermal acclimation of photosynthesis: on the
importance of adjusting our definitions and accounting for thermal
acclimation of respiration, Photosynth. Res., 119, 89–100, 2014. a
Wehr, R., Munger, J. W., McManus, J. B., Nelson, D. D., Zahniser, M. S.,
Davidson, E. A., Wofsy, S. C., and Saleska, S. R.: Seasonality of temperate
forest photosynthesis and daytime respiration, Nature, 534, 680–683,
https://doi.org/10.1038/nature17966, 2016. a
Wen, X.-F., Wang, H.-M., Wang, J.-L., Yu, G.-R., and Sun, X.-M.: Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007, Biogeosciences, 7, 357–369, https://doi.org/10.5194/bg-7-357-2010, 2010. a
Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M., and Crill, P.: Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil, Biogeosciences, 2, 175–187, https://doi.org/10.5194/bg-2-175-2005, 2005. a
Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and
Cernusca, A.: Seasonal and inter-annual variability of the net ecosystem
CO2 exchange of a temperate mountain grassland: Effects of weather and
management, J. Geophys. Res., 113, D8, https://doi.org/10.1029/2007jd009286, 2008.
a
Xiang, Y., Gubian, S., Suomela, B., and Hoeng, J.: Generalized Simulated
Annealing for Efficient Global Optimization: the GenSA Package for R.,
The R Journal Volume 5/1, June 2013,
available at: https://journal.r-project.org/archive/2013/RJ-2013-002/index.html (last access: 6 March 2020), 2013. a
Yan, J., Zhang, Y., Yu, G., Zhou, G., Zhang, L., Li, K., Tan, Z., and Sha, L.:
Seasonal and inter-annual variations in net ecosystem exchange of two
old-growth forests in southern China, Agr. Forest Meteorol.,
182–183, 257–265, https://doi.org/10.1016/j.agrformet.2013.03.002,
2013. a
Yee, M. S., Pauwels, V. R., Daly, E., Beringer, J., Rüdiger, C., McCabe,
M. F., and Walker, J. P.: A comparison of optical and microwave
scintillometers with eddy covariance derived surface heat fluxes,
Agr. Forest Meteorol., 213, 226–239,
https://doi.org/10.1016/j.agrformet.2015.07.004, 2015. a
Zeller, K. and Nikolov, N.: Quantifying simultaneous fluxes of ozone, carbon
dioxide and water vapor above a subalpine forest ecosystem, Environ.
Pollut., 107, 1–20, https://doi.org/10.1016/s0269-7491(99)00156-6, 2000. a
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232,
111209, https://doi.org/10.1016/j.rse.2019.05.028,
2019. a
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of
the MODIS terrestrial gross and net primary production global data set,
Remote Sens. Environ., 95, 164–176,
https://doi.org/10.1016/j.rse.2004.12.011,
2005. a, b, c
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S.,
Nemani, R. R., and Myneni, R. B.: Global Data Sets of Vegetation Leaf Area
Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g
Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized
Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011, Remote
Sens., 5, 927–948, https://doi.org/10.3390/rs5020927, 2013. a
Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss subalpine forest is significantly driven not only by current but also by previous year's weather, Biogeosciences, 11, 1627–1635, https://doi.org/10.5194/bg-11-1627-2014, 2014. a
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models...