Articles | Volume 11, issue 1
https://doi.org/10.5194/gmd-11-339-2018
https://doi.org/10.5194/gmd-11-339-2018
Model description paper
 | 
23 Jan 2018
Model description paper |  | 23 Jan 2018

Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1

Robin J. Hogan, Tristan Quaife, and Renato Braghiere

Related authors

Introducing aerosol-cloud interactions in the ECMWF model reveals new constraints on aerosol representation
Paolo Andreozzi, Mark D. Fielding, Robin J. Hogan, Richard M. Forbes, Samuel Rémy, Birger Bohn, and Ulrich Löhnert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3790,https://doi.org/10.5194/egusphere-2025-3790, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
Atmos. Meas. Tech., 18, 3095–3107, https://doi.org/10.5194/amt-18-3095-2025,https://doi.org/10.5194/amt-18-3095-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3051,https://doi.org/10.5194/egusphere-2024-3051, 2024
Short summary

Related subject area

Climate and Earth system modeling
SASIEv.1: a framework for seasonal and multi-centennial Arctic sea ice emulation
Sian Megan Chilcott, Malte Meinshausen, and Dirk Notz
Geosci. Model Dev., 18, 4965–4982, https://doi.org/10.5194/gmd-18-4965-2025,https://doi.org/10.5194/gmd-18-4965-2025, 2025
Short summary
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary

Cited articles

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Hansen, M., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. A.: Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm, Earth Interact., 7, 1–15, 2003.
Higham, N. J.: The scalingand squaring method for the Matrix Exponential revisited, SIAM J. Matrix Anal. A., 26, 1179–1193, 2005.
Hogan, R. J.: SPARTACUS Vegetation 1.1: Matlab implementation of a matrix method to compute 3D radiative transfer in vegetation canopies (Version 1.1), Zenodo, https://doi.org/10.5281/zenodo.1100535, 2017.
Hogan, R. J. and Bozzo, A.: ECRAD: A New Radiation Scheme for the IFS, ECMWF Technical Memorandum 787, 33 pp., 2016.
Download
Short summary
This paper describes a fast new method for calculating how much sunlight is absorbed and reflected by forests and other types of vegetation, rigorously taking account of the complex 3-D structure. Careful evaluation shows it to perform well even in difficult scenes with snow on the ground. The method is suitable for use within the computer models used to make weather and climate forecasts, where it has the potential to improve predictions of near-surface temperature and photosynthesis rates.
Share