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Abstract. Lagrangian cloud models (LCMs) are increasingly
used in the cloud physics community. They not only enable
a very detailed representation of cloud microphysics but also
lack numerical errors typical for most other models. How-
ever, insufficient statistics, caused by an inadequate num-
ber of Lagrangian particles to represent cloud microphysi-
cal processes, can limit the applicability and validity of this
approach. This study presents the first use of a splitting and
merging algorithm designed to improve the warm cloud pre-
cipitation process by deliberately increasing or decreasing
the number of Lagrangian particles under appropriate con-
ditions. This new approach and the details of how splitting is
executed are evaluated in box and single-cloud simulations,
as well as a shallow cumulus test case. The results indicate
that splitting is essential for a proper representation of the
precipitation process. Moreover, the details of the splitting
method (i.e., identifying the appropriate conditions) become
insignificant for larger model domains as long as a suffi-
ciently large number of Lagrangian particles is produced by
the algorithm. The accompanying merging algorithm is es-
sential to constrict the number of Lagrangian particles in or-
der to maintain the computational performance of the model.
Overall, splitting and merging do not affect the life cycle
and domain-averaged macroscopic properties of the simu-
lated clouds. This new approach is a useful addition to all
LCMs since it is able to significantly increase the number
of Lagrangian particles in appropriate regions of the clouds,
while maintaining a computationally feasible total number of
Lagrangian particles in the entire model domain.

1 Introduction

Lagrangian cloud models (LCMs) are a recently developed
approach to simulate cloud microphysics (Shima et al., 2009;
Sölch and Kärcher, 2010; Andrejczuk et al., 2010; Riechel-
mann et al., 2012; Arabas et al., 2015; Naumann and Seifert,
2015; Grabowski et al., 2018; Sardina et al., 2018). These
models represent microphysics by individually simulated
particles, so-called superdroplets, each representing a cer-
tain number of identical real droplets. This number is called
the multiplicity or weighting factor. These models have been
successfully used to investigate various aspects of aerosol–
cloud interactions (e.g., Andrejczuk et al., 2010; Hoffmann
et al., 2015; Hoffmann, 2017) or precipitation processes (e.g.,
Naumann and Seifert, 2016; Hoffmann et al., 2017; Dziekan
and Pawlowska, 2017).

Unterstrasser et al. (2017) have reviewed all three cur-
rently available LCM approaches for representing collection,
from which the so-called all-or-nothing algorithm (based on
Shima et al., 2009, and Sölch and Kärcher, 2010, and used
by Arabas et al., 2015; Dziekan and Pawlowska, 2017; and
Hoffmann et al., 2017) exhibits the best performance, i.e., it
agrees well with analytical solutions or other modeling ap-
proaches used to represent collection. When using an un-
fortunate initialization of superdroplets with equal weight-
ing factors, however, even the all-or-nothing algorithm strug-
gles to represent the precipitation process correctly. The
reason for that is easily explained. Cloud droplets cover a
wide range of radii from micrometers to centimeters and
a similarly wide range of abundances across this spectrum
(e.g., Rogers and Yau, 1989). This system cannot be simpli-
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fied to a couple of superdroplets (with accordingly large
weighting factors, approximately 109 for typical LES-LCM
applications). In fact, a large number of superdroplets (in the
magnitude of 10–100 per grid box with accordingly small
weighting factors) is needed to represent this range ade-
quately. Since this is usually not the case, a few of the largest
superdroplets may unrealistically contain the majority of all
liquid water. In order to improve the statistics of these par-
ticles, Unterstrasser et al. (2017) suggested that the splitting
of these particles can help to improve the representation of
the precipitation process as it is already done for other mi-
crophysical processes (e.g., nucleation in ice clouds; Unter-
strasser and Sölch, 2014).

The present study introduces and verifies a splitting al-
gorithm designed to improve the precipitation process. Ad-
ditionally, an accompanying merging algorithm is proposed
that is able to unite superdroplets that are not required for an
adequate representation of the precipitation process. Thus,
the merging algorithm is essential to improve the computa-
tional performance of the LCM. Both algorithms are tested in
zero-dimensional box simulations, a three-dimensional sim-
ulation of a single cumulus cloud, and an established shal-
low cumulus test case. This paper is structured as follows.
The next section briefly summarizes the collection algorithm
and the basic framework of the applied LCM. Section 3 in-
troduces the splitting and merging algorithms, and Sect. 4
shows results in which splitting and merging are applied. Fi-
nally, Sect. 5 concludes the paper.

2 Basic equations of the LCM

This section gives a short overview of the LCM basic
equations. The applied LCM was initially developed by
Riechelmann et al. (2012) and its current version is docu-
mented in Hoffmann et al. (2017). Besides collection, the
LCM calculates diffusional growth as well as the trans-
port of the superdroplets. These processes are coupled to
the PALM large-eddy simulation (LES) model (Maronga
et al., 2015), which solves the non-hydrostatic incompress-
ible Boussinesq-approximated Navier–Stokes equations, and
prognostic equations for the water vapor mixing ratio and po-
tential temperature. In addition to these coupled simulations,
we use a zero-dimensional box model, in which the process
of collision and coalescence is considered as the only micro-
physical process.

In the following, the applied collection algorithm will be
summarized to show how collection affects a superdroplet’s
weighting factor, and to understand how collection and split-
ting interact. The reader is referred to Unterstrasser et al.
(2017) for a more rigorous description of this all-or-nothing
approach and for comparisons with other LCM collection
algorithms. For the following, it is assumed that all super-
droplets are sorted by their weighting factor such that An >
An+1 (the case of An = An+1 will be discussed further be-

low). For all superdroplet combinations with 1≤ n < m≤
Np, where Np is the number of superdroplets located in a
grid box, the probability that one droplet of superdroplet m
collects an arbitrary droplet of superdroplet n is given by

pmn =K(rm, rn)
1t

1V
·An, (1)

where 1t is the length of the collection time step, 1V the
volume of the grid box, rn the radius of a droplet represented
by superdroplet n, and K is the collection kernel (based on
Hall, 1980, for this study). Since pmn is usually smaller than
1, collections only occur if pmn > ξ , where ξ is a random
number uniformly chosen from the interval [0,1]. This prob-
abilistic approach ensures that the number of collections cal-
culated in the model is identical to the number of collections
resulting from Eq. (1) if averaged over a sufficiently long pe-
riod of time.

If a collection takes place, each droplet of superdroplet
m will collect one droplet of superdroplet n. This results in
commensurate changes in the weighting factor An and the
individual droplet massmm = Am ·4/3πρlr3

m with the liquid
water density ρl, while Am and mn remain unchanged:

Âm = Am and Ân = An−Am, (2)
m̂m =mm+mn and m̂n =mn, (3)

where (̂. . .) marks the variable after collection.
If Am = An, the above-described collection would result

in one superdroplet with a zero weighting factor. To avoid
deleting this superdroplet, the droplets of the superdroplet
that has grown by collection are distributed equally among
the involved superdroplets m and n:

Âm = Ân = Am/2, (4)
m̂m = m̂n = 2mm. (5)

Diffusional growth is described by

rn
drn
dt
=

S

Fk +Fd
f (rn). (6)

The ventilation effect f (rn) describes the accelerated evapo-
ration of large drops. S is the supersaturation (calculated in
the LES), and Fk and Fd are coefficients considering the ef-
fects of heat conduction and the diffusion of water vapor, re-
spectively (e.g., see Rogers and Yau, 1989). Note that curva-
ture and aerosol solute effects, as well as gas-kinetic effects,
are neglected in Eq. (6), but this equation is appropriate for
the purpose of this study which focuses on the precipitation
process, i.e., larger droplets for which these processes are ir-
relevant.

Transport of each superdroplet is described by

dXn
dt
= u(Xn)+ ũn, (7)
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where Xn is the location of the superdroplet, u the LES-
resolved velocity interpolated to the superdroplet’s location,
and ũ is a stochastic velocity component to parameterize
subgrid-scale fluctuations unresolved in the LES (e.g., see
Sölch and Kärcher, 2010).

3 Splitting and merging

The following subsections will introduce techniques for
the interactive modification of the number of superdroplets
by splitting and merging. This is different from most pre-
vious LCM approaches, in which the number of super-
droplets is set at the beginning of the simulation and re-
mains constant thereafter (unless precipitation scavenges su-
perdroplets). Note that the splitting and merging algorithms
will be tested for the all-or-nothing collection approach, but
they are similarly applicable to the average-impact approach
introduced by Riechelmann et al. (2012).

3.1 Splitting

Splitting takes place if a superdroplet fulfills certain criteria.
First, the radius of the superdroplet needs to be greater than
or equal to a threshold rspl. This is necessary to limit splitting
to the region of interest, i.e., coalescing droplets for which an
improved statistical representation is required. Second, the
weighting factor of the superdroplet needs to be greater than
or equal to a threshold Aspl to avoid excessive and poten-
tially useless splitting. And finally, Aspl is required to be at
least larger than ηspl, which is the number of superdroplets
in which the superdroplet is split. This ensures that no super-
droplets with an unrealistic weighting factor of less than 1
are created.

The numerical implementation of the splitting can be un-
derstood as cloning of the superdroplet that has been deter-
mined to be split. In addition to the already existing super-
droplet, ηspl− 1 new superdroplets are created. To conserve
the total amount of represented droplets, the weighting factor
of these ηspl superdroplets is reduced to

A∗n =
An

ηspl
. (8)

Note that all ηspl superdroplets have identical properties im-
mediately after splitting, including their location. However,
each superdroplet will develop an individual trajectory inde-
pendent from the others due to the stochastic velocity com-
ponent in Eq. (7), which is determined individually for each
superdroplet.

In a first straightforward approach, the thresholds rspl,
Aspl, and the splitting factor ηspl are explicitly prescribed. In
the following this method is abbreviated as S mode, where
the S stands for simple.

In a more advanced method (abbreviated G, standing for
gamma distribution), the threshold Aspl and the splitting fac-
tor ηspl are estimated from an idealized gamma distribution,

which is assumed to describe the distribution of droplets
larger than rspl in each grid box of the simulated model do-
main (e.g., Ulbrich, 1983):

n(r)=N0r
µ exp(−λr), (9)

where n(r) · dr states the number of particles per unit vol-
ume in the size range (r,r + dr). Here N0 is the intercept,
µ is the shape, and λ is the slope parameter of the gamma
distribution. These parameters are calculated as

N0 =
Nr

0(µ+ 1)
λµ+1, (10)

λ=
[πρl

6
(µ+ 3)(µ+ 2)(µ+ 1)xr

−1
] 1

3
, (11)

and

µ=
(1− ζ )n+ 1

ζ − 1
, (12)

where Nr is the number concentration of droplets with r ≥
rspl, 0 is the gamma function, ρl is the density of liquid water,
xr is the mean geometric radius, and ζ is a factor calculated
as

ζ =
M0M2

M2
1
, (13)

where Mk is the kth moment of the mass density distribution
(see Seifert, 2008). The calculation of these moments in the
LCM framework will be described in Sect. 4.1.1.

The assumed drop size distribution (DSD) is calculated
from nbin = 100 logarithmically spaced bins. (Larger values
for nbin did not alter the results.) The center of bin i is calcu-
lated as

rbc,i = 10log10(rmin)+iν, (14)

where

ν =
log10(rmax)− log10(rmin)

nbin− 1
. (15)

The minimum and maximum radius of the discretized spec-
tra are denoted with rmin and rmax, respectively. Here these
values are set to rmin = rspl and rmax = 5 mm, which en-
sures that the whole spectrum of droplet sizes is included.
Furthermore, the boundaries of bin i are given by rbb,i =

10log10(rmin)+(i−0.5)·ν and rbb,i+1. Hence, the width of bin i
is 1ri = rbb,i+1− rbb,i .

It is assumed that the weighting factor of a superdroplet
should be smaller than or equal to the approximated num-
ber of droplets in the corresponding bin of the discretized
gamma distribution. Thus, the weighting factor threshold is
determined by

Aspl,i =max
[
ni(rbc,i) ·1ri ·1V,1

]
. (16)
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Accordingly, the number of newly generated superdroplets
depends on the ratio of the initial weighting factor to the es-
timated number of droplets using the gamma distribution:

ηspl =

⌊
An

Aspl,i

⌋
. (17)

Since only a positive integer of superdroplets can be gener-
ated, the splitting factor is rounded down to the nearest whole
number.

No matter which splitting mode is chosen, the splitting op-
erations are executed at each time step of the LCM. Due to
limited computational resources, the generation of new su-
perdroplets must be restricted to a feasible amount. Hence,
two limitations are introduced. The first restriction is the
maximum splitting factor ηmax, i.e., the maximum number of
clones produced per splitting. This parameter is used for the
G mode, in which Eq. (17) might not be well-defined in the
case of large droplets for which Aspl,i approaches zero. The
second limitation ensures a computationally feasible num-
ber of superdroplets in every grid box by introducing a fixed
maximum NP,max. Accordingly, splitting operations are only
executed if the number of superdroplets in one grid box is
smaller than NP,max. The latter threshold is applied for the
G and the S mode. A suitable choice of these limits will be
presented in Sect. 4.1.2.

3.2 Merging

As a consequence of the potentially massive generation of
new superdroplets due to splitting, the total number of su-
perdroplets may increase sharply, which makes simulations
computationally very expensive. For this reason, a merging
algorithm was developed to decrease the number of super-
droplets in order to reduce the required computational re-
sources.

To avoid an impact of merging on micro- or macrophys-
ical properties of the cloud, the algorithm is only executed
in non-cloudy grid boxes (liquid water is lower than ql <
0.01 g kg−1). Accordingly, cloudy regions, in which a high
number of superdroplets are necessary for the correct repre-
sentation of potential collisional growth, are left unaffected.
Furthermore, it is required that the merged superdroplets are
smaller or equal to rmer = 0.1 µm, which ensures that only
evaporated superdroplets are affected, and not raindrops that
precipitate from the cloud. Additionally, merging is only ex-
ecuted in grid boxes in which the initial superdroplet con-
centration is exceeded and superdroplets exhibit a weighting
factor that is smaller than a certain threshold Amer, rationally
chosen to be smaller or equal to the initial weighting factor.
This is done to avoid decreasing the LCM’s baseline capabil-
ity to represent DSDs set during initialization.

The algorithm is designed as follows. Based on the thresh-
olds rmer and Amer, each superdroplet with rm ≤ rmer and
Am ≤ Amer in a non-cloudy grid box is merged with the next
superdroplet of the same grid box. Here the next superdroplet

is the superdroplet located next in the memory, which en-
ables an efficient execution of the merging algorithm. The
new weighting factor of the remaining superdroplet (index n)
is mass-weighted and given by A∗n = An+Am · r

3
m/r

3
n , while

the other superdroplet (indexm) is deleted. Accordingly, this
leads to a new integral mass M∗n =Mn+Mm, guarantee-
ing mass conservation. An averaging of other superdroplet
properties (e.g., velocity components, radius, and location) is
not implemented and probably not necessary for the correct
representation of the cloud since merging is restricted to a
cloud-free environment. Moreover, a more advanced method
was tested, in which the most similar droplets (within one
grid box) concerning their mass are merged. These simula-
tions show similar results. However, due to sorting processes
the computing time is increased in comparison to the simple
method.

The use of the merging algorithm inside certain regions of
the cloud where collection plays only a subordinate role is
also conceivable. However, the (probably sophisticated) de-
termination of necessary thresholds is not within the scope of
this study. Furthermore, it must be mentioned that the merg-
ing algorithm does not conserve size and chemical composi-
tion of the aerosol. Therefore, for studies that explicitly con-
sider aerosols, the merging algorithm needs to be adapted.

4 Applications

4.1 Box model simulations

In the following box simulations, the sensitivity of the LCM
collection process to the number of simulated superdroplets,
different splitting approaches, and the approaches’ specific
parameters is investigated. Therefore, the box model simula-
tion considers collection as the only microphysical process.

4.1.1 Setup

Although zero-dimensional simulations do not have a spatial
extent, allocating a certain weighting factor requires a ref-
erence volume to represent a defined droplet concentration.
Therefore, the volume of a grid box is 8×103 m3, which cor-
responds to an isotropically spaced grid with 1x =1y =
1z= 20m. The simulation time is 3600 s with a constant
time step of 1 s. To ensure adequate statistics, 25 344 boxes
are calculated, and results are averaged over this ensemble.
(The number of ensemble members represents the maximum
amount of grid boxes which can be calculated on four com-
puting nodes in an appropriate time.) In the following this
method is referred to as a single-box model.

Besides the traditional single-box approach, a new multi-
box approach is introduced. In contrast to the calculation
of independent grid boxes, the multi-box approach allows
superdroplets to move from one grid box to the next by
prescribing a stochastic velocity (but no mean motion) in
Eq. (7), using 25 344 grid boxes, as in the single-box ensem-
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ble above, with cyclic boundary conditions among which the
superdroplets are allowed to move. The stochastic velocity
component is chosen in such a way that it corresponds to a ki-
netic energy dissipation rate of εbox = 0.01 m2s−3, which is
typical for shallow cumulus clouds (e.g., Shaw et al., 1998).

This multi-box approach has one distinct advantage over
the ensemble mean of the same amount of individual box
model simulations (single-box model), which results from
the difficulties to initialize a DSD with superdroplets of a
constant weighting factor, as it is done in many applications
of LCMs in the literature (e.g., Shima et al., 2009; Riechel-
mann et al., 2012; Naumann and Seifert, 2015; Hoffmann
et al., 2017; Sardina et al., 2018). A single-box model sim-
ulation suffers crucially from this initialization method due
to a wrong representation of the largest and rarest super-
droplets (Unterstrasser et al., 2017, their Fig. 17). In doing
so, the rarest and largest, and therefore most important su-
perdroplets for the collection process, are a priori over- or
underestimated. An exchange of superdroplets between the
collection boxes helps to mitigate this problem. Moreover,
this new approach is closer to the representation of collection
in three-dimensional simulations, in which a superdroplet is
not bound to a single grid box.

The impact of different numbers of superdroplets per grid
box and the use of splitting for the traditional single-box ap-
proach will be discussed first; then, the new introduced multi-
box approach will be presented for both splitting and non-
splitting cases. Box model simulations will be compared to
the results of Wang et al. (2007), who used a high-resolution
bin model. The purpose of this study is, however, not the
exact reproduction of these results but a computationally ef-
ficient approximation to them using splitting. Accordingly,
the initialization of the box simulation follows Wang et al.
(2007), using an exponential initial DSD:

n(r, t = t0)=
3Ninit

r3
0
· r2 exp

(
−
r3

r3
0

)
, (18)

whereNinit = 300 cm−3 is the droplet number concentration.
The initial mean radius is r0 = 9.3 µm, which leads to a liq-
uid water content of L0 = 1 gm−3. Following Wang et al.
(2007), we set the minimum droplet radius to rmin = 1.5µm.
Superdroplet radii are then selected by a random generator
which follows the distribution given by Eq. (18). All super-
droplets receive the same initial weighting factor:

Ainit =
Ninit ·1V

NP
, (19)

which ensures the number concentration of 300cm−3. This
method is also described as νconst-init in Unterstrasser et al.
(2017), which has been chosen in this study to resemble the
initialization of superdroplets in less-idealized applications
but also significantly hinders collisional growth.

As reference, the “singleSIP” initialization of Unter-
strasser et al. (2017) is also used for the single-box model. In

contrast to the previously described initialization, the initial
DSD is discretized using logarithmically spaced bins. The
number of bins corresponds to the number of superdroplets.
To each bin, a superdroplet with a corresponding mean radius
and weighting factor is assigned. The maximum radius of
the initial distribution is approximately 33µm, which corre-
sponds to a number of concentrations of 1/1V . This avoids
superdroplets with a weighting factor less than 1. Note that
this (not always applicable) initialization technique repre-
sents the inherent variability in droplet radii and their abun-
dance across the initial spectrum much more accurately than
the previously described method, and therefore results in a
much better agreement with literature references.

In addition to analyzing the DSD directly, the temporal
development of the zeroth and second moment of the mass
density distributions is examined. Due to mass conservation
in all applied approaches, the first moment is constant in time
and will not be shown. The moments of the mass distribution
fm are defined as

Mk =

∫
mkfm(m) dm, (20)

where m is the mass and fm(m) denotes the number concen-
tration distribution. Note that the zeroth moment M0 is the
number concentration and the second moment M2 is propor-
tionate to the radar reflectivity, and thus highly sensitive to
the largest droplets in the DSD.

For a given superdroplet ensemble the moments for each
grid box are calculated with

Mk =

NP∑
n=1

Anm
k
n/1V, (21)

where mn is the single droplet mass (mn = 4/3πρlr3
n) of a

superdroplet.

4.1.2 Box model results

First, the sensitivity of the collision algorithm to the number
of superdroplets is examined using the LCM as a single-box
model. Second, the improvements by the splitting method on
collisional growth is evaluated. Subsequently, those investi-
gations are repeated for the multi-box approach.

Single-box approach

Figures 1 and 2 show the mass density distribution after
3600s and the temporal development of the moments for the
LCM applied as a single-box model using the singleSIP ini-
tialization by Unterstrasser et al. (2017). Each grid box is
initialized with a different number of superdroplets (colored
lines). The reference solution of Wang et al. (2007) is shown
as a black solid line. Figure 1 shows that even with 87 su-
perdroplets the solution of Wang et al. (2007) can be repro-
duced well and a further increase in the number of super-

www.geosci-model-dev.net/11/3929/2018/ Geosci. Model Dev., 11, 3929–3944, 2018



3934 J. Schwenkel et al.: Splitting of Lagrangian droplets

Figure 1. Mass density distribution for the single-box approach af-
ter 3600s for the “singleSIP” initialization. The black solid line de-
notes the solution of Wang et al. (2007). The colored dashed curves
show the solution of the LCM with different numbers of super-
droplets per grid box.

Figure 2. Moments of the mass density distribution as a function of
time obtained from the single-box simulations for the “singleSIP”
initialization. The black solid line denotes the solution of Wang
et al. (2007). The colored dashed curves show the solution of the
LCM with different numbers of superdroplets per grid box.

droplets only leads to minor improvements. The small devi-
ations between the bin model solution and the LCM can be
traced back to the different solution of the collection equation
(e.g., Dziekan and Pawlowska, 2017). Overall, it can be seen
that the solution of the LCM converges with an increasing
number of superdroplets. The moments of mass distribution
(Fig. 2) also show convergence with an increasing number of
superdroplets. This good representation of collision growth
is in line with the results with Unterstrasser et al. (2017).

Now, Figs. 3 and 4 show the same quantities but for the
initialization with identical weighting factors. In Fig. 3, a
significant deviation of the mass density distribution of the

Figure 3. Mass density distribution for the single-box approach af-
ter 3600 s. The black solid line denotes the solution of Wang et al.
(2007). The colored dashed curves show the solution of the LCM
with different numbers of superdroplets per grid box.

Figure 4. Moments of the mass density distribution as a function
of time obtained from the single-box simulations. The black solid
line denotes the solution of Wang et al. (2007). The colored dashed
curves show the solution of the LCM with different numbers of su-
perdroplets per grid box.

reference solution can be seen for all configurations. An ex-
cessively pronounced first maximum is found for all super-
droplet concentrations, while the second maximum is at too
small droplet sizes. Also, fluctuations occur for radii larger
than 100 µm, resulting from insufficient superdroplet statis-
tics in this range. However, as the initial number of super-
droplets increases, the depletion of the first maximum and the
development of the second maximum is reproduced better.
Figure 4a shows that in all cases the decrease in the number
concentration is underestimated. Also for the second moment
(Fig. 4b), values are predicted too low in nearly all cases. All
in all, it can be observed that an increase in the number of
superdroplets leads to a better agreement of the results with
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Figure 5. Mass density distribution for the single-box approach af-
ter 3600s. The black solid line denotes the solution of Wang et al.
(2007), the black dashed curve the reference case (without split-
ting). The colored dashed curves show solution for splitting simula-
tion with different configurations.

Figure 6. Moments of the mass density distribution as a function
of time obtained from single-box simulations. The black solid line
denotes the solution of Wang et al. (2007), the black dashed curve
for the reference simulation (without splitting). The colored dashed
curves show the solutions for different splitting configurations.

the bin model even though difference are still significant for
1000 superdroplets per grid box.

In Figs. 5 and 6 the mass density distribution after 3600s
and the temporal development of the moments applying the
splitting algorithm in different configurations are shown.
Again, the splitting modes are abbreviated with S for the
simple splitting method and G for using the splitting method
based on a gamma distribution. The number following S or
G indicates the splitting radius in microns. For all simula-
tions, the maximum permissible number of superdroplets per
grid box is limited to NP,max = 1000. The maximum split-
ting factor is ηmax = 20. By selecting these limits, which are

chosen to represent the upper limit of computationally fea-
sible three-dimensional simulations, it is possible to obtain
an estimate of the quality of the individual splitting methods.
The influence of the choice of these parameters is discussed
below. All simulations are initialized with NP = 87 super-
droplets per grid box.

The black dashed line (Const.) shows the reference LCM
case in which no splitting is applied. Comparing the non-
splitting case to splitting cases, the results are significantly
improved with respect to the reference solution. More pre-
cisely, the fluctuations that occur for large droplet radii are
successfully removed by splitting. Furthermore, a better rep-
resentation of the second maximum is also achieved by split-
ting. Independent of the splitting mode, simulations with the
same splitting radius provide similar results. The only ex-
ception is between the simulations G10 and S10, in which
the assumed gamma distribution enables effective splitting
at slightly larger radii in G10 compared to S10. This results
in a better agreement of S10 with the bin reference. In gen-
eral, a reduction of the splitting radius leads to an improved
representation of the mass density distribution. However, for
all splitting simulations the reduction of the first maximum
is underestimated, while the second maximum is only inade-
quately represented.

Similar conclusions are possible from Fig. 6, in which the
time series of the zeroth and second moment of the DSD are
shown. The best agreement for the number concentration is
achieved by S10, where many superdroplets are cloned at
a very early stage. For all splitting configurations, the sec-
ond moment shows a strong improvement in comparison to
the LCM reference case without splitting (Const.) where this
value is largely underestimated. Accordingly, splitting leads
to an improved representation of the collisional growth in
LCMs but there are still very large deviations from the bin
reference.

These results exhibit how strongly collisional growth suf-
fers from the initialization with a constant weighting factor,
consistent with Unterstrasser et al. (2017). Since large super-
droplets are initialized only in a few grid boxes, collisional
growth is subject to a great variability in the different re-
alizations among the ensemble. Due to that, the following
subsection will repeat this investigations using the multi-box
approach, which reflects the collisional growth in 3-D appli-
cations more appropriately.

Multi-box approach

Figure 7 shows the mass density distribution after 3600s time
for different numbers of superdroplets (colored lines) using
the multi-box approach without splitting. One can see that
as the number of superdroplets increases, a better agreement
with the bin model is achieved. Especially the simulations
with 512 and 1000 superdroplets per grid box can reproduce
the mass density distribution well. However, for these cases,
a stronger decrease in the first maximum is observed. This
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Figure 7. Same as Fig. 3 but for the multi-box approach, i.e., inter-
actions between the grid boxes are possible.
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Figure 8. Same as Fig. 4 but for the multi-box approach, i.e., inter-
actions between the grid boxes are possible.

can be attributed to accelerated accretion, which is favored
by the combination of a few large droplets with an overesti-
mated weighting factor and a large number of superdroplets
with radii of about 10 µm. In contrast, a decelerated deple-
tion of the first maximum and a weaker second peak are de-
tected for simulations with a lower number of superdroplets.
This results from the insufficient representation of the initial
DSD, especially that of large droplets, which are crucial for
effective collisional growth.

In Fig. 8, the temporal evolution of the number concentra-
tion and the second moment are shown. In simulations with
a high number of superdroplets, a too strong reduction of
the number concentration is predicted; and contrarily, the de-
crease in the zeroth moment is underestimated in cases with
only 15 and 37 superdroplets. This tendency is also observed
for the second moment. Simulations with a high number of
superdroplets overestimate the reference, whereas simula-

Figure 9. Same as Fig. 5 but for the multi-box approach, i.e., inter-
actions between the grid boxes are possible.

tions with only a few superdroplets result in too low values.
However, comparing the results of the non-splitting cases
(Const.) in the single- and multi-box simulations, the lat-
ter already provides improved results with respect to the bin
model. The results show that this initialization artifact can
be successfully mitigated by the newly introduced stochastic
exchange between the grid boxes. For typical applications,
however, the required amount of at least 512 superdroplets
per grid box, necessary to derive satisfying results without
splitting, is computationally unfeasible.

To maintain a reasonable amount of superdroplets, these
box simulations will be repeated now, using the splitting ap-
proach. Here all parameters (initializing all simulations with
87 superdroplets per grid box) and splitting thresholds are
identical as for the single-box approach described above but
the superdroplets are now allowed to move between grid
boxes.

Figure 9 shows the mass density distribution after 3600 s
for different splitting configurations. Clear differences in the
consistency with the bin reference solution can be seen. In
particular, the simulations S10 and G10 show a good agree-
ment with the results of Wang et al. (2007). In both cases,
the bimodal shape of the spectrum is represented well. How-
ever, for the other simulations, the deviation from the refer-
ence solution increases with increasing splitting radius, but
less with the splitting mode. Both simulations with a split-
ting radius of 40 µm show no improvements in comparison
to a simulation without splitting (Const., black dashed line),
except in the right tail of the distribution. Figure 10 shows
the moments for the different splitting configurations. The
two plots indicate a slightly faster precipitation process than
in the bin model, but the general agreement with the refer-
ence is much higher than without splitting (Fig. 8). Again,
general differences between the bin model and the LCM are
caused by the initialization, which cannot be fixed by split-
ting. The initialization with constant weighting factors will
always deviate from the exponential initialization used by
Wang et al. (2007). Therefore, subsequent collisions, which
are improved by splitting, cannot agree with the bin solution
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Figure 10. Same as Fig. 6 but for the multi-box approach, i.e., in-
teractions between the grid boxes are possible.

by Wang et al. (2007) whatsoever. In general, the decreas-
ing difference among the different LCM simulations, as it is
occurring due to splitting, needs to be seen as a proof of con-
cept, and not the comparison with the bin results.

All in all, it is shown that collisional growth is better rep-
resented by using the splitting method in both the single-
and multi-box simulations. Furthermore, the choice of the
splitting mode is secondary, but the splitting radius is identi-
fied as the most crucial parameter. The multi-box simulations
exhibit a distinct advantage over the single-box simulations.
Due to the presence or absence of sufficiently large droplets
that might initiate collision and coalescence, as a result of the
initialization, collisional growth can be overestimated in cer-
tain grid boxes while it is underestimated in others. Splitting
and the subsequent stochastic exchange are able to distribute
these so-called precipitation embryos among the entire en-
semble where they are able to initiate collision and coales-
cence as sketched in Fig. 11, which would not be possible in
the single-box approach.

Sensitivity to splitting thresholds

The limiting parameters of the splitting algorithm are now
examined in sensitivity studies using the multi-box approach.
For this purpose, the parameters of the maximum possible
number of superdroplets per grid box NP,max, the maximum
splitting factor ηmax, and the splitting radius rspl are varied
for the splitting mode G; the base state of this mode is de-
fined as rspl = 10 µm, ηmax = 20, and NP,max = 1000. This
base state is varied by individually changing the parameters
rspl, ηmax, and NP,max. Furthermore, all simulation are identi-
cally initialized with Ninit = 87 superdroplets per grid box.

Figure 12a shows the mass density distributions after
3600s for different values for NP,max. We find that a value of
NP,max = 150 is sufficient to reach convergence for this setup.
Since the initial superdroplet concentration is Ninit = 87 for
all configurations ofNP,max, it can be concluded thatNP,max is
a necessary but not crucial parameter as long asNP,max >150.
This reduction of the maximum number of superdroplets per
grid box results in a reduction of the computational time by a
factor of 15 compared to the simulation with NP,max = 1000.

The sensitivity studies for the maximum splitting factor
show that this has no influence on the results (Fig. 12b). An
explanation for this is that the algorithm is executed at ev-
ery time step and thus only the clone rate but not the abso-
lute number of the clones is affected. More precisely, a low
value of ηmax may reduce how many clones are produced at
a time step. However, results show that this effect is negligi-
ble since a superdroplet will be cloned sufficiently fast at the
subsequent time steps as long as NP ≤NP,max.

As shown before, the development of the spectrum is
highly sensitive to the choice of the splitting radius. Fig-
ure 12c shows that the results converge with decreasing split-
ting radius, with no significant deviations for configurations
with rspl ≤ 15µm. This can be attributed to the fact that espe-
cially the largest droplets (in this case with radii of approxi-
mately 15µm) are crucial for initiating the collisional growth.
Accordingly, an improved representation of these droplets
leads to an improved representation of the whole collisional
growth process.

4.2 Single cloud

4.2.1 Setup

In this case, we are simulating an idealized shallow cumulus
cloud in the form of a rising warm air bubble as in Hoffmann
et al. (2017). The model domain is 1920m×7680m×3840m
in the x-, y-, and z-direction, respectively. An isotropic grid
spacing of 20 m is used. The simulation time is 3000 s using
a constant time step of 0.1 s. The warm air bubble is triggered
by a Gaussian-shaped potential temperature perturbation θ∗

θ∗(y,z)= θ0 · exp
[
−

1
2
·

((
y− yc

σy

)
+

(
z− zc

σz

))]
, (22)

where θ0 = 0.4K is the maximum temperature difference,
which decreases with a standard deviation of σy = 200m and
σz = 150m in the y- and z-direction, respectively. The cen-
ter of the bubble is set to yc = 3840m and zc = 170m. Due to
the two-dimensional character of the temperature excess, the
initial temperature perturbation is elongated homogeneously
along the x axis.

The initial profiles for temperature and specific humidity
are based on the shallow cumulus case by vanZanten et al.
(2011). Note that no background winds, large-scale forcings,
or surface fluxes are considered. The superdroplets are re-
leased at the beginning of the simulation and are uniformly
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(a) Without splitting (b) With  splitting
(and individual trajectories of clones)

Figure 11. Schematic representation on how splitting affects the spatial distribution of large superdroplets. The squares outline the different
grid boxes with superdroplets of the size of cloud droplets (blue) and superdroplets representing rain drops (dark red). Without splitting (a),
the rain drop is represented by only one superdroplet. In the splitting case with the multi-box approach (b), this superdroplet is cloned into
several superdroplets, which are able to move in other grid boxes (due to their individual subgrid-scale velocities) where they initiate or affect
collisional growth.

distributed in the entire model domain. For all three direc-
tions in space, the average distance of the superdroplets is
initially 4.5 m. This results in a superdroplet concentration
of approximately 87 superdroplets per grid box and roughly
4.55× 108 superdroplets in total. Using a weighting fac-
tor of Ainit = 9.0× 109, an initial cloud condensation nuclei
(CCN) concentration of 100 cm−3 is represented. Addition-
ally, simulations with 15 and 186 superdroplets per grid box
are carried out, in which the weighting factor is adjusted
such that the CCN concentration of 100 cm−3 is retained. If
merging is applied, only superdroplets with a radius smaller
than rmer = 0.1µm and with a weighting factor smaller than
Amer = Ainit/2 are allowed to merge.

At the surface, superdroplets are absorbed if their radius is
larger than 1.0 µm. For smaller particles, a reflection bound-
ary condition is assumed to avoid the change that the surface
acts as a CCN sink. Horizontal boundaries are prescribed
with cyclic conditions. Moreover, for collision and coales-
cence, the kernel by Hall (1980) is used. An overview of all
conducted simulations is given in Table 1.

4.2.2 Single-cloud results

Microphysical properties

Figure 13 shows the cloud-averaged mass density distribu-
tion at t = 1800 s for the configurations listed in Table 1. The
left part of the spectrum is reproduced quantitatively con-
sistent in all cases. This implies that both the splitting and
the merging processes have no artificial impact on the dif-
fusional growth process, which prevails in this region of the
spectrum. However, the right tail of the DSDs differs signif-

icantly when the splitting algorithm is applied. The biggest
drops are almost 350 µm smaller for the reference case (black
lines) compared to simulations with splitting. Furthermore,
splitting effectively reduces the fluctuations which occur in
the reference cases for radii above 100 µm. The mass den-
sity distributions imply that the choice of the splitting mode
does not affect cloud microphysical results. Likewise, the
simulation S10, in which the splitting radius is reduced to
rspl = 10µm, shows almost no difference in the mass den-
sity distribution compared to cases with rspl = 20µm. Thus,
it can be deduced that a splitting radius of rspl = 20µm is
sufficient for this cloud. Further investigations (not shown)
in which rspl is successively increased to 30µm show that a
larger splitting radius leads to strong deviations from simula-
tions with smaller splitting radii. This indicates that droplets
with radii larger than 20µm need to be represented in a statis-
tically sufficient way to initiate the precipitation process cor-
rectly. It should be emphasized, however, that these results
are only valid for a cloud with a relatively strong diffusional
radius growth. A reduction of the splitting radius might be re-
quired for settings in which collisions dominate the droplet’s
growth at smaller radii as it is the case in the previously pre-
sented box simulations.

This behavior can be ascribed to different requirements
on the superdroplet number for the convergence of differ-
ent growth processes. The left part of the spectrum is domi-
nated by diffusional growth which can be sufficiently repre-
sented by just a couple of superdroplets per grid box. By con-
trast, collisional growth is highly sensitive to the superdroplet
number and the correct representation of large droplets. An
improved representation of these droplets is ensured by the
splitting algorithm, no matter what splitting mode is used.
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Table 1. Summary of the main parameters for the single-cloud simulations.

Simulation NP Initial weighting factor Splitting rspl NP,max ηspl/max Merging

Const.NP15 15 5.0× 1010 no – - – no
Const.NP87 87 9.0× 109 no – - – no
Const.NP186 186 4.3× 109 no – - – no
S10 87 9.0× 109 yes 10 µm 150 20 no
S20 87 9.0× 109 yes 20 µm 150 20 no
S20 merging 87 9.0× 109 yes 20 µm 150 20 yes
G20 87 9.0× 109 yes 20 µm 150 20 no
G20 merging 87 9.0× 109 yes 20 µm 150 20 yes

Figure 12. Mass density distribution for the box simulation after
3600 s. The black solid line denotes the solution of Wang et al.
(2007). In (a), sensitivity studies for different values of NP,max
are presented. In (b), simulations for different values of ηmax are
shown. In (c), results for different splitting radii are displayed. All
sensitivity studies are conducted using the splitting mode G.

The improved statistics of large superdroplets are also
shown in Fig. 14, where the absolute number of superdroplets
per logarithmic radius (log(r)) bin is presented. It is notice-
able that in the reference simulations, this number decreases
significantly for larger droplets (starting from a radius of ap-

Figure 13. Mass density distribution after 1800 s for the idealized
single-cloud simulations using parameters described in Table 1.

proximately r = 20µm). In simulations in which no splitting
operations are carried out, the largest droplets are represented
by only a few tens of superdroplets in the whole model do-
main. For the S mode, the superdroplet concentration is kept
almost constant (except in the right tail) for all splitting cases.
For the G mode, a second maximum at 100 µm can be ob-
served. This can be related to the calculation of the splitting
criterion. The approximation of the mass density distribution
by a gamma distribution results in a somewhat lower split-
ting factor for superdroplets close to the splitting radius in
comparison to the S mode, which shifts the superdroplet pro-
duction to larger radii in the G mode.

Macrophysical properties

In Fig. 15, the development of the cloud is shown in a
time series of several macroscopic properties. The behav-
ior of the different splitting configurations can be clearly
seen in Fig. 15a, which depicts the ratio of the current su-
perdroplet number to its initial value. In simulations with-
out splitting, the superdroplet number remains nearly con-
stant. A clear increase in the superdroplet number can be
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Figure 14. Total number of superdroplets per logarithmic radius
bin after t = 1800s for the idealized single-cloud simulations using
parameters described in Table 1.

observed when splitting is used, with maximum increase of
about 15 % for S10. In all other splitting cases, the increase
in superdroplet number is notably lower and starts approxi-
mately 500 s later, which corresponds to the larger splitting
radius of rspl = 20 µm. The lowest increase in superdroplet
number is observed in the merging cases in which the maxi-
mum number of superdroplets is reached during the growing
phase of the cloud and decreases in the dissipation stage.

Figure 15b and c show the temporal evolution of the liq-
uid water path (LWP) and the rain water path (RWP). The
RWP is defined as the integral mass of all droplets with
r ≥ 40µm. It is notable that the LWP is the same for all sim-
ulations, which emphasizes the mass-conserving character of
the splitting algorithm and its negligible impact on the gen-
eral development of the cloud. In the reference simulations
(represented as a mean of five ensembles for each case) of
Figs. 15c and d, one can see an increase in the precipitation
parameters (RWP, radar reflectivity, and precipitation sum)
for an increased number of superdroplets. However, the dif-
ferences among the ensemble members are quite large, which
is shown by the range (gray area) and the band of plus–minus
one standard deviation from the mean (light blue area) de-
rived from all 15 ensemble members. Overall, the splitting
simulations have a slight tendency to compare better with the
reference cases using 87 and 186 superdroplets. Admittedly,
since the results are (for the most part) within one standard
deviation, it can be concluded that splitting has no significant
influence on the global precipitation parameters.

Figure 15e and f display the precipitation rate and the total
precipitation reaching the ground. The precipitation rate in
the reference simulations without splitting exhibit high tem-
poral variances (black lines). Those variances are success-
fully reduced in all splitting simulations. This can be ex-
plained by the better representation of precipitation in the

splitting simulations by a larger number of superdroplets, re-
sulting in a more uniform removal of liquid water by precipi-
tation. As expected from the RWP, splitting slightly increases
the total precipitation.

Figure 16 shows the effect of splitting on the spatial distri-
bution of rain after 2100 s simulated time for the NP87 simu-
lation (Fig. 16a) and the S20 splitting simulation (Fig. 16b).
Similar to the reduced temporal variance in the time series of
the precipitation rate (Fig. 15e), the spatial variance is also
significantly reduced using splitting. Again, the precipitation
is represented by only a few superdroplets in the simulation
without splitting, which leads to very high, localized precip-
itation rates. Due to splitting, raindrops with large weight-
ing factors are split into several superdroplets with smaller
weighting factors, resulting in the more realistic spatial rep-
resentation of the precipitation.

All in all, the splitting of large droplets, which results in
an improved representation of the collision process and thus
the DSD, also partly influences the macroscopic properties
of the cloud. In particular, rain water content, radar reflec-
tivity, and precipitation rate are represented in a more realis-
tic manner. Due to the improved statistics, the temporal and
spatial variance of these parameters is significantly reduced.
However, the whole cloud life cycle, which is driven by the
general dynamics and thermodynamics, is largely unaffected
by splitting. Additionally, the merging shows no influence on
the physical outcomes.

To estimate the increase in computing time due to splitting,
we conducted three simulations (Const. NP87, S20, and S20
merging) with comparable time measurements. Here we ob-
serve that the splitting simulation S20 requires 19.2 % more
computing time than the reference simulation Const. NP87.
If applied, merging allows a massive reduction of the number
of superdroplets, reducing the computing time by 18 % and
the storage demand (which is proportional to the number of
superdroplets) by at least 7 % compared to simulations ap-
plying only splitting (Fig. 15a). All in all, the simulation ap-
plying both splitting and merging is only 1.2% slower than
the reference simulation Const. NP87.

4.3 Cloud field

4.3.1 Setup

The setup for simulating a shallow cumulus field is based on
the LES intercomparison study by vanZanten et al. (2011),
using their initial profiles for potential temperature, water va-
por mixing ratio, large-scale forcings, and surface fluxes. As
in the original, the model domain covers an area of about
12.8km×12.8km×4.0km in the x-, y-, and z-direction, re-
spectively. The grid spacing is1x =1y = 100m in the hor-
izontal, and 1z= 40m in the vertical. Moreover, the calcu-
lation of the domain-averaged quantities follows the descrip-
tions given in the original case.
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Figure 15. Time series of different variables for the idealized single-cloud simulation for different initial numbers of superdroplets and
splitting configurations. In (a), the ratio of the actual and initialized number of superdroplets in the whole model domain is shown. The
liquid water path (LWP) and rainwater path (RWP) are displayed in panels (b) and (c), respectively. In (d), the total radar reflectivity is
shown. Panels (e) and (f) show the precipitation rate and total precipitation, respectively. The reference simulations (runs without splitting)
are presented as a mean of five ensembles for each case. Moreover, the light blue areas show the mean plus–minus one standard deviation
and the gray areas show the range derived from all 15 ensemble members.

Figure 16. Vertical cross sections of the precipitation rate for the reference case (a) and the splitting case S20 (b).

Three different simulations will be presented. In the cases
LCM NP87 and LCM NP400, the number of superdroplets
per grid box are 87 and 400, respectively. With initial weight-
ing factors of Ainit = 1.89× 1012 and Ainit = 7.0× 1012, re-
spectively; these represent a CCN concentration of 100cm−3

in each case. Moreover, one more simulation with splitting

and merging is carried out. For this configuration, in which
the general settings of LCM NP87 are adopted, the splitting
mode S with rspl = 20µm, ηspl = 20, and Aspl =1x×1y×

1z×1m−3
= 4.0×105 is used.Aspl is chosen to allow num-

ber concentrations as small as 1m−3 to be represent by a sin-
gle superdroplet.
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Figure 17. Time series of (a) the liquid water path (LWP), (b) rainwater path (RWP), (c) ratio of the actual number of superdroplets to the
initial number of superdroplets, (d) cloud cover, (e) precipitation rate, and (f) total precipitation for different initial numbers of superdroplets
and splitting configurations. The gray areas in (a), (b), and (d) indicate the documented model variability in the simulated shallow cumulus
case (vanZanten et al., 2011).

Based on the previously presented results, the maximum
number of particles per grid box is set to NP,max = 150.
Merging is applied in non-cloudy grid boxes for super-
droplets with a radius smaller than rmer = 0.1µm and a
weighting factor smaller than Amer = Ainit/2.

4.3.2 Cloud field results

The analysis is focused on the influence of splitting on the
macroscopic properties of the shallow cumulus field. Fig-
ure 17 shows time series of (a) the LWP, (b) RWP, (c) ra-
tio of the current superdroplet number to its initial value,
(d) cloud cover, (e) precipitation rate, and (f) total precipi-
tation. Despite the superdroplet number, all these parameters
agree in a statistical sense. In the cases without splitting, the
total superdroplet number decreases slightly in the course of
the simulation due to precipitation (Fig. 17c), while the sim-
ulation with splitting increases the total superdroplet number
by about 15 %. Note, however, that both LWP and RWP are
at the top of model variability documented in vanZanten et al.
(2011) (gray areas), which is in line with the results of Arabas
and Shima (2013), who also used an LCM for the simulation
of this shallow cumulus case.

Considering the temporal variability in the precipitation
rate and total precipitation (Fig. 17e and f), no significant
changes are detectable using splitting or a very high num-
ber of superdroplets. Nonetheless, a positive impact of split-
ting on the representation of precipitation can be seen in the
probability density function of the surface precipitation rate
(Fig. 18). For the simulation with 400 superdroplets per grid
box and the splitting simulation, the probability for very high
precipitation rates is smaller by about 1 order of magnitude
compared to the simulation LCM NP87. This clearly shows
that extremely high precipitation rates, resulting from indi-
vidual superdroplets with large weighting factors, are miti-
gated when splitting is applied. Accordingly, splitting is im-
portant for a statistically appropriate representation of indi-
vidual rain events and necessary for the process-level under-
standing of the precipitation process, but the general features
of the cloud field, as it was the case for the single cloud, are
largely unaffected.
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Figure 18. Probability density function of precipitation rates for dif-
ferent initial numbers of superdroplets and splitting configurations.

5 Conclusions

The main objective of this paper was the development and
verification of a splitting algorithm to improve collisional
growth in Lagrangian cloud models (LCMs). These mod-
els are able to represent collision and coalescence well
(Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017).
Under certain conditions, however, they are known to
insufficiently represent this process. These conditions occur
when the number of superdroplets is low and, accordingly,
the number of real droplets represented by each superdroplet
(the so-called weighting factor) is high, leading to an
oversimplified representation of the droplet size distribution
(DSD; Riechelmann et al., 2012; Unterstrasser et al., 2017).
The introduced approach for splitting is carried out by
cloning superdroplets of interest (large radius and high
weighting factor) into a large number of identical super-
droplets with commensurately reduced weighting factors,
which improves the representation of the DSD in the desired
areas. An accompanying merging algorithm has been also
introduced. It is designed to merge two superdroplets into
one, counteracting the (potentially) massive production
of superdroplets due to splitting and hence a significant
increase in computational cost.

The splitting and merging algorithms have been validated
using box simulations, a simulation of a single cumulus
cloud, and an established shallow cumulus test case. The box
simulations confirmed that the capability of an LCM to rep-
resent the temporal evolution of a DSD due to collision and
coalescence depends crucially on the number of simulated
superdroplets (Shima et al., 2009; Riechelmann et al., 2012;
Unterstrasser et al., 2017; Dziekan and Pawlowska, 2017).

Without splitting, only simulations with more than 500 to
1000 superdroplets per grid box were acceptably reproduc-
ing literature references. By applying the new splitting al-
gorithm, the results improved significantly using only up to
150 superdroplets per grid box. Furthermore, the box simula-
tions revealed that the radius from which splitting is applied
is the most important parameter of the splitting algorithm. A
value of 15µm, which corresponds to the typical radii of the
first colliding droplets in clouds, was found to be appropri-
ate. Other investigated parameters have shown only a minor
impact on the results as long as a sufficiently large maximum
number of superdroplets is allowed to be produced by split-
ting (≥ 150).

In the idealized single-cloud simulation, splitting im-
proved the representation of collisional growth with up to
70 % larger maximum radii. Moreover, splitting improves
the spatial and temporal representation of precipitation by
distributing the precipitable water on more superdroplets
with an accordingly smaller weighting factor. It is impor-
tant to note, however, that the life cycle and domain-averaged
macroscopic properties are almost not affected by the split-
ting process. If applied, the merging algorithm has been
shown to reduce the computing time by 18 % and the stor-
age demand by at least 7 % in comparison to simulations
with splitting alone. Since merging is restricted to cloud-free
regions, its application did not alter the simulated physics.
Similar findings on the effect of splitting on the production
of rain have been made for the shallow cumulus test case.

In light of the fact that LCMs become increasingly impor-
tant in the field of modeling cloud microphysics, it is nec-
essary to minimize the (typically) large demand of memory
and computing time required for their application. Thus, a
fixed number of superdroplets needs to be replaced by a dy-
namic number, which adapts interactively to the given physi-
cal and numerical requirements. In this regard, the presented
methods follow the approaches by Grabowski et al. (2018),
in which superdroplets are only created after activation, or
Naumann and Seifert (2015), who restricted the superdroplet
approach to the representation of raindrops. Of course, all
these approaches have their specific advantages and disad-
vantages, but they are necessary steps to apply LCMs in a
wider range of future applications.

Code availability. The LES model used in this study (revision
2263) is publicly available at https://palm.muk.uni-hannover.de/
trac/browser/palm?rev=2263 (last access: 25 September 2018,
PALM group, 2018). For analysis, the model has been extended and
additional analysis tools have been developed. The extended code is
available from the authors on request.
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