Articles | Volume 12, issue 1
https://doi.org/10.5194/gmd-12-321-2019
https://doi.org/10.5194/gmd-12-321-2019
Development and technical paper
 | 
21 Jan 2019
Development and technical paper |  | 21 Jan 2019

Assessing bias corrections of oceanic surface conditions for atmospheric models

Julien Beaumet, Gerhard Krinner, Michel Déqué, Rein Haarsma, and Laurent Li

Related authors

Impact of climate change on wintertime European atmospheric blocking
Sara Bacer, Fatima Jomaa, Julien Beaumet, Hubert Gallée, Enzo Le Bouëdec, Martin Ménégoz, and Chantal Staquet
Weather Clim. Dynam., 3, 377–389, https://doi.org/10.5194/wcd-3-377-2022,https://doi.org/10.5194/wcd-3-377-2022, 2022
Short summary
Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier
The Cryosphere, 15, 3615–3635, https://doi.org/10.5194/tc-15-3615-2021,https://doi.org/10.5194/tc-15-3615-2021, 2021
Short summary
Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020,https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model
Julien Beaumet, Michel Déqué, Gerhard Krinner, Cécile Agosta, and Antoinette Alias
The Cryosphere, 13, 3023–3043, https://doi.org/10.5194/tc-13-3023-2019,https://doi.org/10.5194/tc-13-3023-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024,https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary

Cited articles

Agosta, C., Favier, V., Krinner, G., Gallée, H., Fettweis, X., and Genthon, C.: High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries, Clim. Dynam., 41, 3247–3260, https://doi.org/10.1007/s00382-013-1903-9, 2013. a, b
Ashfaq, M., Skinner, C. B., and Diffenbaugh, N. S.: Influence of SST biases on future climate change projections, Clim. Dynam., 36, 1303–1319, https://doi.org/10.1007/s00382-010-0875-2, 2011. a, b, c, d, e, f
Baumberger, C., Knutti, R., and Hirsch Hadorn, G.: Building confidence in climate model projections: an analysis of inferences from fit, WIREs Clim. Change, 8, e454, https://doi.org/10.1002/wcc.454, 2017. a
Beaumet, J. and Krinner, G.: SSC Bias correction – Source code, OSF, https://doi.org/10.17605/OSF.IO/EFUY2, 2018a. a
Beaumet, J. and Krinner, G.: SSC Bias correction – Data, OSF, https://doi.org/10.17605/OSF.IO/GMH8C, 2018a. a
Download
Short summary
Oceanic surface conditions coming from coupled ocean–atmosphere global climate models bear considerable biases over the historical climate. We review and present new methods for bias correcting sea surface temperatures and sea-ice concentration coming from such models in order to use them as boundary conditions for atmospheric-only GCMs. For sea ice, we propose a new analogue method which allows us to reproduce more physically consistent future bias-corrected sea-ice concentration maps.