Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5194/gmd-11-3781-2018
Model description paper
 | Highlight paper
 | 
18 Sep 2018
Model description paper | Highlight paper |  | 18 Sep 2018

sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python

Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero

Related authors

RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020,https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025,https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Climate model downscaling in central Asia: a dynamical and a neural network approach
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025,https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025,https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025,https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary

Cited articles

Alpire, A.: Predicting Solar Radiation using a Deep Neural Network, available at: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215715 (last access: 20 August 2018), 2017. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a, b, c
Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng., 5, 46–55, 1998. a
DeLuca, C., Theurich, G., and Balaji, V.: The Earth System Modeling Framework, in: Earth System Modelling, vol. 3, SpringerBriefs in Earth System Sciences, Springer, Berlin, Heidelberg, 43–54, https://doi.org/10.1007/978-3-642-23360-9_6, 2012. a
Donahue, A. S. and Caldwell, P. M.: Impact of Physics Parameterization Ordering in A Global Atmosphere Model, J. Adv. Model. Earth Sy., 10, 481–499, https://doi.org/10.1002/2017MS001067, 2018. a
Download
Short summary
In the same way that the fruit fly or the yeast cell serve as model systems in biology, climate scientists use a range of computer models to gain a fundamental understanding of our climate system. These models range from extremely simple models that can run on your phone to those that require supercomputers. Sympl and climt are packages that make it easy for climate scientists to build a hierarchy of such models using Python, which facilitates easy to read and self-documenting models.