Articles | Volume 12, issue 2
Geosci. Model Dev., 12, 829–847, 2019
https://doi.org/10.5194/gmd-12-829-2019
Geosci. Model Dev., 12, 829–847, 2019
https://doi.org/10.5194/gmd-12-829-2019
Methods for assessment of models
22 Feb 2019
Methods for assessment of models | 22 Feb 2019

The Cloud_cci simulator v1.0 for the Cloud_cci climate data record and its application to a global and a regional climate model

Salomon Eliasson et al.

Related authors

Mass of different snow crystal shapes derived from fall speed measurements
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 18669–18688, https://doi.org/10.5194/acp-21-18669-2021,https://doi.org/10.5194/acp-21-18669-2021, 2021
Short summary
Shape dependence of snow crystal fall speed
Sandra Vázquez-Martín, Thomas Kuhn, and Salomon Eliasson
Atmos. Chem. Phys., 21, 7545–7565, https://doi.org/10.5194/acp-21-7545-2021,https://doi.org/10.5194/acp-21-7545-2021, 2021
Short summary
A simulator for the CLARA-A2 cloud climate data record and its application to assess EC-Earth polar cloudiness
Salomon Eliasson, Karl-Göran Karlsson, and Ulrika Willén
Geosci. Model Dev., 13, 297–314, https://doi.org/10.5194/gmd-13-297-2020,https://doi.org/10.5194/gmd-13-297-2020, 2020
Short summary
Comparing ERA-Interim clouds with satellite observations using a simplified satellite simulator
Martin Stengel, Cornelia Schlundt, Stefan Stapelberg, Oliver Sus, Salomon Eliasson, Ulrika Willén, and Jan Fokke Meirink
Atmos. Chem. Phys., 18, 17601–17614, https://doi.org/10.5194/acp-18-17601-2018,https://doi.org/10.5194/acp-18-17601-2018, 2018
Short summary
An intercalibrated dataset of total column water vapour and wet tropospheric correction based on MWR on board ERS-1, ERS-2, and Envisat
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017,https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022,https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022,https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022,https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022,https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Embedding a one-column ocean model in the Community Atmosphere Model 5.3 to improve Madden–Julian Oscillation simulation in boreal winter
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022,https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary

Cited articles

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009. a
Ban-Weiss, G. A., Jin, L., Bauer, S. E., Bennartz, R., Liu, X., Zhang, K., Ming, Y., Guo, H., and Jiang, J. H.: Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations, J. Geophys. Res., 119, 10876–10901, https://doi.org/10.1002/2014JD021722, 2014. a
Baró, R., Jiménez-Guerrero, P., Stengel, M., Brunner, D., Curci, G., Forkel, R., Neal, L., Palacios-Peña, L., Savage, N., Schaap, M., Tuccella, P., Denier van der Gon, H., and Galmarini, S.: Evaluating cloud properties in an ensemble of regional online coupled models against satellite observations, Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, 2018. a
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models, J. Atmos. Sci., 71, 734–753, https://doi.org/10.1175/JAS-D-13-0163.1, 2014. a
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. a
Download
Short summary
To enable fair comparisons of clouds between climate models and the ESA Cloud_cci climate data record (CDR), we present a tool called the Cloud_cci simulator. The tool takes into account the geometry and cloud detection capabilities of the Cloud_cci CDR to allow fair comparisons. We demonstrate the simulator on two climate models. We find the impact of time sampling has a large effect on simulated cloud water amount and that the simulator reduces the cloud cover by about 10 % globally.