Articles | Volume 12, issue 5
https://doi.org/10.5194/gmd-12-1885-2019
https://doi.org/10.5194/gmd-12-1885-2019
Model description paper
 | 
14 May 2019
Model description paper |  | 14 May 2019

HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional module

Marc Guevara, Carles Tena, Manuel Porquet, Oriol Jorba, and Carlos Pérez García-Pando

Related authors

Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023,https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
A global catalogue of CO2 emissions and co-emitted species from power plants at a very high spatial and temporal resolution
Marc Guevara, Santiago Enciso, Carles Tena, Oriol Jorba, Stijn Dellaert, Hugo Denier van der Gon, and Carlos Pérez García-Pando
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-95,https://doi.org/10.5194/essd-2023-95, 2023
Preprint under review for ESSD
Short summary
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023,https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Towards near-real time air pollutant and greenhouse gas emissions: lessons learned from multiple estimates during the COVID-19 Pandemic
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Claire Granier, Thierno Doumbia, Philippe Ciais, Zhu Liu, Robin D. Lamboll, Sabine Schindlbacher, Bradley Matthews, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2023-186,https://doi.org/10.5194/egusphere-2023-186, 2023
Short summary
Model output statistics (MOS) applied to Copernicus Atmospheric Monitoring Service (CAMS) O3 forecasts: trade-offs between continuous and categorical skill scores
Hervé Petetin, Dene Bowdalo, Pierre-Antoine Bretonnière, Marc Guevara, Oriol Jorba, Jan Mateu Armengol, Margarida Samso Cabre, Kim Serradell, Albert Soret, and Carlos Pérez Garcia-Pando
Atmos. Chem. Phys., 22, 11603–11630, https://doi.org/10.5194/acp-22-11603-2022,https://doi.org/10.5194/acp-22-11603-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023,https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023,https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023,https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023,https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023,https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmsheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998. 
Badia, A., Jorba, O., Voulgarakis, A., Dabdub, D., Pérez García-Pando, C., Hilboll, A., Gonçalves, M., and Janjic, Z.: Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale, Geosci. Model Dev., 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, 2017. 
Baldasano, J. M., Guereca, L. P., Lopez, E., Gasso, S., and Jimenez-Guerrero, P.: Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: The high-elective resolution modelling emission system (HERMES), Atmos. Environ. 42, 7215–7233, https://doi.org/10.1016/j.atmosenv.2008.07.026, 2008. 
Baldasano, J. M., Goncalves, M., Soret, A., and Jimenez-Guerrero, P.: Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan Area, Atmos. Environ., 44, 2997–3006, https://doi.org/10.1016/j.atmosenv.2010.05.013, 2010. 
Short summary
Atmospheric emission inventories, which describe the amounts of pollutants released into the air by different sources and for specific regions, are an essential input to numerical models that estimate air quality. This work presents the High-Elective Resolution Modelling Emission System version 3 (HERMESv3), an open-source modelling framework that allows adapting existing global and regional emission inventories to the input requirements of air quality models in a flexible and transparent way.