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Abstract. Simulations of land-surface processes and phe-
nomena often require driving time series of meteorological
variables. Corresponding observations, however, are unavail-
able in most locations, even more so, when considering the
duration, continuity and data quality required. Atmospheric
reanalyses provide global coverage of relevant meteorologi-
cal variables, but their use is largely restricted to grid-based
studies. This is because technical challenges limit the ease
with which reanalysis data can be applied to models at the
site scale. We present the software toolkit GlobSim, which
automates the downloading, interpolation and scaling of dif-
ferent reanalyses — currently ERAS, ERA-Interim, JRA-55
and MERRA-2 — to produce meteorological time series for
user-defined point locations. The resulting data have consis-
tent structure and units to efficiently support ensemble sim-
ulation. The utility of GlobSim is demonstrated using an ap-
plication in permafrost research. We perform ensemble sim-
ulations of ground-surface temperature for 10 terrain types
in a remote tundra area in northern Canada and compare the
results with observations. Simulation results reproduced sea-
sonal cycles and variation between terrain types well, demon-
strating that GlobSim can support efficient land-surface sim-
ulations. Ensemble means often yielded better accuracy than
individual simulations and ensemble ranges additionally pro-
vide indications of uncertainty arising from uncertain input.
By improving the usability of reanalyses for research requir-
ing time series of climate variables for point locations, Glob-
Sim can enable a wide range of simulation studies and model
evaluations that previously were impeded by technical hur-
dles in obtaining suitable data.

1 Introduction

Models that represent the interactions between the land sur-
face and the atmosphere are often used to investigate bio-
geochemical, cryospheric and hydrologic phenomena. Be-
cause they require meteorological forcing — with daily or
finer temporal resolution, for extended periods and with-
out gaps — site-specific applications such as process stud-
ies or model testing are limited to few locations where high
quality ground observations are available. In this context,
global atmospheric reanalyses can substitute for lacking ob-
servations or supplement incomplete records. They assimi-
late a broad range of observations into numerical weather-
prediction models, usually have coarse grid spacing (10—
100 km) and are often used for large-area studies in atmo-
spheric and hydrological modeling (e.g., Zagar et al., 2018;
Albergel et al., 2018). Their application to point locations
(e.g., Ekici et al., 2015; Westermann et al., 2016), however,
is currently limited, likely because accessing data is techni-
cally involved. The software GlobSim, which is presented
here, aims to contribute to overcoming this obstacle.

The suitability of reanalysis data for individual projects
depends on the environment studied, the skill of the reanal-
ysis in representing it and characteristics of the intended ap-
plication. Several global reanalysis products are available to
drive simulations or ensembles of simulations. Their rela-
tive suitability for specific simulation studies and locations
is likely to vary because they rely on different assumptions,
parameterizations or assimilated input data, and these differ-
ences result in biases that are spatially heterogeneous and
specific to one or several meteorological variables (Decker
et al., 2012; Zhang et al., 2016). The use of model ensem-
bles is established to evaluate uncertainty or improve predic-
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tive accuracy in simulation studies (e.g., Tebaldi and Knutti,
2007). Ensembles consist of multiple simulations for a given
location and time that differ in one or more ways. For in-
stance, they can be generated by varying the forcing data
(e.g., Guo et al., 2018), the models themselves (e.g., West-
ermann et al., 2015b) or the structure and parameters of a
model (e.g., Gubler, 2013). Because meteorological time se-
ries that drive models are a major source of uncertainty, hav-
ing multiple reanalysis products available for ensemble simu-
lations is an important step in estimating and reducing overall
simulation uncertainty.

Four main challenges impede the use of reanalysis data for
simulating point locations. (i) Technical delivery: available
data are well documented but their structure largely reflects
the needs and conventions common in atmospheric simula-
tion, and as a consequence, individuals used to working with
data from meteorological stations may find their handling
difficult. For example, ERA-Interim (ERAI) provides certain
variables as accumulations over time intervals and these must
be disaggregated if instantaneous values are desired. (ii) Dif-
ferences between reanalyses: reanalyses differ in their spa-
tial and temporal grids as well as the conventions and units
used for their variables and files (cf. Arsenault et al., 2018).
(iii) Spatial scale: the coarse-grid reanalysis data require spa-
tial interpolation to the locations of interest and heteroge-
neous environments such as mountains or coasts may require
additional, subsequent scaling procedures (e.g., Fiddes and
Gruber, 2014; Sen Gupta and Tarboton, 2016; Cao et al.,
2017). (iv) Differences between reanalysis and model: re-
analysis data usually require unit conversion, computation of
derived variables (e.g., wind direction from northward and
eastward wind speeds) and temporal interpolation in order
to be suitable for driving specific models. Although address-
ing these four main challenges is not conceptually difficult,
it does represent a technical hurdle that must be overcome in
order to more fully materialize the benefits of reanalysis data
for driving models at point locations.

This contribution describes the software GlobSim, named
as a portmanteau of “global simulator”, which produces time
series from multiple reanalyses for driving model simula-
tion at point locations. As a demonstration, we apply Glob-
Sim to ground-surface temperature (GST) simulations in a
densely instrumented and well-described location in a tun-
dra environment near Lac de Gras, Northwest Territories,
Canada. This demonstrator is relevant for investigating per-
mafrost and its changes, one example of a research field
where the lack of data to drive simulations is particularly
severe. The objectives of this study are (1) to describe the
software GlobSim and test its results for blunders and (2) to
quantify the performance of simulations supported by Glob-
Sim in a demonstrator application. For this, we compare en-
semble members and means to statistical summaries of ob-
servations for different terrain types. Because reanalyses are
imperfect and their performance can vary regionally and tem-
porally (Decker et al., 2012; Fiddes and Gruber, 2014), the
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demonstrator can inspire, but not quantitatively underpin,
applications in other areas, at other times and using other
models. The study area has been chosen to test whether the
combination of coarse-scale reanalysis data with fine-scale
information on surface and subsurface characteristics (the
terrain types) can reproduce the seasonal temperature cy-
cles observed and the resulting fine-scale differentiation of
ground temperature. This is relevant to potential users of at-
mospheric simulation data and also for the development of
atmospheric models, as it can inform decisions related to
the trade-off between increased resolution in the atmosphere
or increased tiling (subgrid) resolution of their land-surface
components. Finally, improved simulation of land-surface
processes and phenomena will become increasingly impor-
tant for supporting decision making under climate change
because it can help to estimate likely future environmental
conditions. In this context, flexible model evaluation and ap-
plication globally is an important first step.

2 Background
2.1 Downscaling of reanalyses

Most global atmospheric models produce output at coarse
spatial scales (10-200 km), and for many applications, these
data need to be downscaled, a process that has been described
as making the link between the state of variables representing
a large space and the state of variables representing a much
smaller space (Benestad et al., 2008). For this, two main ap-
proaches exist: dynamical downscaling (e.g., Bieniek et al.,
2016), which relies on nested atmospheric models with in-
creasingly fine resolution and decreasing spatial extent, and
empirical—statistical downscaling (e.g., Daly et al., 2008),
which employs observations to derive mapping functions for
linking coarse and fine scales. As GlobSim is intended to op-
erate in areas without observations, this section emphasizes
empirical—statistical downscaling methods that are tolerant
to application far away from the observation with which they
were derived.

Several empirical-statistical methods exist to downscale
gridded meteorological data or to spatialize observations in
heterogeneous environments. These applications are differ-
ent but, especially when aiming to perform downscaling in
areas without observations, show significant overlap. For ex-
ample, Hungerford et al. (1989); Liston and Elder (2006) and
Thornton et al. (2012) produced spatial data by interpolat-
ing observations based on topoclimatic variables (e.g., eleva-
tion, slope angle and slope aspect) and vegetation, and Daly
et al. (2008) produced grids of mean monthly precipitation
and temperature with a method that is frequently used in ap-
plication studies (e.g., Jafarov et al., 2012). More recently,
lapse rates for adjusting surface air temperature to fine-scale
topography were derived from reanalysis pressure-level data
(Gruber, 2012; Fiddes and Gruber, 2014). This allows lapse
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rates to vary temporally and physically consistent with the
atmospheric conditions. Cao et al. (2017) further developed
the surface air temperature downscaling by parameterizing
fine-scale inversions such as cold air pooling. Downscaling
methods for other variables such as shortwave and longwave
radiation, precipitation and wind speed suitable for moun-
tains exist (Fiddes and Gruber, 2014; Sen Gupta and Tar-
boton, 2016) and can inform application also in gently slop-
ing terrain, and the potential of these scaling methods has
been demonstrated in simulation studies (e.g., Fiddes et al.,
2015; Westermann et al., 2015a).

2.2 Ensemble simulation

Model uncertainty arises from input data and the models
themselves (Gupta et al., 2005; Gubler et al., 2013) but the
quantitative evaluation of this uncertainty is difficult when
models are complex (Murphy et al., 2004; Wang et al., 2016).
This is also true when simulations of land-surface processes
or phenomena are forced by reanalyses because their uncer-
tainty — arising from, e.g., the observational data, assump-
tions, model structure, initialization and parameters used —
propagates into the final results. Here, ensemble simulation
based on multiple reanalyses allows exploring the relative
contribution that reanalysis quality has on the overall uncer-
tainty of final results obtained for variables related to land-
surface processes or phenomena. Additionally, the average
of ensemble members has been shown to improve predictive
accuracy relative to individual simulations (e.g., Tebaldi and
Knutti, 2007; McGuire et al., 2016). One of the most widely
known ensemble simulation examples is the Coupled Model
Intercomparison Project (CMIP), which aims to contribute to
the understanding of past, present and future climate changes
in a multi-model context.

3 GlobSim
3.1 Structure and approach

GlobSim is a Python (version 3.7) software package de-
signed to download and process important global atmo-
spheric reanalyses and to derive time series with consis-
tent variables, units and time intervals for specific locations
(Fig. 1). It comprises three parts: (i) downloading for retriev-
ing original data; (ii) interpolation of original, gridded vari-
ables to point locations as time series; and (iii) scaling of site-
level time series to common units and temporal resolution,
and possibly, the application of additional empirical down-
scaling function. GlobSim is designed to be controlled via
simple parameter files containing keyword—value pairs (e.g.,
download area, date range, output locations, variables). As
downscaling methods can be easily added, it provides a basis
for broader application and development of existing methods
(Fiddes and Gruber, 2012, 2014; Sen Gupta and Tarboton,
2016; Cao et al., 2017).
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3.2 Reanalyses

The four reanalyses currently implemented in GlobSim (Ta-
ble 1) are ERAI, ERAS, the Japanese 55-year Reanalysis
(JRA-55) and the Modern-Era Retrospective analysis for Re-
search and Applications, version 2 (MERRA-2). Earlier re-
analyses, such as CFSR, ERA-40, JRA-25 and MERRA,
were not implemented in GlobSim because they have either
been superseded by newer products or have ended. During
the writing of this contribution, the discontinuation of ERAI
in 2019 has been announced.

ERAI has 60 levels in the vertical dimension, with the
highest at 1 mb, and the data are interpolated to 37 pressure
levels (Dee et al., 2011). A reduced Gaussian grid with ap-
proximately uniform 79 km (T255) spacing for surface and
other grid-point fields is used. ERAI covers the period from
1 January 1979 to 2019. The data contain analyses (at 00:00,
06:00, 12:00 and 18:00 UTC) for surface and pressure lev-
els, as well as forecasts of instantaneous (e.g., 2m surface
air temperature, air temperature and relative humidity) and
accumulated (e.g., total precipitation and radiation compo-
nents; from 00:00 and 12:00 UTC, in 3, 6, 9 and 12 h steps)
variables.

ERAS is the fifth-generation atmospheric reanalysis pro-
duced by ECMWEF to replace ERAI Data are currently avail-
able from 1979 onward and later in 2019 are expected to be
available starting in 1950. ERAS is produced with a hori-
zontal resolution of 31km, a temporal resolution of 1h and
137 vertical model levels, although the output pressure lev-
els are identical to ERAI (Hersbach and Dee, 2016). ERAS5
assimilates improved input data that better reflect observed
changes in climate forcing, as well as many new or repro-
cessed observations that were not available during the pro-
duction of ERAL It also provides an estimate of uncertainty
based on a 10-member ensemble with a temporal resolution
of 3 h and spatial resolution of 62 km (Albergel et al., 2018).

JRA-55 is produced using a four-dimensional data as-
similation system that uses many types of satellite data
(Kobayashi et al., 2015). It is the second Japanese atmo-
spheric reanalysis and covers the period from 1958 to near-
real time. JRA-55 has a spatial resolution of 1.25° for assim-
ilation (TL319) and 37 vertical pressure levels (1000—1 mb)
for most variables in upper air, except dew-point depression,
specific humidity, relative humidity, cloud cover, cloud wa-
ter, cloud liquid water and cloud ice, which are produced for
27 levels from 1000 to 100 mb, only. The temporal resolution
is 6 h for all levels and data (Kobayashi et al., 2015).

MERRA-2 replaces the original MERRA reanalysis
(Gelaro et al., 2017) and uses the Goddard Earth Observ-
ing System-5 (GEOS-5) general circulation model (GCM)
(Molod et al., 2015). It uses the cubed-sphere grid of Putman
and Lin (2007) and has a spatial resolution of 0.5° x 0.625°
(latitude x longitude, ~ 50 km). MERRA-2 has 42 consistent
pressure levels from the surface up to 0.1 mb (Gelaro et al.,
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Figure 1. GlobSim schematic: reanalysis data are processed in three main steps based on user-specified parameter files. The color of each

box identifies user input and output (light blue), GlobSim processing (orange) and raw reanalysis data (grey).

Table 1. Characteristics of the four reanalyses currently supported by GlobSim.

Reanalysis ERAI ERAS JRA-55 MERRA-2
Temporal coverage 1979-2019 1979—present 1958—present 1980—present
Horizontal resolution  0.75° x 0.75° 0.25° x 0.25° 1.25° x 1.25° 0.5° x 0.625°
(latitude x longitude) ~79km ~31km ~ 150 km ~50km x 65 km
Vertical levels 37 37 27137 42

SA: 6-hourly SA: 1-hourly
Temporal resolution SF: 3/6-hourly 1-hourly 6-hourly SF: 1-hourly

PL: 6-hourly PL: 6-hourly
Assimilation method ~ 4D-Var 4D-Var 4D-Var 3D-Var
Sponsoring agencies ~ECMWF ECMWF IMA NASA
Reference Deeetal. (2011) Hersbach and Dee (2016)  Kobayashi et al. (2015)  Gelaro et al. (2017)

Complete ERAS data from 1950 to the present are expected to be available in late 2019. ERAI is ERA-Interim, SA is surface analysis, SF is surface forecast,
and PL is pressure level. ECMWEF is the European Centre for Medium-Range Weather Forecasts, JMA is the Japan Meteorological Agency, and NASA is the
National Aeronautics and Space Administration. In ERAI, the temporal resolution of surface forecasts is 6-hourly for instantaneous variables (e.g.,

temperature and air pressure) and 3-hourly for the accumulated variables (e.g., precipitation, short- and longwave radiation.)
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2017). It has a temporal resolution of 6 h for the pressure-
level data and 1 h for surface and forecast analysis.

3.3 Operation
3.3.1 Download

GlobSim downloads reanalysis data from each sponsoring
agency (Table 1). Downloads are mediated through appli-
cation program interfaces (APIs) which allow scripting ac-
cess to data servers through Python. Server requests are split
into temporal chunks in order to efficiently download large
datasets. Different types of data (surface analysis, surface
forecasts and pressure-level analysis) are queried individu-
ally. The outputs are stored as NetCDF4 files for each tem-
poral chunk and reanalysis field, retaining the structure and
conventions used by the sponsoring agencies.

3.3.2 Interpolation

GlobSim spatially interpolates gridded variables to the lati-
tude and longitude of point locations using bilinear interpola-
tion through the Python interface (ESMPy) of the Earth Sys-
tem Modeling Framework (ESMF) toolkit (O’Kuinghttons
et al., 2016). Pressure-level variables are also interpolated
spatially on each pressure level and in a subsequent step, ver-
tical interpolation is performed at that location. First, geopo-
tential height is normalized to obtain pressure-level elevation
(E) (m) for each time step:

E=—, ey
80

where ¢ is the geopotential height (m?s~2) and go is the
acceleration due to gravity of 9.807 ms~2. Then, pressure-
level variables are vertically interpolated to the desired el-
evation. Geopotential height and other pressure-level vari-
ables are linearly extrapolated to locations where the pres-
sure is greater than that of the lowest level with reanalysis
data based on the values of the two lowest available pressure
levels (Yessad, 2018). Although the 3-D interpolation com-
bining surface and pressure-level information is not demon-
strated here due to the relatively flat study area, it will be
useful for further development of GlobSim by integrating ad-
ditional scaling methods.

3.3.3 Scaling

We use the term “scaling” to describe the conversion of vari-
ables and units from their reanalysis-specific origins to a
common standard as well as the possible application of ad-
ditional temporal interpolation and downscaling procedures
to produce data at fine spatial and temporal scales. For ex-
ample, 3-hourly shortwave radiation from reanalyses can be
interpolated to hourly resolution and used at mountain lo-
cations. When, additionally, fine-scale terrain—Sun geometry

www.geosci-model-dev.net/12/4661/2019/
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Figure 2. The representation of surface analysis (SA), surface fore-
cast (SF) and pressure-level (PL) data in the four reanalyses sup-
ported by GlobSim. The circles and triangles represent instanta-
neous variables which are reported at specific temporal resolutions.
The lines represent accumulated variables in the forecasts which are
reported as the integral of a flux over the time interval spanned by
each arrow. Because the surface forecasts in ERAI are accumulated
from the beginning of the respective forecast cycle (the solid blue
lines) rather than from the end of the previous step, they must be
disaggregated (the dashed blue lines) using Eq. (2) to prevent over-
lap in the integration periods.

and horizon shading are taken into account, the resulting data
are likely to be more accurate (Fiddes and Gruber, 2014).

The output variables of GlobSim are named following CF
conventions (v1.6) with standard_name attributes that are
consistent with the units used in the UDUNITS packages.
The units of meteorological variables are first converted to
the standard ones and then interpolated to achieve the re-
quired temporal resolution. Some of the forecast variables
are not directly obtained from the reanalyses but instead are
derived based on calculations involving other available vari-
ables (e.g., wind speed may be calculated from its northward
and eastward components).

All analyzed fields in ERAI (e.g., surface analysis and
pressure levels) and many forecast fields (e.g., temperature)
are instantaneous. Some forecast variables (e.g., precipitation
amount, surface downwelling longwave flux in air), however,
are provided as accumulations in the reanalyses (Fig. 2). This
means that each value is described as a change relative to an-
other time in the forecast cycle instead of as an instantaneous
flux. In contrast to the other reanalyses, the forecasts in ERAI
are accumulated from the beginning of the respective forecast
cycle (i.e., from 00:00 or 12:00 UTC; the solid blue lines in
Fig. 2) rather than from the last step of the previous forecast
cycle.

In the scaling procedure, ERAI forecasts are first disaggre-
gated to total amounts starting from the end of each previous
step (the dashed blue lines in Fig. 2) for respective forecast
cycle (00:00 and 12:00 UTC) and can be expressed as

Geosci. Model Dev., 12, 4661-4679, 2019
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Sd_ ]S’ S=3 (2)
ST L - 1oy, s=6,9,12,

where I denotes values spatially interpolated from the re-
analysis grid (see Sect. 3.3.2), and S is the scaled results for
that point location. The subscript s denotes the step and d the
disaggregated value. The accumulated variables in forecasts
are then converted to averages at the prescribed time resolu-
tion by dividing the length of the time step:

Sd

§=—, 3
In

where the temporal scale factor (#,) could be given as
t

= e @)

b
Tout

where fres and foy is the raw temporal resolution of re-
analysis and required temporal resolution of outputs with
the unit of hours (#). For ERAI, the disaggregated down-
welling shortwave flux in air was found to be slightly nega-
tive (> —0.05 W m~2) at some time steps. These values were
interpreted to be artifacts and set to zero.

The surface downwelling longwave flux in air (LWy) is not
directly available from MERRA-2 and is instead calculated
as the sum of the longwave flux emitted from surface (LW,)
and the surface net downward longwave flux (LW,):

LWy =LW. +LW,. )

In ERALI, relative humidity (RH) (%) is derived by following
Lawrence (2005):

RH =100-5 x (T, — Ty), ©6)

where T, (K) is the near-surface air temperature and 7Ty (K)
is the dew-point temperature. Wind speed and direction are
calculated from the eastward (U) and northward (V') compo-
nents:

Wy =VU2+ V2 7

and
180

Wq=atan2(V,U) x — + 180, ®)
T

where Wj is the wind speed in ms~!, Wy is wind direction
in degrees and a tan?2 is the two-argument arctangent used to
compute an unambiguous angle when converting from Carte-
sian to polar coordinates.

4 Demonstrator application

Reanalysis products are carefully designed and tested before
release. In addition, many studies have evaluated their perfor-
mance by intercomparison, by comparison with observations
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(e.g., Jiang et al., 2015) and by applying them to model simu-
lations (e.g., Albergel et al., 2018; Beck et al., 2019). For this
reason, we focus on the application of GlobSim for demon-
stration rather than the direct testing of reanalysis variables or
their interpolated products. An intercomparison of GlobSim-
derived meteorological variables for the test area (Fig. 3)
helps to appreciate differences or detect blunders in conver-
sion. Below, we use GlobSim to drive ground-surface tem-
perature (GST) simulation using a permafrost/land-surface
model for a remote location in northern Canada underlain by
permafrost. We then analyze ensemble results and their de-
viance from observations.

4.1 Study area

The research area is centered at 64°42’ N, 110°36’ W, near
the north shore of Lac de Gras in the Northwest Territo-
ries, Canada (Fig. 4). The area is located within the zone
of continuous permafrost, the mean annual air tempera-
ture (MAAT) is —9.0°C and the total annual precipitation
is 284 mm during September 1998—August 2007 (Ekati A;
Environment Canada, 2019), with about 50 % occurring as
snow (Jones et al., 2003). Typically, snow cover lasts for
about 7 months and because of strong winds (Hu et al., 2003),
snow depth shows strong spatial variability; it is shallowest
in much of the higher-elevation, convex terrain (e.g., tops of
eskers) and deepest in low-lying areas with taller shrub veg-
etation or in the lee of larger terrain features (Holubec et al.,
2003).

The area has undulating to moderately rugged topogra-
phy dominated by glacial features (Kerr et al., 1997; Dredge
etal., 1999), mostly on the order of 10-20 m in relief (Dredge
et al., 1999) and composed of glacial till (Haiblen et al.,
2018). Till deposits are described according to their thick-
nesses, as veneers (< 2 m), blankets (2—-10 m) or hummocky
(5-30m). Eskers are the prevalent glaciofluvial deposits,
reaching heights of 35 m and occasionally containing mas-
sive ice on the order of 2-5m thick (Haiblen et al., 2018;
Wolfe et al., 1997). The poorly drained low-lying areas have
peat deposits and are generally associated with ice-wedge
polygons. The region is within the southern Arctic ecozone
described by continuous shrub tundra (Wiken et al., 1996).
The most common shrubs are dwarf birch (Betula pumila)
and Labrador tea (Ledum decumbens). Uplands are well
drained with lichen and mosses, whereas wetlands are typ-
ically colonized with sedges and mosses.

4.2 Observations and quality control

GST was measured at 156 locations in order to capture the
fine-scale spatial variability and to test the performance of
GlobSim in supporting GST simulation beneath different ter-
rain classes. Study plots measuring 15m x 15m were es-
tablished that reflect the different terrain types in the area
(Gruber et al., 2018). Each plot was instrumented with
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Figure 3. Intercomparisons of monthly variables derived from GlobSim which are used in GEOtop during the period September 2015—
August 2017. SWy and LWy is the surface downwelling shortwave flux in air and downwelling longwave flux in air, respectively.

three to four temperature loggers approximately 0.1 m be-
low the ground surface. Site characteristics including sur-
ficial geology, topography and snow deposition tendency
were recorded for each study plot, and subplot characteristics
were collected for each logger at the 1 m x 1 m scale includ-
ing drainage tendency, vegetation height and leaf area index
(LAI). Surface air temperature is measured at six locations,
equally distributed between topographic high and low points.
Sensors are mounted in passively ventilated radiation shields
(Young, model 41003) 2-3 m above the ground surface.
This study uses temperature measurements over 2 years
(September 2015—August 2017) and annual mean values de-
scribed here refer to measurements beginning in September
and ending in August of the following year. GST data loggers
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(GeoPrecision, model M-Log5W-SIMPLE) and surface air
temperature loggers (GeoPrecision, model M-Log5W with a
Rotronic Hygroclip sensor) have a resolution of 0.01 °C and
an accuracy of +0.1 °C. All measurements have intervals of
20 min.

4.3 Distinguishing terrain types

The variability of GST regimes near Lac de Gras is con-
trolled by many factors, the most significant of which are
surficial geology, vegetation type and height and topography
(cf. Hu et al., 2003). The 156 sites are hence grouped into
10 classes based on surface and subsurface characteristics as
described at a scale of 15m x 15m (Fig. 5). This classifi-
cation is subjective and was developed to identify common
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Figure 4. Study area and approximate location of measurement sites. Many point locations overlap at the scale of the map, so the positions of
their markers have been dispersed to better illustrate the number and type of sites. The centroid of all measurement sites (red star) was used as
the location for which GlobSim reanalysis data were derived. The top right inset map shows the location of the study area (red square) within
the Northwest Territories (blue region) of Canada. The elevation tinted hillshade basemap is provided by the Natural Resources Canada
Federal Geospatial Platform Elevation Data Web Mapping Service and is derived from the Canadian Digital Elevation Model (CDEM).
Water-body outlines were obtained from the ArcGIS online data library.

terrain types that could be easily recognized in the field and
that explain a significant part of the observed spatial variation
of GST. Surface offset is used here to quantify local ground
temperature variations (Smith and Riseborough, 2002). It is
defined as SO = MAGST — MAAT, where MAGST is the
mean annual ground-surface temperature and MAAT is the
mean annual air temperature.

4.4 Process-based numerical model

GEOtop (version 2.0), a physically based numerical model,
is used for this demonstrator application because it describes
the complex abiotic processes in permafrost environments
well (e.g., Endrizzi and Marsh, 2010; Gubler et al., 2013; En-
drizzi et al., 2014; Pan et al., 2016). It represents the heat and
water transfer in soil as well as the energy transfer between
the soil and the atmosphere. Additionally, it solves equations
describing the interactions of water and energy during soil
freezing and thawing (Dall’ Amico et al., 2011; Endrizzi and
Gruber, 2012) and simulates the water and energy transfer
in the snow cover. GEOtop, driven by ERA-Interim forcing
data, was found to be suitable for reproducing ground tem-
perature observations (Mugford et al., 2012; Fiddes et al.,
2015).
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4.5 Model settings and parameters

GEOtop was forced by the four reanalyses obtained via
GlobSim, providing hourly data for precipitation, wind ve-
locity, wind direction, short- and longwave radiation, relative
humidity and near-surface air temperature. Given the gen-
tle topography and small test area, the time series were de-
rived for the geographic center of measurement sites, only
(Fig. 4). Model parameters and initial conditions were spec-
ified for each terrain type based on field observations. For
example, the uppermost soil type was derived from drill logs
and soil pit measurements (Table 2). Vegetation height was
measured within each 1 m x 1 m subplot around the data log-
ger (Table 3). Some parameters, which are challenging to
measure directly, were then subsequently refined, within the
range of plausible values (cf. Gubler et al., 2013), through
experimentation with the model. The snow correction factor,
which scales the simulated amount of snow via precipitation
amount, is used to capture the differences among the 10 ter-
rain classes. It was determined by fitting the simulated melt-
out date of the snow (Schmid et al., 2012) to observations
(Fig. 6). Snow blowing is parameterized as wind compaction
in 1-D (Pomeroy et al., 1993) for all the terrain types except
the tall shrub site.

Soil parameters were estimated based on soil textural data
collected at each plot (Subedi, 2016). More specifically, the
soil particle thermophysical properties (e.g., thermal con-
ductivity and heat capacity) were estimated based on typi-
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Figure 5. The 10 terrain types used to partition the landscape and observations.
Table 2. GEOtop soil parameters used to simulate different stratigraphic units.
Stratigraphy Glaciofluvial ~ Sandy till ~ Silty till Peat Ice-wedge Bedrock
Saturated water content (%) 37.5 50 39.7 85 95 5
Residual water content (%) 49 49 53 20 0 1
Van Genuchten o (m~1) 2.6 2.1 0.8 30 30 1
Van Genuchten n (-) 1.79 1.57 1.51 1.80 1.80 1.20
Thermal capacity (100 Jm—3 K1) 2 2 218 1.8 2
Thermal conductivity (Wm~! K~1) 4 2 2022 0.22 2
SCF =03 SCF 08 SCF-11 — scF-13s mate.d based on me.'«:lsured LAI and moss thickness. Canopy
®| — SCF=065 — SCF=10 ——SCF=13 —— SCF=1.62 fraction was determined based on plot photos (Gruber et al.,
€ 2018). Although the same vegetation reflectivity (0.11) and
£ 31 transmissivity (0.15) was used for each terrain type, overall
§ < reflectivity and transmissivity are in fact dependent on vege-
2° tation and subsurface conditions.
s A lower boundary condition of zero heat flux was used
for these shallow simulation. Although borehole analysis
e T T T revealed a heat flow of 0.046Wm~2 based on tempera-
s N J M J S N J M M J S

Date

Figure 6. Simulated ensemble mean daily snow depth using dif-
ferent snow correction factors (SCFs) to reproduce the snow melt-
out date for terrain types during the period September 2015-—
August 2017. Max is the maximum snow depth during the measured
period in meters.

cal values for common material types in each unit. The soil
freezing characteristic curve parameters (van Genuchten «,
van Genuchten »n, saturated and residual water content) for
rock and organic material were taken from Gubler (2013).
For mineral soil, values were obtained by averaging the soil
textural data within each class and applying the ROSETTA
model v3.0 (Zhang and Schaap, 2017). For the ice-wedge
trough, the uppermost layer was assigned a the water/ice con-
tent of 95 % to simulate the ice-wedge itself. Leaf and stem
area index (LSAI) and surface density of canopy were esti-
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ture measurements in two deep boreholes near Lac de Gras
(Mareschal and Jaupart, 2004), it is not appropriate to ap-
ply these measurements to the shallow profile simulations
because of the transient changes in the temperature profile
near the surface during recent decades. We use 30 soil layers
with a total depth of 12 m (Fig. 7) and an initial soil tempera-
ture of —2 °C. Reanalyses data for July 2000—June 2010 were
used to spin up the model by running it 10 times (100 years)
before simulations were conducted from July 2010 onward.
Reanalysis produces multi-decadal meteorological vari-
ables (Table 1), and this makes simulating long-term changes
of land-surface processes possible. To demonstrate the util-
ity of GlobSim for supporting long-term simulation, we con-
ducted an additional deep ground temperature simulation
from 1980 to 2017 for a single terrain type. The soil pro-
file increased to 60 layers with a total depth of 50 m via ex-
pending the bedrock layer. The model was spun up by re-
peating the reanalysis of January 1980-December 1984 100

Geosci. Model Dev., 12, 4661-4679, 2019
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Table 3. GEOtop parameters for different terrain types.
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Terrain Esker SV IWP SG TB IWT SH SF  Snowdrift TS
Soil parameters
Stratigraphy I II I I II v v I II 1T
12 45 85 715 40 95 36 85 45 45
Soil water content (%) 15 50 39.7 39.7 50 397 397 397 50 50
0.05 0.05 005 005 005 0.05 0.05 0.05 0.05 0.05
Simulation depth (m) 12/50
Initial ground temperature (°C) -2

Snow parameters

Snow correction factor (—) 0.3 0.65 1 1.1 0.8 1.1 1.3 1.3 1.62 1.35
Wind compaction (-) yes  yes yes yes  yes yes yes  yes yes no
Vegetation parameters
Vegetation height (m) 0.15 020 020 0.15 030 020 030 035 0.15 2.00
LSAI (m? m~?2) 15 23 41 37 27 21 35 21 30 38
Canopy fraction (-) 0.4 1.0 0.8 0.8 0.7 0.8 0.8 0.6 0.8 1.0
DecayCoeffCanopy (-) 2.5 2.7 2.7 2.5 3 2.7 2.7 32 2.5 35
Vegetation root depth (m) 0.10 0.10 0.15 0.10 0.20 0.15 0.20 0.10 0.10 0.7

Vegetation reflectivity in the visible (-) 0.11
Vegetation transmissivity in the visible (-) 0.55
Vegetation reflectivity in the near infrared (-) 045 050 045 040 045 040 050 040 045 045
Vegetation transmissivity in the near infrared (-) 025 025 030 034 025 030 025 034 0.25 0.25
Surface density of canopy (kg m~2) 0.4 1.6 3.6 3.5 1.7 1.6 4.1 2.8 3.5 4.0
VegSnowBurying (-) 20 20 1.5 1.0 20 1.5 2.0 1.0 2.0 2

SV is short vegetation, IWP is ice-wedge polygon, SG is sedges and grass, TB is till blanket, IWT is ice-wedge trough, SH is shrubby hummock, SF is sedge fen, and TS is tall
shrub. The soil water content is specified for each soil layers present in Fig. 7. DecayCoeffCanopy is the decay coefficient of the eddy diffusivity profile in the canopy, and
VegSnowBurying is the coefficient of the exponential snow burying of vegetation. The different stratigraphic profiles are listed in Fig. 7. The simulation depths of 12 and 50 m

were used for GST and long-term simulations, respectively.

times (500 years). To improve simulation efficiency, we sim-
plified GEOtop simulation by assuming the vegetation and
soil moisture were constant over time. This is warranted, as
we aim to simply demonstrate the potential for long-term ap-
plication.

4.6 Comparison of observation and simulation

To compare simulations with observations, the mean bias
(BIAS) and root mean squared error (RMSE) were computed
for each time series as

1 N
BIAS = — > (Tioa — Tons) )
=1
and
N 2
Trod — Tt
RMSE — \/Z;=1( m](z;i obs) ’ (10)

where Thod 1s the modeled temperature, Tops is the observed
temperature, and N is the total number of measurements.
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5 Results
5.1 Observed temperature

During the 2 years measured, the MAGST (SO) at individual
sites span a large range of 11.43 °C, from —8.03 (0.46) °C on
an esker with low vegetation, soil moisture and snow cover
(Fig. 6), to 3.40 (11.89)°C in the tall shrubs, which retain
snow (Fig. 5, Table 4). Daily GST shows seasonal patterns
that are similar for each terrain type, MAGST ranges within
terrain types are reduced to 1.19-6.50 °C, and mean surface
offsets differ clearly.

The surface air temperature is best approximated by
ERAS, which has the lowest daily RMSE of 1.94 °C and bias
of 0.15°C, while MERRA-2 was the worst with an RMSE
of 3.65°C and a bias of —1.62°C (Table 5). During 2015-
2017, the mean MAAT derived from the four reanalyses was
—8.11 £1.25°C, which is in good agreement with the ob-
served MAAT of —8.32 °C. The ensemble mean, which had a
daily RMSE of 1.87 °C, outperformed all individual reanaly-
ses during the measured period and reduced RMSE by 0.07—
1.78 °C (Fig. 8).
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Table 4. Summary of temperatures in the 10 terrain types.
Terrain All  Esker SV IWP SG TB IWT SH SF  Snowdrift TS
Number of sites 156 15 16 13 28 32 12 20 4 12 4
MAAT (°C) —8.49 (2016); —8.15 (2017)
Max 340 -385 =210 -0.33 0.76 1.41 1.31 2.20 1.13 2.04 3.40
° Min —8.03 —8.03 —443 —448 —-498 -506 —-258 —1.70 —0.06 —1.84 —-1.50
MAGST °C) Mean —1.77 —-543 346 -294 -237 -2.16 —-0.65 0.48 0.50 0.76 1.37
SD 2.21 1.01 0.73 1.08 1.34 1.72 1.18 1.01 0.47 0.93 2.09
Max 11.89 4.64 6.39 8.16 9.25 9.90 9.80  10.69 9.62 10.53 11.89
SO (°0) Min 0.46 0.46 3.72 3.67 3.51 3.09 5.57 6.45 8.09 6.31 6.65
Mean 6.55 2.89 4.85 5.38 5.95 6.16 7.66 8.80 8.82 9.07 9.69
SD 2.24 1.02 0.87 1.17 1.39 1.75 1.29 1.12 0.64 1.03 2.13

MAAT is mean annual air temperature, MAGST is mean annual ground-surface temperature, and SO is surface offset.

) I
(\Il —
<{' —
£
£ © Glaciofluvial
53 Sandy till
o Silty till
mmm  Peat
Q@ Bedrock
mmm  |ce/water
(=4 —
o

T T T T T
| 1l 1l v \
Stratigraphy

Figure 7. Soil profiles for the different terrain types used to par-
tition surface temperature observations. Parameters for each of the
subsurface materials are provided in Table 2. The stratigraphic unit
(I-V) associated with each of the terrain types is listed in Table 3. In
the long-term simulation, the layer of bedrock is extended to 50 m.

Figure 8c-1 compare the daily ensemble means of simu-
lated GST to observation means for the 10 terrain types. The
performance varies significantly among terrain types and re-
analyses, with the RMSE ranging from 1.09 to 3.00 °C (Ta-
ble 5). Even within the same terrain class, the mean RMSE
difference for the four reanalyses was 0.60+0.22°C and
was up to 0.89 °C for the sedge fen terrain type. The overall
RMSE for the four reanalyses was 1.96 °C for daily means
and 0.92 °C for annual means.

Most (81 %) of the simulated daily GST is within the ob-
servation range, although the spread in simulated values is
generally smaller than in observations (Fig. 8). The spread
of model results is generally greatest sometime between Jan-
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uary and May of each year, with the exact timing depending
on the terrain type. The variability of observations also de-
pends on the terrain type, with the lowest variability at sedge
fen sites and the greatest at till blanket sites. The ensemble
mean shows good agreement with the observation mean, with
RMSE ranging from 1.02 to 2.45 °C depending on the terrain
type.

The GST ensemble mean usually performed better com-
pared to the individual ensemble members based on single
reanalyses, as was the case with surface air temperature. For
6 of 10 terrain types, the simulated GST ensemble mean
achieved better results based on the RMSE. Moreover, the
ensemble mean had the smallest RMSE for the daily GST
when averaged over all sites. Consequently, the RMSE was
reduced by 0.01-0.31 °C for daily GST and by 0.00-1.01 °C
for SO as a whole (Fig. 9). Overall, simulations forced by
MERRA-2 achieved the best performance for MAGST with
the BIAS and RMSE of —0.03 and 0.75°C, respectively.
Compared to other individual reanalyses, the simulations
forced by ERAS often yield the second best RMSE (8/14)
if not the best (2/14) (Table 5).

The long-term simulation shows warming trends for
MAAT and for modeled annual mean ground temperature
(MGT) at all depths. The modeled warming rate of the en-
semble mean was 0.42 °C per decade for MAAT and 0.42,
0.21 and 0.13 °C per decade for the annual mean ground tem-
perature at depths of 0.1, 10 and 20 m, respectively (Fig. 10).

6 Interpretation

The observed spatial variability of GST, with MAGST dif-
ference up to 11.5°C over 30 km, highlights the need for
spatially differentiated simulation in order to represent the
different thermal regimes among locations or terrain types
as well as their different transient responses to climate forc-
ing. The reduced standard deviation and range of observed
MAGST within terrain types indicates that the classification

Geosci. Model Dev., 12, 4661-4679, 2019
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Table 5. Deviance of simulations from the mean of observations within each terrain type. The smallest BIAS and RMSE values for each row

are indicated in bold font.

g ERAI \ ERA5 | JRA-55 | MERRA-2 |  Ensemble
ource
Classes BIAS RMSE | BIAS RMSE | BIAS RMSE | BIAS RMSE | BIAS RMSE
SAT L18 219 015 194 | 111 230 | -1.62  365| 020 187
Esker 157 278 | 095 227 | 071 249 | —0.03  300| 080 245
NY 091 275 | 059 241 | 129 245 | 000 272 | 070  2.39
WP 080 219 | 103 192 | 150 222 058 195| 098 187
SG 082 177 | 126 176 | 160 231 | 08 18 | L12 172
TB 098 207 | 104 172 | 149 242 | 068 203 | 105 190
GST IWT —-0.11 134 | 050 142 | 108 222 | 031  155| 044 127
SH —-024 206 | —0.07 169 | 022 166 | —0.73 193 | —021 1.6l
SF —041 115 | 002 148 | 051 204 | -011 170 | 000 136
Snowdrift —032 152 | —0.13 109 | 051 118 | —033 157 | —0.07  1.02
TS —148 206 | —129 181 | —0.50 141 | —1.53 218 | =120 166
Overall 025 204 | 039 179 | 084 209 | —-003 209 | 036 178
MAGST 039 091 ] 025 091 | 08 108 | —003 075| 036 082
SO 024 080 | —093 127 | =027 074 | 159 175| 016  0.74

method for terrain type used here is reasonable. Furthermore,
it shows that conceptualizing and simulating GST via terrain
types can be expected to explain a significant part of the vari-
ation observed.

The variables in GlobSim output are similar between re-
analyses at one co-located point, indicating that major blun-
ders are unlikely to exist in the GlobSim code. The data ap-
proximate surface air temperature near Lac de Gras well and
GST simulation results from GEOtop agree well with ob-
servations both in terms of summary statistics (Table 5) and
the reproduction of the underlying seasonal ground thermal
regime (Fig. 8). While quality requirements and simulation
quality will differ with application and geographic area, our
demonstrator shows the suitability of reanalyses and Glob-
Sim for driving process-based numerical simulation at a site
scale. It shows that the combination of driving meteorolog-
ical data, site conditions and a suitable model is able to re-
produce spatial differences as well as the temporal evolution
of ground temperature. The availability of multi-decadal re-
analysis time series opens the door for better investigating
transient processes and phenomena at and below the land sur-
face. Ground temperature is one of many possible variables
to investigate and in this study was chosen as an exemplar be-
cause it reflects the motivation and expertise of the authors.

The greatest model spread occurs between January and
May when the thickness of the insulating snowpack accu-
mulates differences in meteorological variables over the win-
ter period and plays an important role in controlling ground
temperature. This increase in model spread is also conspicu-
ously absent in the esker terrain type, for which the effect of
snow is minimal. The low variability of observed GST for the
sedge fen terrain type may be due in part to the small number
of measurement sites in this terrain type (n = 4). However,
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the tall shrubs class has the same number of measurements
and exhibits variability similar to other terrain types with a
higher number of measurements (e.g., shrubby hummocks,
n = 20). This suggests that the observed spatial variation of
GST in each terrain type is a good first-order indicator of its
full range of variability.

The relatively small range of GST in the model ensemble
when compared to the observations is likely due to the small
number of simulations, in which only differing reanalyses
are used but not perturbed physics or differing land-surface
models. The large difference of RMSE for simulated ground-
surface temperature based on the four forcing reanalyses in-
dicates the potential uncertainty caused by forcing datasets.
Ensemble means often achieve better performance compared
to the individual ensemble members, indicating the potential
of this approach to improve simulation results. Both findings
underscore the value of using more than one reanalysis for
driving simulation studies.

MERRA-2 underestimated surface air temperature near
Lac de Gras, while the simulation overestimated the ground
temperature. As a result, the BIAS of MAGST forced by
MERRA-2 is very close to 0 and the RMSE is smallest due
to opposing biases canceling out. This is also demonstrated
by the highest RMSE of surface offset for MERRA-2.

7 Discussion

7.1 Observed and simulated temperature

Our results highlighted the magnitude of spatial heterogene-
ity in ground temperature (see also Smith, 1975; Gubler
et al., 2011; Schmid et al., 2012; Morse et al., 2012; Gisnas
et al., 2014) over distances that usually are within single grid
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Figure 8. Comparison of ensemble (ENS) simulation results with observations (OBS) for (a) daily near-surface air temperature (SAT);
(b) daily ground-surface temperature (GST) for all the sites and; (c-1) daily GST for individual terrain classes. The date range for all figures

is September 2015 to September 2017.

cells (30-100km) of a reanalysis or climate model. When
comparing grid-scale simulation results with point observa-
tions, this heterogeneity and scale mismatch usually con-
found model validation.

The ensemble ranges of modeled and observed GST
(Fig. 8) reflect two distinct sources of variability. The for-
mer stems from differences in the forcing data, and the latter
is due to terrain characteristics. However, both ranges inform
how well a simulation would represent a particular type of
location within the study area and while a direct comparison
of the two ranges may not be valid, the observed variability
helps contextualize the uncertainty introduced by the forcing
data relative to changes in GST over as little as a few me-
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ters. From this study, we see that the relative importance of
reanalysis uncertainty varies seasonally and spatially.

While we do not aim to evaluate the quality of reanaly-
ses themselves, the calculated air temperature bias indicates
how accurate reanalyses and GlobSim are for our study area.
It is therefore worthwhile to contextualize these results with
those of studies dedicated to a formal evaluation of the re-
analyses. For example, in Greenland, Reeves Eyre and Zeng
(2017) found average monthly SAT biases averaged over all
stations of 0.81 °C (MERRA-2), 1.76 °C (ERAI) and 1.95 °C
(JRA-55). Wang and Zeng (2012) found a daily average bias
for ERAI over 63 stations on the Tibetan Plateau of 3.21 °C,
while an analysis of individual stations within North America

Geosci. Model Dev., 12, 4661-4679, 2019
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Figure 9. Comparison of ensemble results and observations for (a) mean annual ground-surface temperature (MAGST) and (b) surface offset

(SO) for the 10 terrain types.
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Figure 10. Changes of (a) mean annual air temperature (MAAT) derived from reanalyses, modeled annual mean ground temperature (MGT)
at the depth of (b) 0.1 m, (¢) 10 m and (d) 20 m for shrubby hummocks (SH) terrain type of between 1980 and 2017. The numbers in the
lower right of each figure correspond to the magnitude of the warming trend for each reanalysis and their ensemble mean with the unit of
°C per decade. ENS corresponds to ensemble mean. The trend lines were calculated using a linear regression model, and all the slopes were

statistically significant with p < 0.05.

found 6-hourly ERAI bias values to mostly fall between —1.5
and 4.5 °C but were as large as 7.5 °C (Decker et al., 2012).
The SAT bias calculated at our sites ranges from —1.62°C
(MERRA-2) to 1.18 °C (ERAI) (Table 5). The numbers of
this and previous studies remind us that the application of
reanalyses for simulating surface phenomena is bound to be
imperfect and that the success of application in one area can-
not be transferred to other areas uncritically.
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7.2 Advantages and limitations of GlobSim

Previous work has investigated parameter uncertainty with
ensemble simulation (Harp et al., 2016; Gubler et al., 2013)
but not investigated the effect of uncertainty in the forcing
data. Other studies have used multiple forcing datasets to
drive ensembles at the grid scale. Jafarov et al. (2012) used
a five-member GCM composite product for driving a per-
mafrost model on a 2km x 2km grid using mean monthly
air temperature and precipitation. Here, the coarse tempo-
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ral resolution and the GCM-specific realization of weather
events preclude some types of detailed investigation with ob-
servations. Guo et al. (2017) used three different reanalyses
to evaluate the effect of forcing data on permafrost model
uncertainty on a 0.5° x 0.5° grid, excluding fine-scale vari-
ation. For simulation at finer scales, dynamic and/or statisti-
cal downscaling of GCM and regional climate model (RCM)
outputs has been used (Salzmann et al., 2007; Marmy et al.,
2016). The downscaling and debiasing, however, are often
limited to areas with detailed observations.

Although the demonstrator presented here is relatively
simple, it addresses a critical gap in permafrost research and
likely for other modeling communities as well. It provides a
basis upon which to implement improved downscaling meth-
ods and to work towards debiasing GCM results with reanal-
yses (Cannon, 2016) at the point scale. Specifically, GlobSim
helps to (1) fill gaps in meteorological observations caused
by instrument failure, (2) evaluate models at locations where
observations to compare with model results (ground temper-
ature in this demonstrator) are available, but meteorologi-
cal observations to drive models are lacking and (3) predict
environmental phenomena that are driven by atmospheric
conditions (permafrost in this demonstrator) at locations for
which no observational data exist. Such predictions could
also support the analysis and interpretation of field manip-
ulation experiments or long-term monitoring data. In keep-
ing with the permafrost example, these experiments could
investigate the effects of vegetation change or different snow
management practices (O’Neill and Burn, 2017). In remote
locations, long-term meteorological observations are sparse,
which limits the application of models that require detailed
inputs. The recent publication of two such datasets illustrates
the importance — and the general lack — of complete records
which can be used to both force and evaluate models (Boike
et al., 2019, 2018). While the methods contained in GlobSim
are simple, it nevertheless provides an important simplifica-
tion of the application of reanalysis data toward simulation
studies outside atmospheric science. As GlobSim outputs use
the CF conventions (Hassell et al., 2017), it contributes to the
ease of using multiple data sources.

Our results have demonstrated the performance of Glob-
Sim for site-level simulation in one particular field area
with gentle topography. Simulation accuracy for other areas
and application will differ, especially in mountains and near
coasts where topography and other heterogeneity presents
additional challenges for downscaling. Additional scaling
rules such as TopoScale (Fiddes and Gruber, 2014), RED-
CAPP (Cao et al., 2017) or those implemented in MSDH
(Sen Gupta and Tarboton, 2016) may be added in the future,
making GlobSim more suitable in mountains.

7.3 ERAS5 ensemble

ERAS provides uncertainty estimates for all parameters at
3 h intervals and at a horizontal resolution of 62 km. This is
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achieved using an ensemble of 10 members that differ in their
assimilated observations, initial conditions and model struc-
ture. In other words, ERAS itself is an ensemble simulation.
In GlobSim, only the ensemble mean of ERAS is currently
used. In a next step, efforts will be devoted to compare en-
sembles of ERAS and fully incorporate them into GlobSim.

8 Conclusions

We describe and test the software GlobSim, which has been
designed to support ensemble simulations at a the site level.
Specially, GlobSim is designed to easily retrieve, interpolate
and scale reanalyses in order to produce time series of mete-
orological variables with common structure, temporal reso-
Iution and units. It currently supports four reanalyses: ERAI,
ERAS, JRA-55 and MERRA-2. We demonstrate the utility
of GlobSim by driving a model of ground-surface tempera-
ture in a tundra environment with permafrost and comparing
its output to observations. Our results support three conclu-
sions:

1. GlobSim improves the usability of reanalyses for land-
surface simulations by deriving time series of climate
variables in uniform format from multiple reanalyses
for point locations.

2. GlobSim enables efficient ensemble simulations at sin-
gle or multiple points.

3. Compared to simulations forced by individual reanaly-
ses, ensemble means often yielded better performance
with reduced RMSE in addition to providing informa-
tion about predictive uncertainty.

Code availability. GlobSim is developed as a Python package
available at Zenodo (https://doi.org/10.5281/zenodo0.3237258, last
access: 30 October 2019) as a GPL-3.0 project in the version pub-
lished here and with documentation at GitHub (http://github.com/
geocryology/globsim, last access: 30 October 2019). A docker con-
tainer containing the required libraries is also available at GitHub
(https://hub.docker.com/r/geocryology/globsim, last access: 30 Oc-
tober 2019). The ESMF library was downloaded from http:/
earthsystemcog.org/projects/esmf/ (last access: 30 October 2019).

Data availability. Observations are  available  from  the
Nordicana-D  data  repository  (Gruber et al., 2018,
https://doi.org/10.5885/45561XX-2C7TAB3DCF3D24ADS,).
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