Articles | Volume 11, issue 1
Geosci. Model Dev., 11, 351–368, 2018
Geosci. Model Dev., 11, 351–368, 2018

Model description paper 25 Jan 2018

Model description paper | 25 Jan 2018

Parametric decadal climate forecast recalibration (DeFoReSt 1.0)

Alexander Pasternack et al.

Related authors

Recalibrating Decadal Climate Predictions – What is an adequate model for the drift?
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev. Discuss.,,, 2020
Revised manuscript accepted for GMD
Short summary

Related subject area

Atmospheric sciences
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486,,, 2021
Short summary
Regional CO2 inversions with LUMIA, the Lund University Modular Inversion Algorithm, v1.0
Guillaume Monteil and Marko Scholze
Geosci. Model Dev., 14, 3383–3406,,, 2021
Short summary
The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420,,, 2021
Short summary
Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments
Tobias Gronemeier, Kerstin Surm, Frank Harms, Bernd Leitl, Björn Maronga, and Siegfried Raasch
Geosci. Model Dev., 14, 3317–3333,,, 2021
Short summary
Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts
Sara M. Blichner, Moa K. Sporre, Risto Makkonen, and Terje K. Berntsen
Geosci. Model Dev., 14, 3335–3359,,, 2021
Short summary

Cited articles

Anderson, J. L.: A method for producing and evaluating probabilistic forecasts from ensemble model integrations, J. Climate, 9, 1518–1530, 1996. a
Arisido, M. W., Gaetan, C., Zanchettin, D., and Rubino, A.: A Bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles, Stoch. Env. Res. Risk A., 31, 1–13, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,, 2011. a
Doblas-Reyes, F. J., Hagedorn, R., and Palmer, T. N.: The rationale behind the success of multi-model ensembles in seasonal forecasting – II. Calibration and combination, Tellus A, 57, 234–252, 2005. a
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.