Articles | Volume 11, issue 9
https://doi.org/10.5194/gmd-11-3781-2018
https://doi.org/10.5194/gmd-11-3781-2018
Model description paper
 | Highlight paper
 | 
18 Sep 2018
Model description paper | Highlight paper |  | 18 Sep 2018

sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for building model hierarchies in Python

Joy Merwin Monteiro, Jeremy McGibbon, and Rodrigo Caballero

Related authors

The role of synoptic circulations in lower-tropospheric DSE variability over a South Asian heatwave hotspot
Hardik M. Shah and Joy M. Monteiro
EGUsphere, https://doi.org/10.22541/essoar.174349794.49450607/v1,https://doi.org/10.22541/essoar.174349794.49450607/v1, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020,https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025,https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary

Cited articles

Alpire, A.: Predicting Solar Radiation using a Deep Neural Network, available at: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215715 (last access: 20 August 2018), 2017. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a, b, c
Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng., 5, 46–55, 1998. a
DeLuca, C., Theurich, G., and Balaji, V.: The Earth System Modeling Framework, in: Earth System Modelling, vol. 3, SpringerBriefs in Earth System Sciences, Springer, Berlin, Heidelberg, 43–54, https://doi.org/10.1007/978-3-642-23360-9_6, 2012. a
Donahue, A. S. and Caldwell, P. M.: Impact of Physics Parameterization Ordering in A Global Atmosphere Model, J. Adv. Model. Earth Sy., 10, 481–499, https://doi.org/10.1002/2017MS001067, 2018. a
Download
Short summary
In the same way that the fruit fly or the yeast cell serve as model systems in biology, climate scientists use a range of computer models to gain a fundamental understanding of our climate system. These models range from extremely simple models that can run on your phone to those that require supercomputers. Sympl and climt are packages that make it easy for climate scientists to build a hierarchy of such models using Python, which facilitates easy to read and self-documenting models.
Share