Articles | Volume 11, issue 9
Geosci. Model Dev., 11, 3929–3944, 2018
https://doi.org/10.5194/gmd-11-3929-2018

Special issue: Particle-based methods for simulating atmospheric aerosol...

Geosci. Model Dev., 11, 3929–3944, 2018
https://doi.org/10.5194/gmd-11-3929-2018
Development and technical paper
28 Sep 2018
Development and technical paper | 28 Sep 2018

Improving collisional growth in Lagrangian cloud models: development and verification of a new splitting algorithm

Johannes Schwenkel et al.

Related authors

Demistify: a large-eddy simulation (LES) and single-column model (SCM) intercomparison of radiation fog
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022,https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Overview of the PALM model system 6.0
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020,https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: impact of different aerosol activation and condensation parameterizations
Johannes Schwenkel and Björn Maronga
Atmos. Chem. Phys., 19, 7165–7181, https://doi.org/10.5194/acp-19-7165-2019,https://doi.org/10.5194/acp-19-7165-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022,https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022,https://doi.org/10.5194/gmd-15-6341-2022, 2022
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022,https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219, https://doi.org/10.5194/gmd-15-6197-2022,https://doi.org/10.5194/gmd-15-6197-2022, 2022
Short summary
OpenIFS/AC: atmospheric chemistry and aerosol in OpenIFS 43r3
Vincent Huijnen, Philippe Le Sager, Marcus O. Köhler, Glenn Carver, Samuel Rémy, Johannes Flemming, Simon Chabrillat, Quentin Errera, and Twan van Noije
Geosci. Model Dev., 15, 6221–6241, https://doi.org/10.5194/gmd-15-6221-2022,https://doi.org/10.5194/gmd-15-6221-2022, 2022
Short summary

Cited articles

Andrejczuk, M., Grabowski, W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010. a, b
Arabas, S. and Shima, S.-I.: Large-eddy simulations of trade wind cumuli using particle-based microphysics with Monte Carlo coalescence, J. Atmos. Sci., 70, 2768–2777, 2013. a
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015. a, b
Dziekan, P. and Pawlowska, H.: Stochastic coalescence in Lagrangian cloud microphysics, Atmos. Chem. Phys., 17, 13509–13520, https://doi.org/10.5194/acp-17-13509-2017, 2017. a, b, c, d, e
Grabowski, W. W., Dziekan, P., and Pawlowska, H.: Lagrangian condensation microphysics with Twomey CCN activation, Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-11-103-2018, 2018. a, b
Download
Short summary
Lagrangian cloud models are a powerful tool to understand cloud microphysics and are increasingly used in the cloud physics community. In this study we present a method designed to improve the warm cloud precipitation process in such models. Our results indicate that using this method is essential for a proper representation of the collisional process of warm clouds, while maintaining an appropriate computational demand.