Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-4053-2019
https://doi.org/10.5194/gmd-12-4053-2019
Methods for assessment of models
 | 
17 Sep 2019
Methods for assessment of models |  | 17 Sep 2019

Detecting causality signal in instrumental measurements and climate model simulations: global warming case study

Mikhail Y. Verbitsky, Michael E. Mann, Byron A. Steinman, and Dmitry M. Volobuev

Related authors

Rapid Communication: Middle Pleistocene Transition as a Phenomenon of Orbitally Enabled Sensitivity to Initial Values
Mikhail Verbitsky and Anne Willem Omta
EGUsphere, https://doi.org/10.5194/egusphere-2025-3334,https://doi.org/10.5194/egusphere-2025-3334, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Absence of causality between seismic activity and global warming
Mikhail Y. Verbitsky, Michael E. Mann, and Dmitry Volobuev
Earth Syst. Dynam., 15, 1015–1017, https://doi.org/10.5194/esd-15-1015-2024,https://doi.org/10.5194/esd-15-1015-2024, 2024
Short summary
Milankovitch Theory “as an Initial Value Problem”
Mikhail Verbitsky and Dmitry Volobuev
EGUsphere, https://doi.org/10.5194/egusphere-2024-1255,https://doi.org/10.5194/egusphere-2024-1255, 2024
Short summary
Do phenomenological dynamical paleoclimate models have physical similarity with Nature? Seemingly, not all of them do
Mikhail Y. Verbitsky and Michel Crucifix
Clim. Past, 19, 1793–1803, https://doi.org/10.5194/cp-19-1793-2023,https://doi.org/10.5194/cp-19-1793-2023, 2023
Short summary
Do phenomenological dynamical paleoclimate models have physical similarity with nature?
Mikhail Verbitsky
EGUsphere, https://doi.org/10.5194/egusphere-2022-758,https://doi.org/10.5194/egusphere-2022-758, 2022
Preprint archived
Short summary

Related subject area

Climate and Earth system modeling
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary

Cited articles

Abarbanel, H. D., Brown, R., Sidorowich, J. J., and Tsimring, L. S.: The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65, 1331–1392, 1993. 
Attanasio, A.: Testing for linear Granger causality from natural/anthropogenic forcings to global temperature anomalies, Theor. Appl. Climatol., 110, 281–289, 2012. 
Attanasio, A., Pasini, A., and Triacca, U.: A contribution to attribution of recent global warming by out-of-sample Granger causality analysis, Atmos. Sci. Lett., 13, 67–72, 2012. 
Barnett, L., Barrett, A. B., and Seth, A. K.: Granger causality and transfer entropy are equivalent for Gaussian variables, Phys. Rev. Lett., 103, 238701, https://doi.org/10.1103/PhysRevLett.103.238701, 2009. 
Čenys, A., Lasiene, G., and Pyragas, K.: Estimation of interrelation between chaotic observables, Physica D, 52, 332–337, 1991. 
Download
Short summary
In this study, we propose an additional climate model validation procedure that assesses whether causality signals between model drivers and responses are consistent with those observed in nature. Specifically, we suggest the method of conditional dispersion as the best approach to directly measure the causality between model forcing and response. Our results show that there is a strong causal signal from the carbon dioxide series to the global temperature series.
Share