Articles | Volume 11, issue 11
Geosci. Model Dev., 11, 4515–4535, 2018
https://doi.org/10.5194/gmd-11-4515-2018
Geosci. Model Dev., 11, 4515–4535, 2018
https://doi.org/10.5194/gmd-11-4515-2018

Model evaluation paper 13 Nov 2018

Model evaluation paper | 13 Nov 2018

Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches

David Sarria et al.

Related authors

TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams
David Sarria, Francois Lebrun, Pierre-Louis Blelly, Remi Chipaux, Philippe Laurent, Jean-Andre Sauvaud, Lubomir Prech, Pierre Devoto, Damien Pailot, Jean-Pierre Baronick, and Miles Lindsey-Clark
Geosci. Instrum. Method. Data Syst., 6, 239–256, https://doi.org/10.5194/gi-6-239-2017,https://doi.org/10.5194/gi-6-239-2017, 2017
Short summary
Evaluation of Monte Carlo tools for high energy atmospheric physics
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016,https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary

Related subject area

Atmospheric Sciences
Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions
Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie
Geosci. Model Dev., 14, 323–336, https://doi.org/10.5194/gmd-14-323-2021,https://doi.org/10.5194/gmd-14-323-2021, 2021
Short summary
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021,https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90, https://doi.org/10.5194/gmd-14-73-2021,https://doi.org/10.5194/gmd-14-73-2021, 2021
Short summary
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021,https://doi.org/10.5194/gmd-14-43-2021, 2021
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021,https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary

Cited articles

Adachi, T., Takahashi, Y., Ohya, H., Tsuchiya, F., Yamashita, K., Yamamoto, M., and Hashiguchi, H.: Monitoring of Lightning Activity in Southeast Asia: Scientific Objectives and Strategies, Kyoto Working Papers on Area Studies, G-COE Series, 2008. a
Agostinelli, S., Allison, J., Amakon, K., et al.: GEANT4: A simulation toolkit, Nucl. Instrum. Meth., 506, 250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003. a, b
Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., Cirrone, G. A. P., Cooperman, G., Cosmo, G., Cuttone, G., Daquino, G. G., Donszelmann, M., Dressel, M., Folger, G., Foppiano, F., Generowicz, J., Grichine, V., Guatelli, S., Gumplinger, P., Heikkinen, A., Hrivnacova, I., Howard, A., Incerti, S., Ivanchenko, V., Johnson, T., Jones, F., Koi, T., Kokoulin, R., Kossov, M., Kurashige, H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F., Maire, M., Mantero, A., Mascialino, B., McLaren, I., Lorenzo, P. M., Minamimoto, K., Murakami, K., Nieminen, P., Pandola, L., Parlati, S., Peralta, L., Perl, J., Pfeiffer, A., Pia, M. G., Ribon, A., Rodrigues, P., Russo, G., Sadilov, S., Santin, G., Sasaki, T., Smith, D., Starkov, N., Tanaka, S., Tcherniaev, E., Tome, B., Trindade, A., Truscott, P., Urban, L., Verderi, M., Walkden, A., Wellisch, J. P., Williams, D. C., Wright, D., and Yoshida, H.: Geant4 developments and applications, IEEE T. Nucl. Sci., 53, 270–278, https://doi.org/10.1109/TNS.2006.869826, 2006. a, b
Allison, J., Amako, K., Apostolakis, J., et al.: Recent developments in Geant4, Nucl. Instrum. Meth., 835, 186–225, https://doi.org/10.1016/j.nima.2016.06.125, 2016. a, b
Apostolakis, J., Asai, M., Bogdanov, A., Burkhardt, H., Cosmo, G., Elles, S., Folger, G., Grichine, V., Gumplinger, P., Heikkinen, A., Hrivnacova, I., Ivanchenko, V., Jacquemier, J., Koi, T., Kokoulin, R., Kossov, M., Kurashige, H., McLaren, I., Link, O., Maire, M., Pokorski, W., Sasaki, T., Starkov, N., Urban, L., and Wright, D.: Geometry and physics of the Geant4 toolkit for high and medium energy applications, Radiat. Phys. Chem., 78, 859–873, https://doi.org/10.1016/j.radphyschem.2009.04.026, 2009. a
Download
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.