Articles | Volume 12, issue 11
https://doi.org/10.5194/gmd-12-4661-2019
https://doi.org/10.5194/gmd-12-4661-2019
Development and technical paper
 | 
07 Nov 2019
Development and technical paper |  | 07 Nov 2019

GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses

Bin Cao, Xiaojing Quan, Nicholas Brown, Emilie Stewart-Jones, and Stephan Gruber

Related authors

Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022,https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
The ERA5-Land soil temperature bias in permafrost regions
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020,https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence
Bin Cao, Tingjun Zhang, Qingbai Wu, Yu Sheng, Lin Zhao, and Defu Zou
The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019,https://doi.org/10.5194/tc-13-511-2019, 2019
Short summary
REDCAPP (v1.0): parameterizing valley inversions in air temperature data downscaled from reanalyses
Bin Cao, Stephan Gruber, and Tingjun Zhang
Geosci. Model Dev., 10, 2905–2923, https://doi.org/10.5194/gmd-10-2905-2017,https://doi.org/10.5194/gmd-10-2905-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018. a, b, c
Arsenault, K. R., Kumar, S. V., Geiger, J. V., Wang, S., Kemp, E., Mocko, D. M., Beaudoing, H. K., Getirana, A., Navari, M., Li, B., Jacob, J., Wegiel, J., and Peters-Lidard, C. D.: The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems, Geosci. Model Dev., 11, 3605–3621, https://doi.org/10.5194/gmd-11-3605-2018, 2018. a
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. a
Benestad, R. E., Hanssen-Bauer, I., and Chen, D.: Empirical-Statistical Downscaling, World Scientific, https://doi.org/10.1142/6908, 2008. a
Bieniek, P. A., Bhatt, U. S., Walsh, J. E., Rupp, T. S., Zhang, J., Krieger, J. R., and Lader, R.: Dynamical downscaling of ERA-Interim temperature and precipitation for Alaska, J. Appl. Meteorol. Climatol., 55, 635–654, https://doi.org/10.1175/JAMC-D-15-0153.1, 2016. a
Download
Short summary
GlobSim is a tool for simulating land-surface processes and phenomena at point locations globally, even where no site-specific meteorological observations exist. This is important because simulation can add insight to the analysis of observations or help in anticipating climate-change impacts and because site-specific simulation can help in model evaluation.