Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 9
Geosci. Model Dev., 12, 4133–4164, 2019
https://doi.org/10.5194/gmd-12-4133-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 4133–4164, 2019
https://doi.org/10.5194/gmd-12-4133-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Development and technical paper 23 Sep 2019

Development and technical paper | 23 Sep 2019

Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES)

Elias C. Massoud et al.

Related authors

Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020,https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Regional Climate Model Evaluation System powered by Apache Open Climate Workbench v1.3.0: an enabling tool for facilitating regional climate studies
Huikyo Lee, Alexander Goodman, Lewis McGibbney, Duane E. Waliser, Jinwon Kim, Paul C. Loikith, Peter B. Gibson, and Elias C. Massoud
Geosci. Model Dev., 11, 4435–4449, https://doi.org/10.5194/gmd-11-4435-2018,https://doi.org/10.5194/gmd-11-4435-2018, 2018
Short summary

Related subject area

Biogeosciences
Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020,https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020,https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites
Petra Lasch-Born, Felicitas Suckow, Christopher P. O. Reyer, Martin Gutsch, Chris Kollas, Franz-Werner Badeck, Harald K. M. Bugmann, Rüdiger Grote, Cornelia Fürstenau, Marcus Lindner, and Jörg Schaber
Geosci. Model Dev., 13, 5311–5343, https://doi.org/10.5194/gmd-13-5311-2020,https://doi.org/10.5194/gmd-13-5311-2020, 2020
Short summary
A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C v1.0)
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020,https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
One-dimensional models of radiation transfer in heterogeneous canopies: a review, re-evaluation, and improved model
Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff
Geosci. Model Dev., 13, 4789–4808, https://doi.org/10.5194/gmd-13-4789-2020,https://doi.org/10.5194/gmd-13-4789-2020, 2020
Short summary

Cited articles

Adams, H. R., Barnard, H. R., and Loomis, A. K.: Topography alters tree growth–climate relationships in a semi-arid forested catchment, Ecosphere, 5, 1–16, 2014. a
Ali, A. A., Xu, C., Rogers, A., Fisher, R. A., Wullschleger, S. D., Massoud, E. C., Vrugt, J. A., Muss, J. D., McDowell, N. G., Fisher, J. B., Reich, P. B., and Wilson, C. J.: A global scale mechanistic model of photosynthetic capacity (LUNA V1.0), Geosci. Model Dev., 9, 587–606, https://doi.org/10.5194/gmd-9-587-2016, 2016. a
Archer, G., Saltelli, A., and Sobol,I.: Sensitivity measures, anova-like techniques and the use of bootstrap, J. Stat. Comput. Simu., 58, 99–120,1997. a
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Brovkin, V., Cadule, P., and Hajima, T.: Carbon–concentration and carbon–climate feedbacks in cmip5 earth system models, J. Climate, 26 5289–5314, 2013. a, b
Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., and Yang, Z. L.: Sensitivity analysis of a land surface scheme using multicriteria methods, J. Geophys. Res.-Atmos., 104, 19481–19490, 1999. a
Publications Copernicus
Download
Short summary
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic vegetation model within a land surface model. By running the model 5000 times with changing input parameter values, we found that (1) the photosynthetic capacity controls carbon fluxes, (2) the allometry is important for tree growth, and (3) the targeted carbon storage is important for tree survival. These results can provide guidance on improved model parameterization for a better fit to observations.
We conducted a comprehensive sensitivity analysis to understand behaviors of a demographic...
Citation