Articles | Volume 11, issue 9
Geosci. Model Dev., 11, 3781–3794, 2018
Geosci. Model Dev., 11, 3781–3794, 2018

Model description paper 18 Sep 2018

Model description paper | 18 Sep 2018

sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python

Joy Merwin Monteiro et al.

Related authors

RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412,,, 2020
Short summary

Related subject area

Climate and Earth System Modeling
FORTE 2.0: a fast, parallel and flexible coupled climate model
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293,,, 2021
Short summary
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273,,, 2021
Short summary
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175,,, 2021
Short summary
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221,,, 2021
Short summary
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204,,, 2021
Short summary

Cited articles

Alpire, A.: Predicting Solar Radiation using a Deep Neural Network, available at: (last access: 20 August 2018), 2017. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244,, 2005. a, b, c
Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng., 5, 46–55, 1998. a
DeLuca, C., Theurich, G., and Balaji, V.: The Earth System Modeling Framework, in: Earth System Modelling, vol. 3, SpringerBriefs in Earth System Sciences, Springer, Berlin, Heidelberg, 43–54,, 2012. a
Donahue, A. S. and Caldwell, P. M.: Impact of Physics Parameterization Ordering in A Global Atmosphere Model, J. Adv. Model. Earth Sy., 10, 481–499,, 2018. a
Short summary
In the same way that the fruit fly or the yeast cell serve as model systems in biology, climate scientists use a range of computer models to gain a fundamental understanding of our climate system. These models range from extremely simple models that can run on your phone to those that require supercomputers. Sympl and climt are packages that make it easy for climate scientists to build a hierarchy of such models using Python, which facilitates easy to read and self-documenting models.