Articles | Volume 12, issue 9
https://doi.org/10.5194/gmd-12-3975-2019
https://doi.org/10.5194/gmd-12-3975-2019
Model description paper
 | 
09 Sep 2019
Model description paper |  | 09 Sep 2019

Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth's shortwave radiation budget: CACK v1.0

Ryan M. Bright and Thomas L. O'Halloran

Related authors

CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review
Ryan M. Bright and Marianne T. Lund
Atmos. Chem. Phys., 21, 9887–9907, https://doi.org/10.5194/acp-21-9887-2021,https://doi.org/10.5194/acp-21-9887-2021, 2021
Short summary
Evaluation of leaf-level optical properties employed in land surface models
Titta Majasalmi and Ryan M. Bright
Geosci. Model Dev., 12, 3923–3938, https://doi.org/10.5194/gmd-12-3923-2019,https://doi.org/10.5194/gmd-12-3923-2019, 2019
Short summary
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018,https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Radiative forcing bias of simulated surface albedo modifications linked to forest cover changes at northern latitudes
R. M. Bright, G. Myhre, R. Astrup, C. Antón-Fernández, and A. H. Strømman
Biogeosciences, 12, 2195–2205, https://doi.org/10.5194/bg-12-2195-2015,https://doi.org/10.5194/bg-12-2195-2015, 2015
Technical Note: Evaluating a simple parameterization of radiative shortwave forcing from surface albedo change
R. M. Bright and M. M. Kvalevåg
Atmos. Chem. Phys., 13, 11169–11174, https://doi.org/10.5194/acp-13-11169-2013,https://doi.org/10.5194/acp-13-11169-2013, 2013

Related subject area

Climate and Earth system modeling
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025,https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025,https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025,https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025,https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025,https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary

Cited articles

Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, 26, 6801–6843, 2013. 
Atwood, A. R., Wu, E., Frierson, D. M. W., Battisti, D. S., and Sachs, J. P.: Quantifying Climate Forcings and Feedbacks over the Last Millennium in the CMIP5–PMIP3 Models, J. Climate, 29, 1161–1178, 2016. 
Block, K. and Mauritsen, T.: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2, J. Adv. Model. Earth Sy., 5, 676–691, 2014. 
Block, K. and Mauritsen, T.: ECHAM6 CTRL kernel, available at: https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-c1b86fac060d/Radiative_kernels/ (last access: 2 September 2019), 2015. 
Bonan, G. B., Pollard, D., and Thompson, S. L.: Effects of Boreal Forest Vegetation on Global Climate, Nature, 359, 716–718, 1992. 
Download
Short summary
To determine the effects of land cover change on climate, researchers must be able to quantify the net change in energy (radiation) at the top of the atmosphere caused by changes in surface reflectance (albedo). Historically, this was done with sophisticated models that require detailed input datasets only available to specialists. Here we combine existing remotely sensed datasets and a new formulation to create a new model that is accurate, transparent, and easy to use.
Share