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Abstract. Due to the potential for land-use–land-cover
change (LULCC) to alter surface albedo, there is need within
the LULCC science community for simple and transparent
tools for predicting radiative forcings (1F ) from surface
albedo changes (1αs). To that end, the radiative kernel tech-
nique – developed by the climate modeling community to di-
agnose internal feedbacks within general circulation models
(GCMs) – has been adopted by the LULCC science com-
munity as a tool to perform offline 1F calculations for 1αs.
However, the codes and data behind the GCM kernels are not
readily transparent, and the climatologies of the atmospheric
state variables used to derive them vary widely both in time
period and duration. Observation-based kernels offer an at-
tractive alternative to GCM-based kernels and could be up-
dated annually at relatively low costs. Here, we present a ra-
diative kernel for surface albedo change founded on a novel,
simplified parameterization of shortwave radiative transfer
driven with inputs from the Clouds and the Earth’s Radiant
Energy System (CERES) Energy Balance and Filled (EBAF)
products. When constructed on a 16-year climatology (2001–
2016), we find that the CERES-based albedo change kernel –
or CACK – agrees remarkably well with the mean kernel of
four GCMs (rRMSE= 14 %). When the novel parameteriza-
tion underlying CACK is applied to emulate two of the GCM
kernels using their own boundary fluxes as input, we find
even greater agreement (mean rRMSE= 7.4 %), suggesting
that this simple and transparent parameterization represents
a credible candidate for a satellite-based alternative to GCM
kernels. We document and compute the various sources of

uncertainty underlying CACK and include them as part of a
more extensive dataset (CACK v1.0) while providing exam-
ples showcasing its application.

1 Introduction

Diagnosing changes to the shortwave radiation balance at
the top of the atmosphere (TOA) resulting from changes to
albedo at the surface (1αs) is an important step in predicting
climate change. However, outside the climate science com-
munity, many researchers do not have the tools to convert
1α to the climate-relevant1F measure (Bright, 2015; Jones
et al., 2015), which requires a detailed representation of the
atmospheric constituents that absorb or scatter solar radia-
tion (e.g., cloud, aerosols, and gases) and a sophisticated ra-
diative transfer code. For single points in space or for small
regions, these calculations are typically performed offline –
meaning without feedbacks to the atmosphere (e.g., Rander-
son et al., 2006). Large-scale investigations (e.g., Amazonian
or pan-boreal land-use–land-cover change, LULCC; Bonan
et al., 1992; Dickinson and Henderson-Sellers, 1988) typi-
cally prescribe the land surface layer in a general circula-
tion model (GCM) with initial and perturbed states, allow-
ing the radiative transfer code to interact with the rest of
the model. While this has the benefit of allowing interaction
and feedbacks between surface albedo and scattering or ab-
sorbing components of the model, such an approach is com-
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putationally expensive and thereby restricts the number of
LULCC scenarios that can be investigated (Atwood et al.,
2016). Consequently, this method does not meet the needs of
some modern LULCC studies which may require millions of
individual land cover transitions to be evaluated cost effec-
tively (Ghimire et al., 2014; Lutz and Howarth, 2015).

Within the LULCC science community, two methods have
primarily met the need for efficient 1F calculations from
1αs: simplified parameterizations of atmospheric transfer of
shortwave radiation (Bozzi et al., 2015; Bright and Kvalevåg,
2013; Caiazzo et al., 2014; Carrer et al., 2018; Cherubini et
al., 2012; Muñoz et al., 2010) and radiative kernels (Ghimire
et al., 2014; O’Halloran et al., 2012; Vanderhoof et al., 2013)
derived from sophisticated radiative transfer schemes embed-
ded in GCMs (Block and Mauritsen, 2014; Pendergrass et al.,
2018; Shell et al., 2008; Soden et al., 2008). Simplified pa-
rameterizations of the LULCC science community have not
been evaluated comprehensively in space and time. Bright
and Kvalevåg (2013) evaluated the shortwave 1F param-
eterization of Cherubini et al. (2012) when applied at sev-
eral globally distributed sites on land, finding inconsisten-
cies in performance at individual sites despite good overall
cross-site performance. Radiative kernels (Block and Maurit-
sen, 2014; Pendergrass et al., 2018; Shell et al., 2008; Soden
et al., 2008) – while being based on state-of-the-art models
of radiative transfer – have the downside of being model-
dependent and not readily transparent. While the radiative
transfer codes behind them are well-documented, the scat-
tering components (i.e., aerosols, gases, and clouds) affect-
ing transmission have many simplifying parameterizations,
vary widely across models, and may contain significant bi-
ases (Dolinar et al., 2015; Wang and Su, 2013). An additional
downside is that the atmospheric state climatologies used to
compute the GCM kernels vary widely in their time periods
(i.e., from the preindustrial period to the year 2007) and du-
rations (from 1 to 1000 years). The application of a state-
dependent GCM kernel that is outdated may be undesirable
in regions undergoing rapid changes in cloud cover or aerosol
optical depth, such as in the northwest United States (Free
and Sun, 2014) and in southern (Srivastava, 2017) and east-
ern (Zhao et al., 2018) Asia, respectively. An albedo change
kernel based on Earth-orbiting satellite products could be up-
dated annually to capture changes in atmospheric state at rel-
atively low costs.

The NASA Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balance and Filled (EBAF) products
(CERES Science Team, 2018a, b), which are based largely
on satellite optical remote sensing, provide the monthly mean
boundary fluxes and other atmospheric state information
(e.g., cloud area fraction, cloud optical depth) that could be
used to develop a more empirically based alternative to the
GCM-based kernels. The latest EBAF-TOA Ed4.0 (version
4.0) products have many improvements with respect to the
previous version (version 2.8; Loeb et al., 2009), including
the use of advanced and more consistent input data, retrieval

of cloud properties, and instrument calibration (Kato et al.,
2018; Loeb et al., 2017).

Here, we present an albedo change kernel based on the
CERES EBAF v4 products – or CACK. Underlying CACK
is a simplified model of shortwave radiative transfer through
a one-layer atmosphere. The model form (or parameteriza-
tion) is selected after a two-stage performance evaluation
of six model candidates: two analytical, one semiempirical,
and three empirical. An initial performance screening is im-
plemented where all six model candidates are driven with
a 16-year climatology (January 2001–December 2016) of
monthly all-sky boundary fluxes from CERES, with the re-
sulting kernels benchmarked both qualitatively and quantita-
tively against the mean of four GCM-based kernels (Block
and Mauritsen, 2014; Pendergrass et al., 2018; Shell et al.,
2008; Soden et al., 2008). Top model candidates from the
initial performance screening are then subjected to an addi-
tional performance evaluation where they are applied to emu-
late two GCM kernels using their own boundary fluxes as in-
put, which eliminates possible biases related to differences in
the GCM representation of clouds or other atmosphere state
variables.

We start in Sect. 2 by providing a brief overview of ex-
isting approaches applied in LULCC climate studies for es-
timating 1F from 1α. We then present the six model can-
didates in Sect. 3. Section 4 describes the model evaluation
and uncertainty quantification methods, in addition to two
application examples. Results are presented in Sect. 5, while
Sect. 6 discusses the merits and uncertainties of a CERES-
based kernel relative to GCM-based kernels.

2 Review of existing approaches

Earth’s energy balance (at TOA) in an equilibrium state can
be written as

0= F = LWTOA
↑
−

(
SWTOA
↓
−SWTOA

↑

)
, (1)

where the equilibrium flux F is a balance between the net
solar energy inputs (SWTOA

↓
−SWTOA

↑
) and thermal energy

output (LWTOA
↑

). Perturbing this balance results in a radia-
tive forcing 1F , while perturbing the shortwave component
is referred to as a shortwave radiative forcing and may be
written as

1F =1
(

SWTOA
↓
−SWTOA

↑

)
=1SWTOA

↓

(
1−

SWTOA
↑

SWTOA
↓

)
−SWTOA

↓

(
1

SWTOA
↑

SWTOA
↓

)
, (2)

where the shortwave radiative forcing results either from
changes to solar energy inputs (1SWTOA

↓
) or from internal

perturbations within the Earth system
(
1

SWTOA
↑

SWTOA
↓

)
. The latter

can be brought about by changes to the reflective properties
of Earth’s surface, which is the focus of this paper.
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2.1 GCM-based radiative kernels

The radiative kernel technique was developed as a way to
assess various climate feedbacks from climate change simu-
lations across multiple climate models in a computationally
efficient manner (Shell et al., 2008; Soden et al., 2008). A
radiative kernel is defined as the differential response of an
outgoing radiation flux at TOA to an incremental change in
some climate state variable – such as water vapor, air temper-
ature, or surface albedo (Soden et al., 2008). To generate a ra-
diative kernel for a change in surface albedo with a GCM, the
prescribed surface albedo change is perturbed incrementally
by 1 %, and the response by the outgoing shortwave radiation
flux at TOA is recorded:

1SWTOA
↑
= SWTOA

↑
(αs+1αs)−SWTOA

↑
(αs)

=
∂SWTOA

↑

∂αs
1αs ≡Kαs1αs, (3)

where SWTOA
↑

is the outgoing shortwave flux at TOA and
Kαs is the radiative kernel (in W m−2), which can then be
used with Eq. (1) to estimate an instantaneous shortwave ra-
diative forcing (1F ) at TOA:

F +1F = LWTOA
↑
−

(
SWTOA
↓
−SWTOA

↑
+Kαs1αs

)
1F =−Kαs1αs. (4)

To the best of our knowledge, four albedo change kernels
have been developed based on the following GCMs: the
Community Atmosphere Model version 3, or CAM3 (Shell
et al., 2008), the Community Atmosphere Model version 5,
or CAM5 (Pendergrass et al., 2018), the European Center and
Hamburg model version 6, or ECHAM6 (Block and Mau-
ritsen, 2014), and the Geophysical Fluid Dynamics Labora-
tory model version AM2p12b, or GFDL (Soden et al., 2008).
These four GCM kernels vary in their vertical and horizon-
tal resolutions, their parameterizations of shortwave radia-
tive transfer, and their prescribed atmospheric state clima-
tologies. These differences are summarized in Table 1. Apart
from differences in their prescribed atmospheric background
states and radiative transfer schemes, a major source of un-
certainty in GCM-based kernels is related to the GCM repre-
sentation of atmospheric liquid water or ice associated with
convective clouds; of the four aforementioned GCMs, only
CAM5 and GFDL attempt to model the effects of convective
core ice and liquid in their radiation calculations (Li et al.,
2013).

2.2 Single-layer atmosphere models of shortwave
radiation transfer

Within the atmospheric science community, various simpli-
fied analytical or semiempirical modeling frameworks have
been developed, either to diagnose effective surface and at-
mospheric optical properties from climate model outputs or

to study the relative contributions of changes to these prop-
erties on shortwave flux changes at the top and bottom of
the atmosphere (Atwood et al., 2016; Donohoe and Battisti,
2011; Kashimura et al., 2017; Qu and Hall, 2006; Rasool and
Schneider, 1971; Taylor et al., 2007; Winton, 2005, 2006).
While these frameworks all treat the atmosphere as a single
layer, they differ by whether or not the reflection and trans-
mission properties of this layer are assumed to have a direc-
tional dependency (Stephens et al., 2015) and by whether or
not inputs other than those derived from the boundary fluxes
are required (e.g., cloud properties; Qu and Hall, 2006).

Winton (2005) presented a semiempirical four-parameter
optical model to account for the directional dependency of
up- and downwelling shortwave fluxes through the one-layer
atmosphere and found good agreement (rRMSE< 2 % glob-
ally) when this was benchmarked to online radiative trans-
fer calculations. Also considering a directional dependency
of the atmospheric optical properties, Taylor et al. (2007)
presented a two-parameter analytical model where atmo-
spheric absorption was assumed to occur at a level above at-
mospheric reflection. The analytical model of Donohoe and
Battisti (2011) subsequently relaxed the directional depen-
dency assumption and found the atmospheric attenuation of
the surface albedo contribution to planetary albedo to be 8 %
higher than the model of Taylor et al. (2007). Elsewhere, Qu
and Hall (2006) developed an analytical framework making
use of additional atmospheric properties such as cloud cover
fraction, cloud optical thickness, and the clear-sky planetary
albedo, which proved highly accurate when model estimates
of planetary albedo were evaluated against climate models
and satellite-based datasets.

2.3 Simple empirical parameterizations of the LULCC
science community

Two simple empirical parameterizations of shortwave radia-
tive transfer have been widely applied within the LULCC
science community for estimating 1F from 1αs (Bozzi et
al., 2015; Caiazzo et al., 2014; Carrer et al., 2018; Cherubini
et al., 2012; Lutz et al., 2015; Muñoz et al., 2010). While
these parameterizations are also based on a single-layer at-
mosphere model of shortwave radiative transfer, at the core
of these parameterizations is the fundamental assumption
that radiative transfer is wholly independent of (or unaffected
by) 1αs. In other words, they neglect the change in the at-
tenuating effect of multiple reflections between the surface
and the atmosphere that accompanies a change in the sur-
face albedo. Nevertheless, due to their simplicity and ease of
application they continue to be widely employed in climate
research.
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Table 1. Attributes of existing GCM kernels, all of which having a monthly temporal resolution.

Kernel Base climatology Base climatology Shortwave radiative Horizontal References
extent period transfer resolution

ECHAM6 1000 years Preindustrial∗ RRTM-G 1.88◦× 1.88◦ Block and Mauritsen (2014),
Stevens et al. (2013)

CAM3 6 years 1995–2000 δ-Eddington 1.4◦× 1.4◦ Collins et al. (2006),
Shell et al. (2008)

CAM5 1 year 2006–2007 RRTM-G 0.94◦× 1.25◦ Pendergrass et al. (2018)
GFDL 17 years 1979–1995 Exponential sum fits, 2◦× 2.5◦ Soden et al. (2008), The GFDL

18 bands Global Atmospheric Model
Development Team (2004)

∗ Atmospheric CO2 concentration= 284.7 ppmv; exact time period unknown.

3 Kernel model candidates

The six candidate models (or parameterizations) for a
CERES-based albedo change kernel (CACK) are presented
henceforth. All requisite variables and their derivatives may
be obtained directly from the CERES EBAF v4 products (at
monthly and 1◦×1◦ resolution) and are presented in Table 2.
To improve readability, temporal and spatial indexing is ne-
glected and all terms presented henceforth in Sect. 3 denote
the monthly pixel means.

3.1 Analytical kernels

The first kernel candidate may be analytically derived from
the CERES EBAF all-sky boundary fluxes and their deriva-
tives. The surface contribution to the outgoing shortwave flux
at TOA SWTOA

↑,SFC can be expressed (Donohoe and Battisti,
2011; Stephens et al., 2015; Winton, 2005) as

SWTOA
↑,SFC = SWTOA

↓
αs
(1− r − a)2

(1− rαs)
, (5)

where r is a single-pass atmospheric reflection coefficient, a
is a single-pass atmospheric absorption coefficient, SWTOA

↓

is the extraterrestrial (downwelling) shortwave flux at TOA,
and αs is the surface albedo (defined in Table 2). The expres-
sion in the denominator of the right-hand term represents a
fraction attenuated by multiple reflections between the sur-
face and the atmosphere. This model assumes that the atmo-
spheric optical properties r and a are insensitive to the origin
and direction of shortwave fluxes or – in other words – that
they are isotropic.

The single-pass reflectance coefficient is calculated from
the system boundary fluxes (Table 2) following Win-
ton (2005) and Kashimura et al. (2017):

r =
SWTOA
↓

SWTOA
↑
−SWSFC

↓
SWSFC
↑

SWTOA 2
↓

−SWSFC 2
↑

, (6)

while the single-pass absorption coefficient a is given as

a = 1− r − T (1−αsr) , (7)

where T is the clearness index (defined in Table 2). Our inter-
est is in quantifying the SWTOA

↑,SFC response to an albedo per-
turbation at the surface – or the partial derivative of SWTOA

↑,SFC
with respect to α in Eq. (5):

∂SWTOA
↑

∂αs
1αs =K

ISO
αs
1αs =

SWTOA
↓

(1− r − a)2

(1− rαs)2
1αs, (8)

where K ISO
αs

is referred to henceforth as the isotropic kernel.
The second analytical kernel is based on the model of Qu

and Hall (2006) which makes use of auxiliary cloud prop-
erty information commonly provided in satellite-based prod-
ucts of Earth’s radiation budget – including CERES EBAF –
such as cloud cover area fraction, cloud visible optical depth,
and clear-sky planetary albedo. This model links all-sky and
clear-sky effective atmospheric transmissivities of the earth
system through a linear coefficient k relating the logarithm
of cloud visible optical depth to the effective all-sky atmo-
spheric transmissivity:

k =
(Ta,CLR)− (Ta)

ln(τ + 1)
, (9)

where Ta,CLR is the clear-sky effective system transmissivity,
Ta is the all-sky effective system transmissivity, and τ is the
cloud visible optical depth. This linear coefficient can then
be used together with the cloud cover area fraction to derive
a shortwave kernel based on the model of Qu and Hall (2006)
– or KQH06

αs :

∂SWTOA
↑

∂αs
1αs =K

QH06
αs

1αs

= SWSFC
↓

[(Ta)− kc ln(τ + 1)]1αs, (10)

where c is the cloud cover area fraction.

3.2 Semiempirical kernel

The third kernel makes use of three directionally dependent
(anisotropic) bulk optical properties r↑, t↑, and t↓, where the
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Table 2. Definition of CERES input variables and other system optical properties derived from CERES inputs. All variables have a monthly
temporal resolution and a spatial resolution of 1◦× 1◦.

CERES EBAF v.4 shortwave boundary fluxes

SWTOA
↓

Downwelling solar flux at top of atmosphere W m−2

SWSFC
↓

Downwelling solar flux at the surface W m−2

SWSFC
↓,CLR Clear-sky downwelling solar flux at the surface W m−2

SWTOA
↑

Upwelling solar flux at top of atmosphere W m−2

SWSFC
↑

Upwelling solar flux at the surface W m−2

System optical properties

T = SWSFC
↓

/SWTOA
↓

Clearness index Unitless
αp = SWTOA

↑
/SWTOA

↓
Planetary albedo Unitless

αs = SWSFC
↑

/SWSFC
↓

Surface albedo Unitless
Ap = 1−αp Effective planetary absorption Unitless

As =
[
SWSFC
↓
−SWSFC

↑

]
/SWTOA

↓
Effective surface absorption Unitless

Aa = Ap−As Effective atmospheric absorption Unitless
Ta = 1−Aa Effective atmospheric transmission Unitless
Ta,CLR = 1−Aa,CLR Clear-sky effective atmospheric transmission Unitless
τ Cloud visible optical depth Unitless
c Cloud area fraction Fraction

first is the atmospheric reflectivity to upwelling shortwave
radiation and the latter two are the atmospheric transmission
coefficients for upwelling and downwelling shortwave radi-
ation, respectively (Winton, 2005). It is not possible to de-
rive r↑ analytically from the all-sky boundary fluxes; how-
ever, Winton (2005) provides an empirical formula relating
upwelling reflectivity r↑ to the ratio of all-sky to clear-sky
fluxes incident at the surface:

r↑ = 0.05+ 0.85

(
1−

SWSFC
↓

SWSFC
↓,CLR

)
, (11)

where SWSFC
↓,CLR is the clear-sky shortwave flux incident at

the surface.
Knowing r↑, we can then solve for the two remaining op-

tical parameters needed to obtain our kernel:

t↓ =
SWSFC
↓
− r↑SWSFC

↑

SWTOA
↓

, (12)

t↑ = Ta−
[
t↓− t↓(1− r↑αs)

]
, (13)

where Ta is the effective atmospheric transmittance (Table 2)
of the earth system.

The kernel may now be expressed as

∂SWTOA
↑

∂αs
1αs =K

ANISO
αs

1αs =
SWTOA
↓

t↓t↑(
1− r↑αs

)21αs, (14)

where KANISO
αs

is henceforth referred to as the anisotropic
kernel.

3.3 Existing empirical parameterizations

Although not referred to as “kernels” in the literature per se,
we present the simple empirical parameterizations as such
to ensure consistency with previously described notation and
terminology.

The first candidate parameterization, originally presented
in Muñoz et al. (2010), makes use of a local two-way trans-
mittance factor based on the local clearness index:

∂SWTOA
↑

∂αs
1αs ≡K

M10
αs

1αs = SWTOA
↓

T 21αs, (15)

where SWTOA
↓

is the local incoming solar flux at TOA, T is
the local clearness index, and ∂SWTOA

↑
/∂αs is the approxi-

mated change in the upwelling shortwave flux at TOA due to
a change in the surface albedo.

The second candidate parameterization, originally pro-
posed in Cherubini et al. (2012), makes direct use of the solar
flux incident at the surface SWSFC

↓
combined with a one-way

transmission constant k:

∂SWTOA
↑

∂αs
1αs ≡K

C12
αs
1αs = SWSFC

↓
k1αs, (16)

where k is based on the global annual mean share of sur-
face reflected shortwave radiation exiting a clear sky (Lacis
and Hansen, 1974; Lenton and Vaughan, 2009) and is hence
temporally and spatially invariant. This value – or 0.85
– is similar to the global mean ratio of forward-to-total
shortwave scattering reported in Iqbal (1983). Bright and
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Kvalevåg (2013) evaluated Eq. (16) at several global loca-
tions and found large biases for some regions and months,
despite good overall performance globally (rRMSE= 7 %;
n= 120 months).

3.4 Proposed empirical parameterization

To determine whether the GCM-based kernels could be ap-
proximated with sufficient fidelity using other simpler model
formulations based on their own boundary data, we ap-
plied machine learning to identify potential model forms us-
ing GCM shortwave boundary fluxes as input. For the two
GCMs kernels in which the GCM’s own shortwave bound-
ary fluxes are also made available (CAM5 and ECHAM6),
we used machine learning to minimize the sum of squared
residuals between the four shortwave boundary fluxes (i.e.,
SWSFC
↓

, SWTOA
↓

, SWSFC
↑

, SWTOA
↑

) and the GCM kernel at
the monthly time step. The reference dataset consisted of a
random global sample of 200 000 monthly kernel grid cells
at a native model resolution (97 % and 32 % of all cells for
ECHAM6 and CAM5, respectively), of which 50 % were
used for training and 50 % for validation. Models were iden-
tified using a form of genetic programming known as sym-
bolic regression (Eureqa®; Nutonian Inc.; Schmidt and Lip-
son, 2009, 2010), which searches a wide space of model
structures as constrained by user input. In our case, we al-
lowed the model to include the operators (i.e., addition, sub-
traction, multiplication, division, sine, cosine, tangent, expo-
nential, natural logarithm, factorial, power, square root), but
numerical coefficients were forbidden. The model search was
allowed to continue until the percent convergence and matu-
rity metrics exceeded 98 % and 50 %, respectively, at which
point more than 1× 1011 formulae had been evaluated. A
parsimonious solution was chosen by minimizing the error
metric and model complexity using the Pareto front (Fig. S1
of the Supplement) (Smits and Kotanchek, 2005). Between
CAM5 and ECHAM6, four common model solutions were
found (Table S1 of the Supplement). The best of these com-
mon solutions is subsequently referred to as KBO18

αs
and is

given as

∂SWTOA
↑

∂αs
1αs =K

BO18
αs

1αs = SWSFC
↓

√
T1αs. (17)

4 Kernel model evaluation

4.1 Initial candidate screening

The four GCM kernels presented in Sect. 2.1 are employed
as benchmarks to initially screen the six simple model can-
didates introduced from Sect. 3.2 to 3.4. We compute a skill
metric analogous to the “relative error” metric used to evalu-
ate GCMs by Anav et al. (2013) that takes into account error
in the spatial pattern between a model and an observation.
Because we have no true observational reference, our eval-

uation instead focuses on the disagreement or deviation be-
tween CERES and GCM kernels at the monthly time step.
Given interannual climate variability in the earth system, the
challenge of comparing the multiyear CERES kernel to a
single-year GCM kernel can be partially overcome by av-
eraging the four GCM kernels.

Using the multi-GCM mean as the reference, we first com-
pute the absolute deviation ADXm,p as

ADXm,p =
∣∣∣CERESXm,p −GCMm,p

∣∣∣ , (18)

where CERESXm,p is the kernel for CERES model candidate
x in month m and pixel p and GCMm,p is the multi-GCM
mean of the same pixel and month. ADXm,pis then normalized
to the maximum absolute deviation of all six CERES kernels
for the same pixel and month to obtain a normalized absolute
deviation, NADXm,p, which is analogous to the relative error
metric of Anav et al. (2013), having values ranging between
0 and 1:

NADXm,p = 1−
ADXm,p

max
(
ADm,p

) , (19)

where max(ADm,p) is the maximum absolute deviation of all
six CERES kernels at pixel p and month m.

CERES kernel ranking is based on the mean relative abso-

lute deviation in both space and time – or N̂AD
X

:

N̂AD
X
=

1
M

M∑
m=1

1
P

P∑
p=1

NADXm,p, (20)

whereM is the total number of months (i.e., 12) and P is the
total number of grid cells.

4.2 GCM kernel emulation

In order to eliminate any bias related to differences in the
atmospheric state embedded in the GCM kernel input cli-
matologies, we emulate them by applying the top candidate
models (as identified from the initial performance screen-
ing described in Sect. 4.1) using the original GCM boundary
fluxes as input. Emulation is only done for two of the GCM-
based kernels since only two of them have provided the ac-
companying boundary fluxes needed to do so: ECHAM6
(Block and Mauritsen, 2014) and CAM5 (Pendergrass et al.,
2018). Emulation enables a more critical evaluation of the
functional form of the candidate models in relation to the
more sophisticated radiative transfer schemes employed by
ECHAM6 (Stevens et al., 2013) and CAM5 (Hurrell et al.,
2013).

4.3 CACK model uncertainty

Following emulation, monthly GCM kernels are then re-
gressed on the monthly kernels emulated with the leading

Geosci. Model Dev., 12, 3975–3990, 2019 www.geosci-model-dev.net/12/3975/2019/



R. M. Bright and T. L. O’Halloran: CERES albedo change kernel 3981

model candidates. The model that best emulates both GCM
kernels – as measured in terms of the mean coefficient of de-
termination (R2) and mean RMSE – is chosen to represent
CACK.

Three sources of uncertainty are considered for CACK
when based on the CERES boundary flux climatology
(i.e., 2001–2016 monthly means): (1) physical variability,
(2) data uncertainty, and (3) model error (Mahadevan and
Sarkar, 2009). The first is related to the interannual vari-
ability of Earth’s atmospheric state and boundary radiative
fluxes. The second is related to the uncertainty of the CERES
EBAF v4 variables used as input to CACK (including mea-
surement error). The third source of uncertainty is the error
related to CACK’s model form. CACK’s combined uncer-
tainty for any given pixel and month is estimated as fol-
lows, where if CACK or y is some nonlinear function of
the CERES boundary inputs x1 and x2 that covary in time
and space, then the combined uncertainty of y – or σ(y) –
may be expressed as the sum of the model error plus the
combined physical variability and data uncertainty associ-
ated with x1 and x2 summed in quadrature (Breipohl, 1970;
Clifford, 1973; Green et al., 2017):

σ(y)≈ σME(y)+

√(
∂y

∂x1

)2

[σPV(x1)+ σDU(x1)]2

+

(
∂y

∂x2

)2

[σPV(x2)+ σDU(x2)]2

+

√(
2
∂y

∂x1

∂y

∂x2
σ(x1,x2)

)2

, (21)

where σPV(x1) and σPV(x2) are the standard deviations of
the 16-year climatological record of CERES input variables
x1 and x2, respectively, for a given grid cell and month, σDU
(x1) and σDU (x2) are the absolute uncertainties of CERES in-
put variables x1 and x2, respectively, for a given grid cell and
month, σ(x1,x2) is the covariance within the 16-year clima-
tological record between CERES input variables x1 and x2
for a given month and grid cell, and σME is the monthly grid
cell model error. Model error (σME(y)) and data uncertain-
ties (σDU(xn)) for any given grid cell and month are based
on the relative RMSE (Supplement) and relative uncertain-
ties of CERES boundary terms reported in Kato et al. (2018)
(cf. Table 8, “Monthly gridded, Ocean+ Land”) and Loeb et
al. (2017) (cf. Table 8, “All-sky, Terra-Aqua period”). For the
model error, we take the relative RMSE of the machine learn-
ing model solutions for ECHAM5 and CAM5. For the rela-
tive uncertainty of the incoming solar flux at TOA (SWTOA

↓
),

we use the 1 % “calibration uncertainty” reported in Loeb et
al. (2017).

If CACK’s intended application is to estimate a tempo-
rally explicit 1F within the CERES era (i.e., if temporally
explicit rather than the climatological-mean CERES bound-
ary fluxes are desired to compute CACK), the uncertainty

related to physical variability (σPV(xn)) can be dropped from
Eq. (21).

4.4 Climatological CACK application example

To demonstrate CACK’s application when based on monthly
CERES EBAF climatology, including the handling of un-
certainty, we estimate the annual mean local 1F from
a 1αs scenario associated with hypothetical deforestation
in the tropics, where 1F for a given month is estimated
as Eq. (4) where Kαs is the 2001–2016 monthly clima-
tological CACK and 1αs is the difference in the 2001–
2011 monthly climatological-mean white-sky surface albedo
between “croplands” (CRO) and “evergreen broadleaved
forests” (EBF) taken from Gao et al. (2014), which is based
on International Geosphere-Biosphere Program definitions
of land cover classification.

The monthly climatological albedo lookup maps of Gao
et al. (2014) contain their own uncertainties, which we take
as the mean absolute difference between the monthly albe-
dos reconstructed using their lookup model and the monthly
MODIS retrieval record (cf. Table 3 in Gao et al., 2014).

The total estimated uncertainty linked to the annual local
(i.e., grid cell) instantaneous 1F can thus be expressed (in
W m−2) as

σ(1F)=
1

12

12∑
m=1

|1Fm|

√(
σ(Kαs,m)

Kαs,m

)2

+

(
σ
(
1αs,m

)
1αs,m

)2

, (22)

where σ(Kαs,m)/Kαs,m is the relative grid cell uncertainty of
CACK and σ(1αs,m)/1αs,m is the relative uncertainty of
1αs in month m defined as

σ
(
1αs,m

)
1αs,m

=

√(
σ(αs,m)

αCRO,m

)2

+

(
σ(αs,m)

αEBF,m

)2

, (23)

where σ(αs,m) is the monthly absolute uncertainty of the
climatological-mean surface albedo (i.e., of the Gao et al.,
2014 product).

4.5 Temporally explicit CACK application example

Use of a temporally explicit CACK may be desirable for
time-sensitive applications within the CERES era. This is
particularly true for regions experiencing significant changes
to the atmospheric state affecting shortwave radiation trans-
fer. A good example is in southern Amazonia where tropi-
cal deforestation has been linked to changes in cloud cover
(Durieux et al., 2003; Lawrence and Vandecar, 2014; Wright
et al., 2017). To exemplify this, we estimate the annual mean
instantaneous 1F for CERES grid cells in the region having
experienced both significant positive trends in surface albedo
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and negative trends in cloud area fraction during the 2001–
2016 period. Grid cell trends in surface albedo and cloud area
fraction are deemed significant if the slopes of linear fits ob-
tained from local (i.e., grid cell) ordinary least squares re-
gressions have p values ≤ 0.05. We then apply the slope of
the surface albedo trend to represent the monthly mean inter-
annual1α incurred over the time series together with CACK
updated monthly to estimate the local annual mean instanta-
neous 1F at each step in the series:

1F(t)=

m=12∑
m=1
−Kαs,m(t)1αs, (24)

where Kαs,m(t) is the monthly CACK in year t of the time
series. 1F is then averaged across all grid cells in the sam-
ple, with the results then compared to the 1F that is com-
puted for the same grid sample using the time-insensitive
CAM5 and ECHAM6 kernels (i.e.,Kαs,m 6= f (t)). Using the
slope of the surface albedo trend as the 1αs for all months
and years rather than the actual 1αs,m(t) (i.e., 1αs,m(t)=

αs,m,t −αs,m,t−1) yields the same result when averaged over
the full time period but allows us to isolate the effect of the
changing atmospheric state on calculations of 1F . We limit
the 1F uncertainty estimate to CACK’s uncertainty that in-
cludes σDU(xn) and σME(xn) but excludes σPV(xn).

5 Results

5.1 Initial performance screening

Seasonally, differences in latitude band means between the
CERES kernel candidates and the multi-GCM mean kernels
are shown in Fig. 1.

Qualitatively, starting with December–January–February
(DJF), KBO18

αs
gives the best agreement with KGCM

αs
with the

exception of the zone around 55–65◦ S (−55 to−65◦), where
K

QH06
αs gives slightly better agreement (Fig. 1a). In March–

April–May (MAM), KBO18
αs

appears to give the best over-
all agreement with the exception of the high Arctic, where
KANISO
αs

and KC12
αs

give better agreement, and with the ex-
ception of the zone around 60–65◦ S (−60 to −65◦), where
K

QH06
αs , KANISO

αs
, and KC12

αs
agree best with KGCM

αs
(Fig. 1b).

The largest spread in disagreement across all six CERES ker-
nels is found in June–July–August (JJA; Fig. 1c) at north-
ern high latitudes. KBO18

αs
appears to agree best both here

and elsewhere with the exception of the zone between ∼ 20–
35◦ N, where KQH06

αs gives slightly better agreement.
In September–October–November (SON), KBO18

αs
agrees

best with KGCM
αs

at all latitudes except the zone between 10–

25◦ N and 55–65◦ S, where KQH06
αs agrees slightly better.

Quantitatively, the proportion of the total variance ex-
plained by linear regressions of monthly KGCM

αs
on monthly

KCERES
αs

(i.e., “R2”) is highest and equal for the CERES ker-
nels based on the ANISO, QH06, and BO18 models (Fig. 2b,

Figure 1. Latitudinal (1◦) and seasonal means of the multi-GCM
mean (KGCM

α ) and CACK model candidates for (a) December–
January–February (DJF); (b) March–April–May (MAM); (c) June–
July–August (JJA); (d) September–October–November (SON).
CACK model candidates refer to those presented in Sect. 3 and not
to those of the model selection phase of the machine learning algo-
rithm.

c, d). Of these three, KQH06
αs has a y intercept (“B0”) closest

to 0 and a slope (“m”) of 1, although the root mean squared
error (“RMSE”) – an accuracy measure – is slightly better
(lower) for KBO18

αs
. The two CERES kernels with the lowest

R2, highest slopes (negative deviations), highest RMSEs, and
y intercepts with the largest absolute difference from zero –
or the worst performing candidates – are those based on the
ISO and M10 models (Fig. 2a, e).

Although the y intercept deviation from 0 for KC12
αs

is rel-

atively low, its RMSE is ∼ 50 % higher than that of KQH06
αs ,

KBO18
αs

, and KANISO
αs

and leads to notable positive deviation

from the multi-GCM mean (KGCM
αs

) judging by its slope of
0.92.

Globally, N̂AD for the QH06, ANISO, and BO18 kernels
is far superior to the ISO, M10, and C12 kernels (Table 3).

After filtering to remove grid cells for oceans and other
water bodies, N̂AD scores for these three kernels decreased;
the decrease was smallest for KBO18

αs
(−0.03) and largest for

K
QH06
αs (−0.06). Despite constraining the analysis to land

surfaces only, the rank order remained unchanged (Table 3),
and K

QH06
αs , KBO18

αs
, and KANISO

αs
are subjected to further

evaluation.
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Figure 2. (a–f) Scatter–density regressions of global monthly mean KGCM
α (y axis) and KCERES

α (x axis), with the CERES kernel identifier
shown at the top of each subpanel. “m”: slope; “B0”: y intercept. The color scale indicates the percentage of regression points that fall
within an averaging bin, where the x axis and y axis have been gridded into 100× 100 equally spaced bins to help illustrate the density of
overlapping points.

Table 3. Normalized absolute deviation and CERES kernel model
candidate ranking.

Global Land only

N̂AD Rank N̂AD Rank Mean rank

ISO 0.05 6 0.05 6 6
ANISO 0.64 3 0.59 3 3
C12 0.45 4 0.47 4 4
M10 0.26 5 0.34 5 5
QH06 0.66 2 0.60 2 2
BO18 0.67 1 0.64 1 1

5.2 GCM kernel emulation and additional
performance evaluation

Because the QH06 model (KQH06
αs ) required auxiliary inputs

for cloud cover area fraction and cloud optical depth – two
atmospheric state variables not provided with the ECHAM6
and CAM5 kernel datasets – it was not possible to emulate
these two GCM kernels withKQH06

αs . Additional performance
evaluation through GCM kernel emulation is therefore re-
stricted to the ANISO and BO18 models.

Globally, the kernel based on the ANISO model displays
larger annual mean bias relative to BO18 when compared to
both ECHAM6 and CAM5 kernels (Fig. 3). Notable positive
biases over land with respect to both ECHAM6 and CAM5

kernels are evident in the northern Andes region of South
America, the Tibetan Plateau, and the tropical island region
comprising Indonesia, Malaysia, and Papua New Guinea
(Fig. 3a, c). Notable negative biases over land with respect to
both ECHAM6 and CAM5 kernels are evident over Green-
land, Antarctica, northeastern Africa, and the Arabian Penin-
sula (Fig. 3a, c).

Globally, annual biases for BO18 are generally found to be
lower than for ANISO and are mostly non-existent in extra-
tropical ocean regions (Fig. 3b, d). Patterns in biases over
land are mostly negative with the exception of Saharan Africa
where the annual mean bias with respect to both GCMs is
positive. For BO18, systematic positive biases – or biases ev-
ident with respect to both GCM kernels – appear over east-
ern tropical and subtropical marine coastal upwelling zones
where marine stratocumulus cloud dynamics are difficult for
GCMs to resolve (Bretherton et al., 2004; Richter, 2015).

Regression statistics (Fig. 4) indicate a greater overall per-
formance for BO18 than for ANISO. RMSEs for monthly
kernels emulated with BO18 are 9.0 and 8.2 W m−2 for
CAM5 and ECHAM6, respectively – which is ∼ 50 %–60 %
of the RMSEs emulated with the ANISO model. Relative to
ANISO, the BO18 model also gives a higher R2, a slope
closer to 1, and a y intercept closer to zero (Fig. 4). The
BO18 model (or parameterization) is therefore selected for
CACK.

Focusing only on the GCM kernels emulated with KBO18
αs

henceforth, global mean negative biases are evident in all
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Figure 3. (a) Mean annual bias of the CAM5 albedo change kernel emulated with the ANISO semiempirical model; (b) mean annual bias
of the CAM5 albedo change kernel emulated with the BO18 parameterization; (c) mean annual bias of the ECHAM6 albedo change kernel
emulated with the ANISO semiempirical model; (d) mean annual bias of the ECHAM6 albedo change kernel emulated with the BO18
parameterization.

Figure 4. (a–d) Scatter–density regressions of KGCM
α (y axis) and

KGCM
α emulated with the ANISO semiempirical model and BO18

parameterization using the GCM’s own inputs (x axis); “m”: slope;
“B0”: y intercept. See Fig. 2 caption for a description of the color
scale.

months (Table 4), with the largest biases (in magnitude) ap-
pearing in May (−4.4 W m−2) and November (−2.5 W m−2)
for CAM5 and ECHAM6, respectively. In absolute terms,
the largest biases of 8.6 and 6.8 W m−2 appear in June for
CAM5 and ECHAM6, respectively. Annually, the mean ab-
solute bias for CAM5 and ECHAM6 is 6.8 and 6.1 W m−2,
respectively – a magnitude which seems remarkably low if
one compares this to the annual mean disagreement (standard
deviation) of 33 W m−2 across all four GCM kernels (not
shown; for seasonal mean standard deviations, see Fig. 1).

5.3 CACK uncertainty

For a kernel based on 2001–2016 monthly mean CERES
EBAF climatology, Fig. 5 illustrates the contribution of the
absolute error related toKBO18

αs
’s model form (Fig. 5a, annual

mean) relative to CACK’s total absolute uncertainty (Fig. 5c,
annual mean), which includes the uncertainty surrounding
CERES EBAF v4 input variables SWSFC

↓
and SWTOA

↓
and

their interannual variability (Fig. 5b, annual mean).
Total propagated σPV and σDU far exceeds σME, is dom-

inated by σDU(SWSFC
↓
) and σPV(SWSFC

↓
), and is largest in

the Pacific region to the south of the intertropical conver-
gence zone (ITCZ). Over land, the annual σPV and σDU as
well as the annual σtotal are generally largest in arid or high-
altitude regions (Fig. 5b). However, annual CACK values are
also large in these regions, reducing the relative uncertainty
(Fig. 5d). The largest relative uncertainties over land (on an
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Table 4. Global monthly mean bias (MB) and mean absolute bias (MAB) for KBO18
α emulated with T and SWSFC

↓
from ECHAM6 and

CAM5. For reference, the global mean value of KBO18
α is 133 W m−2.

MB (W m−2)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann.

KBO18
α −KCAM5

α −2.9 −3.4 −3.3 −3.9 −4.4 −3.8 −3.8 −3.7 −3.4 −3.8 −3.7 −3.3 −3.6
KBO18
α −KECHAM6

α −1.9 −2.2 −1.8 −1.9 −2.2 −1.5 −1.1 −1.6 −1.7 −2.5 −2.5 −1.8 −1.9

MAB (W m−2)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann.∣∣∣KBO18
α −KCAM5

α

∣∣∣ 6.9 5.7 5.2 6.8 7.7 8.6 7.9 6.7 5.6 6.1 6.9 6.9 6.8∣∣∣KBO18
α −KECHAM6

α

∣∣∣ 6.3 5.7 5.0 5.9 6.7 6.8 6.4 5.8 5.3 5.6 6.4 6.7 6.1

Figure 5. Annual uncertainty of a CACK based on 2001–2016 monthly mean CERES EBAF v4 climatology: (a) the absolute uncertainty
related to model error (i.e., the parameterization); (b) the total propagated absolute uncertainty related to physical variability and data
uncertainty of CACK input variables; (c) total absolute uncertainty; (d) total relative uncertainty.

annual basis) – which can approach 50 % – are found over
central Europe, northwestern Asia, southeastern China, An-
dean Chile, and northwestern North America (Fig. 5d).

5.4 Climatological CACK application

When estimated with a CACK based on monthly CERES
EBAF climatology, the annual local 1F from 1αs linked to
hypothetical deforestation in the tropics is negative in most
regions, approaching −20 W m−2 locally in some regions of
the Brazilian Cerrado and south of the Sahel region in Africa
(Fig. 6b). The combined CACK and 1αs uncertainty for

these regions can approach ±5 W m−2 annually (Fig. 6c) in
regions like the Brazilian Cerrado and sub-Sahel Africa. Rel-
ative to the1F magnitude, however, the largest uncertainties
(annual) may be found in the subtropical regions of Central
America, southern Brazil, southern Asia, and northern Aus-
tralia, where they can approach 30 %–40 % (Fig. 6d).

5.5 Temporally explicit CACK application

The effect of a decreasing cloud cover and increasing sur-
face albedo trend in southern Amazonia (Fig. 7b) on short-
wave radiative transfer and thus a CACK-based estimate
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Figure 6. Example application of a CACK based on the 2001–2016
monthly mean CERES EBAF v4 climatology to estimate the lo-
cal annual mean 1F from a hypothetical land cover change within
a CERES grid cell. (a) Annual mean of the climatological (i.e.,
2001–2011) monthly mean difference in white-sky surface albedo
between croplands and evergreen broadleaved forests (1αs) based
on the 1◦ product of Gao et al. (2014); (b) annual mean local (i.e.,
within grid cell) instantaneous radiative forcing (1F ) of monthly
mean 1αs estimated with CACK; (c) absolute uncertainty (annual
mean) of the CACK-based1F estimate, including the uncertainty
of 1αs; (d) relative uncertainty (annual mean) of the CACK-based
1F estimate.

of regional mean annual 1F emerges in Fig. 7c, where
1F increases in magnitude by 0.004 W m−2 from 2002 to
2016. This 1F trend would otherwise go undetected if a
GCM-based kernel were applied to the same surface albedo
trend – that is, to a sustained positive interannual monthly
albedo change “pulse”. Alternatively, a CACK based on
2001 CERES EBAF inputs (applied with 1αs for 2001–
2002) would give slightly higher 1F estimates relative to
those based on ECHAM6 and CAM5 kernels; conversely, a

CACK based on 2015 CERES EBAF inputs (applied with
1αs for 2015–2016) would yield lower 1F estimates rel-
ative to those based on the same two GCM-based kernels
(Fig. 7c). The use of temporally explicit CACK can there-
fore capture 1F trends related to a changing atmospheric
state that fixed-state GCM kernels are unable to capture.

6 Discussion

Motivated by an increasing abundance of climate impact re-
search focusing on land processes in recent years, we com-
prehensively evaluated six simplified models (or parameteri-
zations) as candidates for an albedo change kernel based on
the CERES EBAF v4 products (Kato et al., 2018; Loeb et
al., 2017). Relative to albedo change kernels based on so-
phisticated radiative transfer schemes embedded in GCMs,
a CERES-based albedo change kernel – or CACK – repre-
sents a more transparent and empirically rooted alternative
that can be updated frequently at relatively low cost. This al-
lows greater flexibility to meet the needs of research focusing
on surface albedo trends within the CERES era in regions
currently undergoing rapid changes to atmospheric state as
it affects shortwave radiation transfer. Although some mod-
eling groups have provided recent updates to their albedo
change kernels using the latest GCM versions (e.g., Pender-
grass et al., 2018), the atmospheric state conditions used to
derive them may still be considered outdated or not in sync
with that required for many applications (Table 1).

Based on both qualitative and quantitative benchmark-
ing against the mean of four GCM kernels, the novel ker-
nel parameterization obtained from machine learningKBO18

αs
,

together with the two (semi-)analytically derived kernels
K

QH06
αs and KANISO

αs
, proved far superior to the K ISO

αs
analyt-

ical kernel and to the two additional empirical parameteriza-
tions KC12

αs
and KM10

αs
. When subjected to additional perfor-

mance evaluation, however, we found that KBO18
αs

was able
to more robustly emulate two GCM kernels (ECHAM6 and
CAM5) with exceptionally high agreement, suggesting that
KBO18
αs

could serve as a suitable candidate for CACK.
Relative to the monthly CAM5 and ECHAM6 kernels,

the mean absolute monthly emulation “error” of KBO18
αs

was
found to be 6.8 and 6.1 W m−2, respectively – a magnitude
which is only ∼ 20 % of the standard deviation found across
four GCM kernels (annual mean). CACK’s remarkable sim-
plicity lends support to the idea of using machine learning
to explore and detect emergent properties of radiative trans-
fer or other complex, interactive model outputs in future re-
search. The fact that the KBO18

αs
parameterization emerged

as the best common solution from two independently exe-
cuted machine learning analyses each employing a random
sampling unique to a specific GCM kernel suggests that the
KBO18
αs

parameterization is robust and insensitive to the un-
derlying GCM representation of shortwave radiative transfer.
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Figure 7. Example application of a temporally explicit CACK; (a) 2001–2016 statistically significant positive trends in all-sky surface
albedo derived from CERES EBAF-Surface v4; (b) 2001–2016 statistically significant negative trends in cloud area derived from CERES
EBAF-TOA v4; (c) mean 1F from 1αs when estimated with the CACK, ECHAM6, and CAM5 surface albedo change kernels. 1F is the
mean of all grid cells plotted in panel (a). The 1σ confidence interval (“CI”) shown for CACK excludes the uncertainty component related
to physical variability.

Despite its stronger empirical foundation over a GCM-
based kernel, it is important to recognize CACK’s limita-
tions. Firstly, while CACK has a finer spatial resolution
than most GCM kernels, it still represents a spatially av-
eraged response rather than a truly local response; in other
words, the state variables used to define the SWTOA

↑
response

are averages tied to the coarse spatial (i.e., 1◦× 1◦) resolu-
tion of the CERES EBAF v4 product grids. Secondly, the
monthly CERES EBAF-Surface product used to define lower
atmospheric boundary conditions is not strictly an observa-
tion. The spaceborne platform is not able to directly observe
surface irradiances, requiring additional satellite-based esti-
mates of cloud and aerosol properties as input to a radia-
tive transfer model (Kato et al., 2012). Although TOA irra-
diances are applied to constrain the surface irradiances, they
remain susceptible to errors in the radiative transfer model
inputs. Regarding this error as “data uncertainty” increases
CACK’s overall uncertainty beyond that which is related to
its underlying parameterization or “model error”. The uncer-
tainty of CERES surface shortwave irradiances as well as
extensive ground validation and testing are documented in
greater detail elsewhere (Kato et al., 2013, 2018; Loeb et al.,

2017, 2009) and may continue to be reduced in future EBAF-
Surface versions.

Concluding remarks

To conclude, we developed, evaluated, and proposed a ra-
diative kernel for surface albedo change based on CERES
EBAF v4 products – or CACK. Relative to existing kernels
based on GCMs, CACK provides a higher spatial-resolution,
higher-transparency alternative that is more amenable to user
needs. For LULCC research of the near-past, present-day, or
near-future periods, the application of a CACK whose in-
puts are based on monthly climatological means of the full
CERES EBAF record can better account for the correspond-
ing interannual variability in Earth’s atmospheric state af-
fecting shortwave radiative transfer. For regions undergoing
changes in atmospheric state that are detectable above the
normal variability within the CERES era, the application of a
temporally explicit CACK can better account for its influence
on1F estimates from surface albedo change. CACK’s input
flexibility and transparency combined with documented un-
certainty make it well-suited to be applied as part of a moni-
toring, reporting, and verification (MRV) framework for bio-
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geophysical impacts on land, analogous to those which cur-
rently exist for land sector greenhouse gas emissions.

Code and data availability. We make both monthly temporally ex-
plicit and monthly climatological-mean CACKs for the years 2001–
2016 available as a complete data product (“CACKv1.0”; Bright
and O’Halloran, 2019) that includes their respective uncertainty
layers. A summary of this dataset and associated variables is pro-
vided in Table S3 of the Supplement. Octave script files for gener-
ating monthly CACK and demonstrating its application with user-
specified temporal and spatial extents are bundled with the netCDF
file.

CERES EBAF data are available for download at
https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA
(last access: 5 September 2019, CERES Science
Team, 2018a, b). The CAM3 kernel is available at
http://people.oregonstate.edu/~shellk/kernel.html (last access:
2 September 2019, Shell, 2008). The CAM5 kernel is available
at https://www.earthsystemgrid.org/ac/guest/secure/sso.html (last
access: 2 September 2019, Pendergrass, 2017). The ECHAM6
kernel is available at https://swiftbrowser.dkrz.de/public/dkrz_
0c07783a-0bdc-4d5e-9f3b-c1b86fac060d/Radiative_kernels/ (last
access: 2 September 2019, Block and Mauritsen, 2015).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-12-3975-2019-supplement.
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